JPH0196301A - Production of hydrogen-storing alloy material - Google Patents

Production of hydrogen-storing alloy material

Info

Publication number
JPH0196301A
JPH0196301A JP62255480A JP25548087A JPH0196301A JP H0196301 A JPH0196301 A JP H0196301A JP 62255480 A JP62255480 A JP 62255480A JP 25548087 A JP25548087 A JP 25548087A JP H0196301 A JPH0196301 A JP H0196301A
Authority
JP
Japan
Prior art keywords
hydrogen
benzene
hydrogen storage
storage alloy
storing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62255480A
Other languages
Japanese (ja)
Other versions
JP2612006B2 (en
Inventor
Tetsuya Yoneda
哲也 米田
Shin Sato
伸 佐藤
Yoshimitsu Tajima
善光 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62255480A priority Critical patent/JP2612006B2/en
Publication of JPH0196301A publication Critical patent/JPH0196301A/en
Application granted granted Critical
Publication of JP2612006B2 publication Critical patent/JP2612006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To produce a hydrogen-storing alloy material which is hardly pulver ized, has excellent thermal conductivity and has the surface resistant to atmo spheric pollution by coating a carbon material on the surface of the hydrogen- storing alloy powder. CONSTITUTION:The carbon material formed as carbon deposit by a vapor deposition method by low-temp. thermal cracking at <=1,500 deg.C is deposited on the surface of the hydrogen-storing alloy powder. For example, gaseous Ar from a supplying device 2 is bubbled in a vessel 1 contg. the benzene which is once dehydrated and is further subjected to distillation refining by vacuum transfer. This benzene is sent via a glass tube 3 into a reaction tube 4 made of quartz and the vessel 1 is heated at this time, by which the temp. is maintained constant. The quantity of the benzene is optimized by operating valves 4, 6. On the other hand, the hydrogen-storing alloy powder is improved on a holder 7 in the reaction tube 4 and is kept at about 800 deg.C in a heating furnace 8, by which the benzene is thermally cracked and the carbon material is deposited on the surface of the above-mentioned powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素の吸収・放出を行う水素吸蔵合金材料、
特に表面に炭素体が被覆されてなる水素吸蔵合金材料の
製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a hydrogen storage alloy material that absorbs and releases hydrogen;
In particular, the present invention relates to a method of manufacturing a hydrogen storage alloy material whose surface is coated with a carbon body.

(従来の技術) 近年、水素吸蔵合金材料の研究、開発が盛んに行われ、
様々な分野において該材料がもつ種々の特性を生かした
利用が図られている。
(Conventional technology) In recent years, research and development of hydrogen storage alloy materials has been actively conducted.
In various fields, efforts are being made to utilize the material by taking advantage of its various properties.

例えば、水素吸蔵合金材料がもつ水素の吸収・放出とい
った主たる特性を生かして水素の貯蔵および輸送への利
用が考えられている。従来は水素を耐圧性のある容器に
高圧に圧縮して保存しているが、それには温度の上昇に
伴い容器の臨界圧に近づくようなことがないよう非常に
頑丈な容器が必要とされていた。しかし、水素吸蔵合金
材料を用いることにより、通常の容器より低い圧力で安
全に貯蔵、輸送ができるため、容器を簡便にすることが
できるといった利点がある。
For example, it is being considered that hydrogen storage alloy materials can be used to store and transport hydrogen by taking advantage of their main characteristics of absorbing and releasing hydrogen. Conventionally, hydrogen is compressed and stored at high pressure in pressure-resistant containers, but this requires an extremely sturdy container to prevent the container's critical pressure from approaching the critical pressure as the temperature rises. Ta. However, by using a hydrogen storage alloy material, it can be stored and transported safely at a lower pressure than a normal container, so there is an advantage that the container can be made simpler.

また、水素吸蔵合金材料は、水素のみを吸収するといっ
た特性があることから、該材料により水素の吸収・放出
を繰り返し行い、これによって水素の精製を行うことも
可能である。
Further, since the hydrogen storage alloy material has the property of absorbing only hydrogen, it is also possible to repeatedly absorb and release hydrogen using the material, thereby purifying hydrogen.

