JPH0146028B2 - - Google Patents

Info

Publication number
JPH0146028B2
JPH0146028B2 JP57127675A JP12767582A JPH0146028B2 JP H0146028 B2 JPH0146028 B2 JP H0146028B2 JP 57127675 A JP57127675 A JP 57127675A JP 12767582 A JP12767582 A JP 12767582A JP H0146028 B2 JPH0146028 B2 JP H0146028B2
Authority
JP
Japan
Prior art keywords
test material
coil
magnetic field
coils
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57127675A
Other languages
Japanese (ja)
Other versions
JPS5918452A (en
Inventor
Hisao Yamaguchi
Kazuo Fujisawa
Takashi Kadowaki
Susumu Ito
Soji Sasaki
Kazuya Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Sumitomo Metal Industries Ltd filed Critical Hitachi Ltd
Priority to JP57127675A priority Critical patent/JPS5918452A/en
Publication of JPS5918452A publication Critical patent/JPS5918452A/en
Publication of JPH0146028B2 publication Critical patent/JPH0146028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は電磁超音波計測装置に関する。[Detailed description of the invention] The present invention relates to an electromagnetic ultrasonic measuring device.

非破壊検査の方法の一つに超音波を利用する方
法があり、広く使用されているが、被検材の表面
が滑らかであることが必要であつたり、高温の被
検材には応用できない等の欠点がある。電磁超音
波計測装置は、これらの欠点がないものとして広
く研究され、実用に供されつつあり、例えば、
non destructive testing VOL.5 No.3 june
1972 P154〜159「Electromagneto−acoustic
non−destructive testing in the Soviet
Union」にも具体的に紹介されている。
One method of non-destructive testing is the use of ultrasonic waves, which is widely used, but it requires the surface of the material to be tested to be smooth and cannot be applied to high-temperature test materials. There are drawbacks such as. Electromagnetic ultrasonic measurement devices have been widely researched and are being put into practical use as being free of these drawbacks.
non destructive testing VOL.5 No.3 june
1972 P154~159 “Electromagneto−acoustic
non-destructive testing in the Soviet Union
It is also specifically introduced in "Union".

電磁超音波計測装置によつて高感度に被検材内
部のきずを検出し、或は被検材の厚みを計測する
には、原理的に明らかなように、被検材表面に作
用する磁界を強くするか、送信コイルに加える信
号を強化するかのいずれか、或は両方を強化する
かしか方法はない。これらのうち、送信コイルに
加える信号を強化することは安全の面からも限界
があり、磁界を強化することが有効となるが、従
来、断面E型の鉄心を使用して被検材の表面に磁
界を作用させるものとされているため、その強化
にも限界があつた。
As is clear in principle, in order to highly sensitively detect flaws inside a specimen material or measure the thickness of a specimen material using an electromagnetic ultrasonic measuring device, a magnetic field acting on the surface of the specimen material is required. The only way to do this is to strengthen the signal, strengthen the signal applied to the transmitter coil, or strengthen both. Of these, strengthening the signal applied to the transmitter coil has its limits from a safety perspective, and strengthening the magnetic field is effective, but conventionally, an iron core with an E-shaped cross section has been used to Since it was supposed to apply a magnetic field to the magnetic field, there were limits to its strength.

すなわち、電磁超音波計測装置では、計測の目
的に合わせて横波、縦波が選択的に使用されるわ
けである。この場合、比較的高温にある被検材に
対しても有効な縦波を利用しようとするときは、
被検材の表面に平行に作用している磁界が必要で
あるが、断面がE型の鉄心を使用していると、被
検材が単に継鉄として作用するにすぎず、その表
面に平行な磁界を効果的に得ることができないの
である。
That is, in electromagnetic ultrasonic measurement devices, transverse waves and longitudinal waves are selectively used depending on the purpose of measurement. In this case, when trying to utilize longitudinal waves that are effective even for the test material at relatively high temperatures,
A magnetic field acting parallel to the surface of the material being tested is required, but if an iron core with an E-shaped cross section is used, the material being tested merely acts as a yoke, and the magnetic field is acting parallel to the surface. Therefore, it is not possible to effectively obtain a strong magnetic field.