さらに、水素吸蔵台、金材料は、水素の吸収・放出の際
に大きな熱の出入りを生ずることから、この発熱・吸熱
作用を利用した蓄熱、ヒートポンプ、冷暖房システム材
料などのエネルギー変換媒体として用いることも考えら
れる。
Furthermore, since hydrogen storage tables and gold materials generate a large amount of heat in and out when absorbing and releasing hydrogen, they can be used as energy conversion media for heat storage, heat pumps, air-conditioning system materials, etc. that utilize this heat generation and heat absorption. can also be considered.

さらにまた、水素吸蔵合金材料は、水素の吸収・放出の
際に活性な原子状水素を生成することから、燃料電池の
水素極、アルカリ電池の水素極としての応用も可能であ
る。
Furthermore, since the hydrogen storage alloy material generates active atomic hydrogen when absorbing and releasing hydrogen, it can also be applied as a hydrogen electrode in a fuel cell or a hydrogen electrode in an alkaline battery.

(発明が解決しようとする問題点) ところで、この水素吸蔵合合材料は比較的高価であるた
め、上述したいずれの分野でも繰り返し使用できること
が望まれる。
(Problems to be Solved by the Invention) By the way, since this hydrogen storage composite material is relatively expensive, it is desired that it can be used repeatedly in any of the above-mentioned fields.

しかしながら、従来の水素吸蔵合金材料にあっては、雰
囲気からの表面への汚染による水素吸収・放出能力の低
下、および水素吸収・放出の操り返しによる格子膨張・
収縮からくる微粉化によって、周辺機器の機能を麻痺さ
せてしまうといった問題があった。また、熱伝導性に劣
るため、熱媒体として使用する場合、単独での使用が難
しいといった問題があった。
However, with conventional hydrogen storage alloy materials, the hydrogen absorption and release ability decreases due to surface contamination from the atmosphere, and lattice expansion and
There was a problem in that the pulverization caused by contraction paralyzed the functions of peripheral devices. Furthermore, since it has poor thermal conductivity, when used as a heat medium, it is difficult to use it alone.

(発明の目的) 本発明は、上記従来の問題に鑑みなされたものであって
、炭素体を水素吸蔵合金粉末の表面に被覆することによ
り、微粉化が起こり難く、熱伝導性に優れ、しかも雰囲
気による表面の汚染を受は難い水素吸蔵合金材料の製造
方法を提供することを目的としている。
(Object of the Invention) The present invention has been made in view of the above-mentioned conventional problems, and by coating the surface of hydrogen storage alloy powder with a carbon body, pulverization is difficult to occur and it has excellent thermal conductivity. It is an object of the present invention to provide a method for manufacturing a hydrogen storage alloy material whose surface is not easily contaminated by the atmosphere.

(発明の構成) 本発明に係る水素吸蔵合金材料の製造方法は、水素吸蔵
合金粉末の表面に、1500℃以下の低温熱分解による
気相堆積法により炭素堆積物として形成される炭素体を
堆積させることを特徴とするものである。
(Structure of the Invention) The method for producing a hydrogen storage alloy material according to the present invention is to deposit a carbon body formed as a carbon deposit on the surface of a hydrogen storage alloy powder by a vapor phase deposition method using low temperature pyrolysis at 1500°C or less. It is characterized by allowing

より詳しくは、出発原料として炭化水素類を用い、この
炭化水素類を気化し、反応系内において1000℃程度
の低温で気相熱分解して得られる炭素体を、1000℃
程度の温度で気化乃至融解、溶解、凝集を起こさない水
素吸蔵合金粉末の表面に直接気相堆積させることを特徴
とするものである。
More specifically, hydrocarbons are used as starting materials, and the hydrocarbons are vaporized and vapor-phase pyrolyzed in a reaction system at a low temperature of about 1000°C to obtain a carbon body.
It is characterized in that it is deposited in a vapor phase directly on the surface of a hydrogen-absorbing alloy powder that does not vaporize, melt, dissolve, or agglomerate at a certain temperature.