本発明は、被検材を中にして励磁コイルを巻回
した構造とすることにより、原理的に励磁コイル
による起磁力A・Tが全て被検材に平行に作用す
るものとし、その結果、被検材表面に平行に作用
する磁界成分を増大させ、縦波を利用した電磁超
音波計測を効果的に行うことを提案するものであ
る。
The present invention has a structure in which the excitation coil is wound around the specimen material, so that in principle, all the magnetomotive forces A and T from the excitation coil act in parallel to the specimen material, and as a result, This paper proposes increasing the magnetic field component that acts parallel to the surface of the specimen to effectively perform electromagnetic ultrasonic measurements using longitudinal waves.

第1図、第2図に本発明に係る電磁超音波計測
装置の基本的な構成を斜視図及び断面斜視図で示
す。尚、図において同一部材には同一の参照符号
が付されている。
FIG. 1 and FIG. 2 show a basic configuration of an electromagnetic ultrasonic measuring device according to the present invention in a perspective view and a cross-sectional perspective view. In addition, the same reference numerals are attached to the same members in the figures.

同図において、2個の直流コイル11,12は
各々が独立して被検材1を包囲する如く巻回され
ており、2個の直流コイル11,12から発生す
る直流磁束(図中点線で示す)は加え合されるよ
うに励磁される。ここで夫々のコイルは直列接続
でも、並列接続でも良い。2個の直流励磁コイル
11,12の間の空間に被検材1と対向して送受
信コイル13が配置されている。送受信コイル1
3は、これを同一場所に配置することができるの
は勿論、送信コイルと受信コイルとを被検材1を
はさんで配置する方式いわゆる透過形としうるこ
とは言うまでもない。
In the figure, two DC coils 11 and 12 are each independently wound so as to surround the specimen 1, and the DC magnetic flux generated from the two DC coils 11 and 12 (indicated by dotted lines in the figure) ) are excited such that they add together. Here, each coil may be connected in series or in parallel. A transmitting/receiving coil 13 is arranged in a space between two DC excitation coils 11 and 12, facing the specimen 1. Transmitting/receiving coil 1
3 can of course be placed in the same place, and it goes without saying that the transmitting coil and the receiving coil can be placed with the specimen 1 sandwiched therebetween, that is, a so-called transmission type.

第3図に2個の直流励磁コイルの励磁電流の流
れる方向を図中矢印で示す。
In FIG. 3, arrows indicate the directions in which the excitation currents of the two DC excitation coils flow.

上記構成において、2つの直流コイル11,1
2により発生する直流磁束はその大半が被検材1
の内部を通り、しかもその方向は被検材1の表面
と平行となる。即ち、コイル11,12の作る磁
束はほとんど全て縦波電磁超音波を送受信するの
に必要な被検材1の表面と平行な成分の磁場を形
成する。直流励磁コイル11,12の励磁量を増
大すればほぼ比例的に磁場強度は増大し、この磁
場強度は10000Gauss以上の値を得ることは容易
である。その結果、本実施例によれば縦波電磁超
音波の検出信号レベルは従来法による平均的な磁
場強度(約3000Gauss)に比較し約11倍〔=
(10000/3000)2〕の感度向上が図れ、その効果は
非常に大きい。
In the above configuration, two DC coils 11, 1
Most of the DC magnetic flux generated by 2 is in the test material 1.
, and its direction is parallel to the surface of the specimen 1. That is, almost all of the magnetic flux generated by the coils 11 and 12 forms a magnetic field whose component is parallel to the surface of the test material 1, which is necessary for transmitting and receiving longitudinal electromagnetic ultrasonic waves. If the amount of excitation of the DC excitation coils 11 and 12 is increased, the magnetic field strength increases almost proportionally, and it is easy to obtain a value of 10,000 Gauss or more for this magnetic field strength. As a result, according to this embodiment, the detection signal level of longitudinal electromagnetic ultrasound is approximately 11 times higher than the average magnetic field strength (approximately 3000 Gauss) obtained by the conventional method.
(10000/3000) 2 ] sensitivity can be improved, and the effect is very large.

又、本構成によれば送受信コイル13は直流励
磁コイル間の磁極であれば被検材の表面、側面、
裏面どの位置にでも複数個配置でき、複数の送受
信コイルを所定の間隔で対向配置することも可能
である。この結果、被検材1たとえば鋼管、丸棒
鋼の周囲は、複数個の送受信コイル13により肉
厚、欠陥等を大きな検出信号で一回の操作で検出
できるので、検出作業がしやすく、使い勝手が良
い。また送受コイル13は磁極に取付けたり、取
外したりする着脱作業を容易に行なえるので、メ
ンテナンスが容易に出来る。
In addition, according to this configuration, the transmitting/receiving coil 13 can be placed on the surface, side surface, or
A plurality of coils can be placed at any position on the back surface, and a plurality of transmitter/receiver coils can be placed facing each other at a predetermined interval. As a result, the multiple transmitter/receiver coils 13 can detect wall thickness, defects, etc. around the specimen 1, such as a steel pipe or round steel bar, with a single operation using a large detection signal, making detection work easier and more convenient. good. Further, since the transmitting/receiving coil 13 can be easily attached and detached from the magnetic pole, maintenance can be easily performed.

次に、第1図の構成において磁場発生効率を改
善するために鉄心を設けることが当然考えられ
る。この場合の断面斜視図を第4図に示す。同図
において鉄心14は直流励磁コイル11,12を
包囲する様に構成されている。
Next, it is natural to consider providing an iron core in the configuration shown in FIG. 1 in order to improve the efficiency of magnetic field generation. A cross-sectional perspective view in this case is shown in FIG. In the figure, an iron core 14 is constructed to surround DC excitation coils 11 and 12.

なお、常電導コイルによる電磁石の代りに超伝
導マグネツトを用いれば、磁場強度を大きくとる
ことが可能となるので更に計測感度の向上が図れ
ることは勿論である。
It goes without saying that if a superconducting magnet is used instead of an electromagnet made of a normal conducting coil, the magnetic field strength can be increased, and thus the measurement sensitivity can be further improved.

第5図の構成は励磁コイルを一つにした例であ
り、実質的に前述の構成と変るところはない。第
6図は被検材1がパイプであり、パイプの肉厚を
測定しようとする例である。
The configuration shown in FIG. 5 is an example in which the excitation coil is integrated into one, and is substantially the same as the above-described configuration. FIG. 6 shows an example in which the test material 1 is a pipe and the wall thickness of the pipe is to be measured.

第4図〜第6図の例において、鉄心14は、後
述する本発明の実施例第7図、第8図のように、
コイルを両側からはさみ込む形のように二分割と
することが実際的である。
In the examples shown in FIGS. 4 to 6, the iron core 14 is as shown in FIGS. 7 and 8 according to embodiments of the present invention described later.
It is practical to divide the coil into two halves by sandwiching the coil from both sides.

第7図、第8図は本発明を第6図の例に適用し
た具体的な実施例を一部断面で示す側面図、平面
図である。
7 and 8 are a side view and a plan view, partially in section, showing a specific embodiment in which the present invention is applied to the example shown in FIG. 6. FIG.

鉄心14は14a,14bに2分割され、夫々
中央に切欠き部を有する断面コ字状の円筒形に作
られ、夫々の内面にコイル11,12が、保護カ
バー21a,21bによつて固着されるととも
に、第7図に示すように、コイル11,12を対
向させた形でボルト22および図示しないナツト
によつて結合される。25a,25bは先端部が
先細り状にされた円筒形磁極であり、夫々鉄心1
4a,14bの中央の切欠き部に挿入され、ボル
ト26によつて鉄心14a,bに固着される。2
7a,27bはカバーであり、中心部に穴のあけ
られた円板である。このカバーは、ボルト26の
鉄心側面からの突出を防ぐため、ボルト26の部
分が一部切欠かれる他、後述する冷却水配管の配
置される部分も切欠かれ、鉄心側面からの突出部
ができないように工夫されている。
The iron core 14 is divided into two parts 14a and 14b, each of which has a cylindrical U-shaped cross section with a notch in the center, and the coils 11 and 12 are fixed to the inner surface of each part by protective covers 21a and 21b. At the same time, as shown in FIG. 7, the coils 11 and 12 are connected to each other by bolts 22 and nuts (not shown) in a manner that they face each other. Reference numerals 25a and 25b are cylindrical magnetic poles with tapered tips, each of which has a tapered tip.
It is inserted into the central notch of 4a, 14b and fixed to the iron cores 14a, b with bolts 26. 2
7a and 27b are covers, which are discs with a hole in the center. In order to prevent the bolts 26 from protruding from the side of the core, this cover has a part cut out for the bolt 26, and also has a cutout in the area where the cooling water piping, which will be described later, is arranged, to prevent the bolt 26 from protruding from the side of the core. It has been devised.