ここでの水素吸蔵合金粉末とは、粒径が75μm以下の
ものであり、T1Ni系、VNi系、ZrN i系、T
1Cu系等の1000℃程度の温度でも気化、融解、溶
解、および凝集を起こさない組成の合金であり、特に、
T + Z−XN 111(0,6≦、X≦1.2)で
示される合金が望ましい。
The hydrogen storage alloy powder here is one with a particle size of 75 μm or less, and includes T1Ni-based, VNi-based, ZrNi-based, T1Ni-based, VNi-based, ZrNi-based,
It is an alloy with a composition that does not cause vaporization, melting, dissolution, or aggregation even at temperatures of about 1000 ° C, such as 1Cu type, and in particular,
An alloy represented by T + Z-XN 111 (0,6≦, X≦1.2) is desirable.

本発明における炭化水素類とは、脂肪族炭化水素(特に
不飽和炭化水素)、芳香族炭化水素、脂環式炭化水素お
よびそれらの誘導体のことであり、具体例としては、例
えば、ベンゼンナフタレン、アントラセン、ヘキサメチ
ルベンゼン、2−ブチン、アセチレン、ビフェニル、ジ
フヱニルアセチレン、シクロヘキサン等が挙げられ、特
にベンゼン等の芳香族炭化水素類が好ましい。
Hydrocarbons in the present invention include aliphatic hydrocarbons (especially unsaturated hydrocarbons), aromatic hydrocarbons, alicyclic hydrocarbons, and derivatives thereof, and specific examples include benzenenaphthalene, Examples include anthracene, hexamethylbenzene, 2-butyne, acetylene, biphenyl, diphenylacetylene, cyclohexane, and aromatic hydrocarbons such as benzene are particularly preferred.

上記炭化水素類を低温熱分解する際の濃度、温度は、出
発原料となる有機材料により異なるが、数ミリモルパー
セントの濃度、1000℃程度以下の温度に制御され、
炭素体の堆積量は数μm以下に制御される。
The concentration and temperature during low-temperature pyrolysis of the above hydrocarbons vary depending on the organic material used as the starting material, but are controlled to a concentration of several mmol percent and a temperature of about 1000 ° C. or less,
The amount of carbon deposited is controlled to be several μm or less.

また炭化水素類を気化する方法としては、アルゴンガス
をキャリアガスとするバブラ法が通常であるが、水素吸
蔵合金および出発原料となる有機材料によっては水素と
アルゴンの混合ガスまたは水素ガスをキャリアガスとす
るバプラ法、あるいは蒸発法、昇華法等によって行うこ
とができる。
In addition, as a method for vaporizing hydrocarbons, the bubbler method using argon gas as the carrier gas is usually used, but depending on the hydrogen storage alloy and the organic material used as the starting material, a mixed gas of hydrogen and argon or hydrogen gas may be used as the carrier gas. This can be carried out by a Bapla method, an evaporation method, a sublimation method, or the like.

(発明の効果) 本発明によれば、微粉化が起こり難く、また熱乃至電気
伝導性に優れ、しかも雰囲気からの被毒による特性劣化
を起こさないといった利点を有し、長期間にわたる使用
においても安定した特性を示す水素吸蔵合金材料を提供
することができる。
(Effects of the Invention) According to the present invention, it has the advantage that it is difficult to be pulverized, has excellent thermal and electrical conductivity, and does not cause property deterioration due to poisoning from the atmosphere, and can be used for a long period of time. A hydrogen storage alloy material exhibiting stable properties can be provided.

(実施例) 以下、本発明の実施例を示すが、本発明はこれに限定さ
れるものではない。
(Example) Examples of the present invention will be shown below, but the present invention is not limited thereto.

本例では、水素吸蔵合金にT1Niを、またT1Ni粉
末の表面上に堆積させる炭素体作製のための出発物質と
してベンゼンを用いた。
In this example, T1Ni was used as a hydrogen storage alloy and benzene was used as a starting material for preparing a carbon body deposited on the surface of T1Ni powder.

まず、TiとNiを化学量論比でl:lとなるようにT
i粉末とNi扮末を秤量し、アルミナ袈乳鉢を用いて均
一に混合した。、この混合粉末を錠剤成形器を用いて直
径15龍、厚さ5龍のペレットに作製した。このペレッ
トをアルゴンアーク溶解炉内でアーク溶解し、均一なT
1Ni合金を作製した後、粉砕し、最大粒径75μm、
平均粒径40μmの水素吸蔵合金粉末を得た。
First, T
The i powder and the Ni powder were weighed and mixed uniformly using an alumina mortar. This mixed powder was made into pellets with a diameter of 15 mm and a thickness of 5 mm using a tablet molding machine. The pellets are arc melted in an argon arc melting furnace to obtain a uniform T.
After producing the 1Ni alloy, it was pulverized and the maximum particle size was 75 μm.
A hydrogen storage alloy powder with an average particle size of 40 μm was obtained.

このようにして得られた水素吸蔵合金粉末を第1図に示
した炭素体堆積用装置内の試料ホルダー7に載せ、以下
の手順により水素吸蔵合金の表面上に炭素体を堆積させ
た。
The hydrogen storage alloy powder thus obtained was placed on the sample holder 7 in the carbon body deposition apparatus shown in FIG. 1, and carbon bodies were deposited on the surface of the hydrogen storage alloy according to the following procedure.

まず、−旦脱水処理を施しさらに真空移送による蒸留精
製操作を行ったベンゼンが収納された容器1内に、アル
ゴン供給器2よりアルゴンガスを供給してベンゼンのバ
ブルを行い、このベンゼンをパイレックス製ガラス管3
を介して石英製反応管4へ給送した。その際、容器1を
ベンゼンの蒸発による吸熱分だけ加熱することにより温
度を一定に保ち、またニードル弁5.6を適宜操作して
ベンゼン量を最適化した。
First, argon gas is supplied from the argon supply device 2 to bubble the benzene into a container 1 containing benzene that has been dehydrated and then subjected to distillation purification by vacuum transfer. glass tube 3
was fed to the quartz reaction tube 4 via the quartz tube. At this time, the temperature was kept constant by heating the container 1 by the amount of heat absorbed by the evaporation of benzene, and the amount of benzene was optimized by appropriately operating the needle valves 5 and 6.

一方、反応管4に設置された試料ホルダー7上には、水
素吸蔵合金粉末が載置されており、また反応管4の外周
囲には加熱炉8が周設されている。
On the other hand, a hydrogen storage alloy powder is placed on a sample holder 7 installed in the reaction tube 4, and a heating furnace 8 is provided around the outer periphery of the reaction tube 4.

この加熱炉8により試料ホルダー7および水素吸蔵合金
を約800°Cの温度に維持し、パイレックス製ガラス
管3から供給されるベンゼン番熱分解し、水素吸蔵合金
の粉末表面に炭素体を堆積させた。なお、熱分解反応後
の反応管4内に残留するガスは排気設備9,10により
排気し除去した。
The sample holder 7 and the hydrogen storage alloy are maintained at a temperature of approximately 800°C by the heating furnace 8, and the benzene supplied from the Pyrex glass tube 3 is thermally decomposed, and carbon bodies are deposited on the powder surface of the hydrogen storage alloy. Ta. Note that the gas remaining in the reaction tube 4 after the thermal decomposition reaction was exhausted and removed by exhaust equipment 9 and 10.

このようにして得られた水素吸蔵合金材料についてCo
Kα線を光源とするX線回折を行った。
Regarding the hydrogen storage alloy material obtained in this way, Co
X-ray diffraction was performed using Kα rays as a light source.

その結果を第2図Aに示す。また、アーク溶解炉により
得られたT1Niを粉砕して得られた粉末、すなわち炭
素体を堆積させる以前の水素吸蔵合金粉末についても上
記と同様のX線回折を行った。その結果を第2図Bに示
す。
The results are shown in FIG. 2A. Further, the same X-ray diffraction as above was performed on the powder obtained by pulverizing T1Ni obtained in the arc melting furnace, that is, the hydrogen storage alloy powder before depositing the carbon body. The results are shown in Figure 2B.

これらの結果より、本発明による方法によって得られる
本発明の水素吸蔵合金材料は著しい組成変化を受けてな
いことがわかる。
These results show that the hydrogen storage alloy material of the present invention obtained by the method according to the present invention has not undergone any significant compositional changes.