磁極25a,25bは、先細り状とされている
から、その先端部に磁界を集中させることがで
き、効果的に被検材表面と平行な磁場を作り出す
ことができる。被検材1の寸法の変更に対して
は、磁極25a,25bを変更することによつて
対応することができる。更に、磁極25a,25
bの内面を図のように傾きを持つたものとするこ
とにより、被検材の導入をスムーズにすることが
できる。この場合、磁極の内面に保護部材を貼
る、等することにより、磁極25、被検材1の衝
突があつても、両者を傷つけないようにすること
ができる。
Since the magnetic poles 25a and 25b are tapered, the magnetic field can be concentrated at the tip thereof, and a magnetic field parallel to the surface of the specimen can be effectively created. Changes in the dimensions of the specimen 1 can be accommodated by changing the magnetic poles 25a and 25b. Furthermore, magnetic poles 25a, 25
By making the inner surface of b inclined as shown in the figure, the material to be tested can be introduced smoothly. In this case, by pasting a protective member on the inner surface of the magnetic pole, even if the magnetic pole 25 and the test material 1 collide, it is possible to prevent them from being damaged.

磁極25a,25bには図示されていないが冷
却水を通すための貫通孔が設けられ、冷却され
る。例えば、鉄心14a側について見ると、冷却
水は冷却水導入配管28aから導入され、磁極2
5a内の貫通孔を通り磁極25aの先端部で図示
しない渡り配管を通つて、磁極25aの90゜離れ
た位置にある貫通孔に導かれる。この貫通孔を出
た冷却水は渡り配管30aにより、さらに90゜離
れた位置にある貫通孔に導かれる。この貫通孔を
流れた冷却水は磁極25aの先端部で渡り配管3
1aにより更に90゜離れた位置にある貫通孔に導
かれる。この貫通孔を出た冷却水は配管28aと
対応した上部位置にある冷却水排出配管(図示せ
ず)により外部に排出される。即ち、磁極25a
は90゜きざみで配置された貫通孔を冷却水が2往
復する形で冷却されるのである。鉄心14bにつ
いても、同様に、配管28bから冷却水が導入さ
れ、磁極25bの貫通孔と渡り配管(途中で渡り
配管31bを通る)とを順次通過しながら、図示
しない配管から排出される。
Though not shown, the magnetic poles 25a and 25b are provided with through holes through which cooling water passes, thereby cooling the magnetic poles 25a and 25b. For example, looking at the iron core 14a side, cooling water is introduced from the cooling water introduction pipe 28a, and the magnetic pole 2
The tip of the magnetic pole 25a passes through the through hole in the magnetic pole 25a and is guided to the through hole located 90 degrees away from the magnetic pole 25a through a connecting pipe (not shown). The cooling water that has exited this through hole is further guided to a through hole located 90 degrees away by a crossover pipe 30a. The cooling water flowing through this through hole crosses over to the pipe 3 at the tip of the magnetic pole 25a.
1a leads to a through hole located further 90° away. The cooling water exiting the through hole is discharged to the outside through a cooling water discharge pipe (not shown) located at an upper position corresponding to the pipe 28a. That is, the magnetic pole 25a
The cooling water is cooled by going back and forth twice through the through holes arranged in 90° increments. Similarly, for the iron core 14b, cooling water is introduced from the pipe 28b, and is discharged from a pipe (not shown) while successively passing through the through hole of the magnetic pole 25b and the crossover pipe (passing the crossover pipe 31b on the way).

磁極25a,25bは第7図に破線で示すよう
に内部筒と外部筒の2分割されたものを合せて一
体化した形にすることができる。このようにする
ときは、被検材の寸法変更に対応して磁極25を
交換するとき、内部筒、外部筒を夫々分離して扱
うことができるから、重量を軽減でき、取扱いが
容易となる利点がある。
The magnetic poles 25a and 25b can be formed by combining two parts, an inner cylinder and an outer cylinder, into one body, as shown by broken lines in FIG. In this case, when replacing the magnetic pole 25 in response to a change in the dimensions of the material to be tested, the inner tube and the outer tube can be handled separately, reducing weight and making handling easier. There are advantages.

40は送受信部収納ブロツクであり、偏平な中
空材を円く成形されるとともに、60゜きざみで後
述する送受部51〜56(54,55は図示せ
ず)が配置されるための貫通孔61〜66(6
4,65は図示せず)を有する。ブロツク40は
磁極25a,bの夫々の先端部により支持され
る。ブロツク40に設けられた貫通孔61〜66
の被検材1側には非導電性のカバー71〜76
(74,75は図示せず)が配置され、反対側に
は送受信部51〜56が配置される。送受信部は
例えば送信コイル、受信コイル(図示せず)がモ
ールドされたものを主体とするから、この強度を
補強するため保護カバー81〜86(84,85
は図示せず)が設けられる。送信コイル、受信コ
イルと外部回路との接続はケーブル配管91〜9
6(94,95は図示せず)により行なわれる。
ケーブル配管91〜96は後述する冷却水導入配
管同様に磁極25bに設けた貫通孔により外部に
導出される。
Reference numeral 40 denotes a transmitting/receiving unit storage block, which is formed from a flat hollow material into a circular shape, and has through holes 61 in which transmitting/receiving units 51 to 56 (54 and 55 are not shown), which will be described later, are arranged in 60° increments. ~66 (6
4 and 65 (not shown). Block 40 is supported by the tips of each of magnetic poles 25a,b. Through holes 61 to 66 provided in block 40
Non-conductive covers 71 to 76 are placed on the test material 1 side.
(74, 75 are not shown) are arranged, and transmitting/receiving units 51 to 56 are arranged on the opposite side. Since the transmitter/receiver unit is mainly composed of a molded transmitter coil and a receiver coil (not shown), protective covers 81 to 86 (84, 85
(not shown) is provided. The connection between the transmitting coil, receiving coil and external circuit is through cable piping 91-9.
6 (94 and 95 are not shown).
The cable pipes 91 to 96 are led out to the outside through through holes provided in the magnetic pole 25b, similar to the cooling water introduction pipes described later.

ブロツク40の中空部41には冷却水導入配管
42が接続され、冷却水が導入される。この冷却
水は中空部41からカバー71と送受信ブロツク
51との空間及びカバー72と送受信ブロツク5
2との空間の夫々に分流し、以下、中空部とカバ
ーと送受信ブロツクとの間の空間とを順次流れ、
配管42に対向する位置に設けられた図示しない
冷却水排出導管を介して外部に排出される。導入
配管42は磁極25bの貫通孔43を通過する。
図示しない導出配管も同様である。導水配管42
およびブロツク40の中空部41は断面積が小さ
いので冷却水に不純物がまざつていたり、内部に
藻が発生したりする様なことがあると、つまつた
り、冷却水の流れがかたよつたりして冷却が不充
分になる可能性がある。それ故、冷却水は蒸留水
とし、充分な流速で流れる様にするのが良い。
A cooling water introduction pipe 42 is connected to the hollow portion 41 of the block 40, and cooling water is introduced thereinto. This cooling water flows from the hollow part 41 to the space between the cover 71 and the transmitting/receiving block 51 and into the space between the cover 72 and the transmitting/receiving block 5.
2, and then sequentially flows through the hollow part and the space between the cover and the transmitting/receiving block,
The cooling water is discharged to the outside through a cooling water discharge conduit (not shown) provided at a position opposite to the piping 42 . The introduction pipe 42 passes through the through hole 43 of the magnetic pole 25b.
The same applies to the lead-out piping (not shown). Water supply pipe 42
Since the hollow section 41 of the block 40 has a small cross-sectional area, if the cooling water is contaminated with impurities or algae grows inside, it may become clogged or the flow of the cooling water may become unstable. This may result in insufficient cooling. Therefore, it is preferable to use distilled water as the cooling water so that it flows at a sufficient flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基礎となる基本構成を概念的
に示す斜視図、第2図は第1図における励磁コイ
ルと送受信コイルとの関係を示す断面斜視図、第
3図は第1図の基本概念を説明する線図、第4図
は第1図に鉄心を併用した場合の構成を示す断面
斜視図、第5図は励磁コイルを一つにした場合の
構成についての断面斜視図、第6図は被検材をパ
イプとしたときの構成を示す断面斜視図、第7
図、第8図は第6図の構成についての本発明の適
用を示すより具体的な実施例の構成を一部断面で
示す側面図、平面図であり、夫々互いに−,
−方向に見た図である。 1……被検材、11,12……コイル、14
a,14b……鉄心、25a,25b……磁極、
40……送受信部収納ブロツク、42,28a,
28b……冷却水配管。
FIG. 1 is a perspective view conceptually showing the basic configuration that is the basis of the present invention, FIG. 2 is a cross-sectional perspective view showing the relationship between the excitation coil and the transmitting/receiving coil in FIG. 1, and FIG. A line diagram explaining the basic concept, Fig. 4 is a cross-sectional perspective view showing the configuration when the iron core is used in conjunction with Fig. 1, Fig. 5 is a cross-sectional perspective view of the configuration when the excitation coil is combined into one, Figure 6 is a cross-sectional perspective view showing the configuration when the test material is a pipe;
8 are a side view and a plan view, partially in cross section, of the configuration of a more specific embodiment showing the application of the present invention to the configuration of FIG. 6, respectively.
It is a view seen in the − direction. 1... Test material, 11, 12... Coil, 14
a, 14b... iron core, 25a, 25b... magnetic pole,
40... Transmitter/receiver storage block, 42, 28a,
28b...Cooling water piping.