第3図は、水素吸蔵合金材料の粒径分布を示し、同図A
はアーク溶解炉により得られたT1Niを粉砕して得ら
れた粉末の粒径分布を、同図Bは炭素体を堆積させた水
素吸蔵合金材料について100回の水素吸収・放出の繰
り返しを行った後の粒径分布を、また同図Cは炭素体を
堆積させない水素吸蔵合金材料について100回の水素
吸収・放出の繰り返しを行った後の粒径分布を示す。
Figure 3 shows the particle size distribution of the hydrogen storage alloy material;
Figure B shows the particle size distribution of the powder obtained by crushing T1Ni obtained in an arc melting furnace, and Figure B shows the hydrogen storage alloy material on which carbon bodies were deposited after 100 repetitions of hydrogen absorption and release. Figure C shows the particle size distribution after 100 repetitions of hydrogen absorption and release for a hydrogen storage alloy material on which no carbon body is deposited.

これらの結果から、炭素体を堆積させることにより水素
吸蔵合金材料は水素の吸収・放出を繰り返すことによる
微粉化が起こり難くなることがわかる。
These results show that by depositing carbon bodies, the hydrogen storage alloy material becomes less likely to be pulverized due to repeated absorption and release of hydrogen.

また、水分を5%含んだ水素ガスを用い、炭素体を堆積
させた水素吸蔵合金材料Aおよび炭素体を堆積させない
水素吸蔵合金材料Bにそれぞれ水素の吸収・放出の繰り
返しを行わせ、各材料A。
In addition, using hydrogen gas containing 5% water, hydrogen storage alloy material A on which carbon bodies were deposited and hydrogen storage alloy material B on which carbon bodies were not deposited were made to repeatedly absorb and release hydrogen. A.

Bの水素吸収・放出可能な量について調べた。その結果
を第4図に示す。
The amount of hydrogen that B can absorb and release was investigated. The results are shown in FIG.

これらの結果から、炭素体を堆積させることにより雰囲
気による表面汚染が起こり難いことがわかる。
From these results, it can be seen that by depositing carbon bodies, surface contamination due to the atmosphere is less likely to occur.

以上の事柄より、本発明に係る製造方法により得られた
水素吸蔵合金材料は、微粉化が起こり難く、雰囲気によ
る特性劣化の起こり難い材料であり、長期間の使用にお
いても安定した特性を供給できるものであることがわか
る。
From the above, the hydrogen storage alloy material obtained by the production method according to the present invention is a material that is unlikely to be pulverized, its properties are unlikely to deteriorate due to the atmosphere, and it can provide stable properties even during long-term use. I can see that it is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水素吸蔵合金材料の製造に用いる
炭素体堆積装置の一例を示す概略図、第2図は水素吸蔵
合金材料のCoKα線による粉末X線回折図であり、同
図Aは本発明に係る水素吸蔵合金材料についてのX線回
折図、同図Bは炭素体が被覆されていない水素吸蔵合金
材料についてのX線回折図、第3図は水素吸蔵合金材料
の水素吸収・放出の繰り返し過程を実施する前後の粒径
分布の比較図であり、同図Aはアーク溶解炉により得ら
れたT1Niを粉砕して得られた粉末の粒径分布を示す
図、同図Bは炭素体を堆積させた水素吸蔵合金材料につ
いて100回の水素吸収・放出の繰り返しを行った後の
粒径分布を示す図、同図Cは炭素体を堆積させない水素
吸蔵合金材料について100回の水素吸収・放出の繰り
返しを行った後の粒径分布を示す図、第4図は本発明に
係る水素吸蔵合金材料と、炭素体が被覆されていない水
素吸蔵合金材料についての水素吸収・放出可能な量の吸
収・放出操り返しによる変化を示す特性図である。 ■・・・容器 2・・・アルゴン供給器 3・・・パイレックス製ガラス管 4・・・石英製反応管 5.6・・・ニードル弁 7・・・試料ホルダー   8・・・加熱炉9.10・
・・排気設備
FIG. 1 is a schematic diagram showing an example of a carbon body deposition apparatus used for manufacturing the hydrogen storage alloy material according to the present invention, and FIG. 2 is a powder X-ray diffraction diagram of the hydrogen storage alloy material using CoKα rays. is an X-ray diffraction diagram of the hydrogen-absorbing alloy material according to the present invention, FIG. This is a comparison diagram of the particle size distribution before and after the repeated discharge process, in which Figure A shows the particle size distribution of the powder obtained by crushing T1Ni obtained in an arc melting furnace, and Figure B shows the particle size distribution of the powder obtained by crushing T1Ni obtained in an arc melting furnace. A diagram showing the particle size distribution after 100 cycles of hydrogen absorption and desorption for a hydrogen storage alloy material on which carbon bodies are deposited. Figure 4 shows the particle size distribution after repeated absorption and release. FIG. 3 is a characteristic diagram showing changes due to absorption/release manipulation of the amount. ■... Container 2... Argon supply device 3... Pyrex glass tube 4... Quartz reaction tube 5.6... Needle valve 7... Sample holder 8... Heating furnace 9. 10・
・・Exhaust equipment