Claims (1)

【特許請求の範囲】[Claims] 1 被検材を中にして取囲むようにした被検材の
長手方向の少なくとも2個所に巻回され、かつ同
方に磁界を流す少なくとも2個の励磁コイルと、
前記励磁コイルにより磁界が作用している被検材
の表面部分に機械的歪を生じさせる送信コイル
と、前記機械的歪が被検材内に伝播して被検材表
面にあらわれた磁界を検出する受信コイルとを備
え、前記励磁コイルが被検材に対向する面を除い
て鉄心によつて囲まれていると共に、励磁コイル
の前記被検材に対向する面には磁極が前記鉄心に
支持され、前記送信コイルおよび受信コイルを前
記磁極に支持すると共に、送信コイルおよび受信
コイルを被検材の周囲方向に複数個配置すること
を特徴とする電磁超音波計測装置。
1. At least two excitation coils that are wound around at least two locations in the longitudinal direction of the test material surrounding the test material, and that flow a magnetic field in the same direction;
A transmitter coil that generates mechanical strain on the surface of the test material on which a magnetic field is applied by the excitation coil, and detects the magnetic field that appears on the surface of the test material when the mechanical strain propagates into the test material. the excitation coil is surrounded by an iron core except for the surface facing the test material, and a magnetic pole is supported by the iron core on the surface of the excitation coil facing the test material. An electromagnetic ultrasonic measuring device characterized in that the transmitting coil and the receiving coil are supported by the magnetic poles, and a plurality of transmitting coils and receiving coils are arranged in a circumferential direction of the specimen.
JP57127675A 1982-07-23 1982-07-23 Electromagnetic ultrasonic measuring apparatus Granted JPS5918452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127675A JPS5918452A (en) 1982-07-23 1982-07-23 Electromagnetic ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127675A JPS5918452A (en) 1982-07-23 1982-07-23 Electromagnetic ultrasonic measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5918452A JPS5918452A (en) 1984-01-30
JPH0146028B2 true JPH0146028B2 (en) 1989-10-05

Family

ID=14965931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127675A Granted JPS5918452A (en) 1982-07-23 1982-07-23 Electromagnetic ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5918452A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980705A (en) * 1982-10-28 1984-05-10 Kawasaki Steel Corp Melt reduction method of powder and granular ore by vertical type furnace
JPS5980704A (en) * 1982-10-28 1984-05-10 Kawasaki Steel Corp Melt reduction method of powder and granular ore by vertical type furnace
JPS5980703A (en) * 1982-10-28 1984-05-10 Kawasaki Steel Corp Melt reduction method of powder and granular ore by vertical type furnace
JPS63130728A (en) * 1986-11-21 1988-06-02 Kawasaki Steel Corp Method for reducing chromium ore pellet and pellet
JPH03248006A (en) * 1990-02-27 1991-11-06 Nkk Corp Signal processing method for electromagnetic ultrasonic-wave-wall-thickness gage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292780A (en) * 1976-01-30 1977-08-04 Nippon Steel Corp Ultrasonic measuring apparatus
JPS52133282A (en) * 1976-05-01 1977-11-08 Nippon Steel Corp Electromagnetic induction-type ultrasonic probe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292780A (en) * 1976-01-30 1977-08-04 Nippon Steel Corp Ultrasonic measuring apparatus
JPS52133282A (en) * 1976-05-01 1977-11-08 Nippon Steel Corp Electromagnetic induction-type ultrasonic probe

Also Published As

Publication number Publication date
JPS5918452A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
US7614313B2 (en) Method of generating and measuring torsional waves in cylindrical structure using magnetostrictive effect, and magnetostrictive transducer and structure diagnosis apparatus using the method
US5