Claims (1)

【特許請求の範囲】[Claims] 1)水素吸蔵合金粉末の表面に、1500℃以下の低温
熱分解による気相堆積法により炭素堆積物として形成さ
れる炭素体を堆積させることを特徴とする水素吸蔵合金
材料の製造方法。
1) A method for producing a hydrogen-absorbing alloy material, which comprises depositing a carbon body formed as a carbon deposit on the surface of a hydrogen-absorbing alloy powder by a vapor phase deposition method using low-temperature pyrolysis at 1500° C. or less.
JP62255480A 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode Expired - Fee Related JP2612006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255480A JP2612006B2 (en) 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255480A JP2612006B2 (en) 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode

Publications (2)

Publication Number Publication Date
JPH0196301A true JPH0196301A (en) 1989-04-14
JP2612006B2 JP2612006B2 (en) 1997-05-21

Family

ID=17279347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255480A Expired - Fee Related JP2612006B2 (en) 1987-10-08 1987-10-08 Method for producing hydrogen storage alloy material for battery electrode

Country Status (1)

Country Link
JP (1) JP2612006B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232202A (en) * 1990-12-28 1992-08-20 Sharp Corp Manufacture of hydrogen occluding alloy material
CN110482488A (en) * 2019-09-11 2019-11-22 广东省稀有金属研究所 A kind of composite hydrogen storage material, preparation method and applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232202A (en) * 1990-12-28 1992-08-20 Sharp Corp Manufacture of hydrogen occluding alloy material
CN110482488A (en) * 2019-09-11 2019-11-22 广东省稀有金属研究所 A kind of composite hydrogen storage material, preparation method and applications

Also Published As

Publication number Publication date
JP2612006B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
CA2363456C (en) Hydrogen storage using carbon-metal hybrid compositions
EP1413550B1 (en) Method and device for synthesizing high orientationally arranged carbon nanotubes by using organic liquid
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
Scharff New carbon materials for research and technology
US6517800B1 (en) Production of single-walled carbon nanotubes by a hydrogen arc discharge method
Moussa et al. Hollow core@ mesoporous shell boron nitride nanopolyhedron-confined ammonia borane: A pure B–N–H composite for chemical hydrogen storage
KR20100093965A (en) Graphene sheet comprising intercalation compounds and process for preparing the same
SI25662A (en) Carbon nanostructured materials and methods for forming of these materials
JPH08232069A (en) Method and apparatus for sublimating solid substance
JPH08225395A (en) Production of diamond doped with boron
US4556551A (en) Hydrogen storage materials of zirconium-chromium-iron and titanium alloys characterized by ZrCr2 stoichiometry
Mansurov Producing nanomaterials in combustion
Koprinarov et al. Preparation of carbon spheres by low-temperature pyrolysis of cyclic hydrocarbons
JPH0196301A (en) Production of hydrogen-storing alloy material
WO2005120715A2 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
TW200400663A (en) High capacity calcium lithium based hydrogen storage material and method of making the same
JPH0244763B2 (en)
Loutfy et al. Feasibility of fullerene hydride as a high capacity hydrogen storage material
Imamura et al. Preparation and hydriding properties of magnesium-containing hydrogen storage materials chemically deposited from a homogeneous phase
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
US20060269466A1 (en) Method for manufacturing carbonaceous nanofibers
JP3350691B2 (en) High activation and stabilization of hydrogen storage metal
JPS60131942A (en) Hydrogen storage material for superchemical weight alloy
US3804664A (en) Process for chemical vapor deposition of zirconium carbide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees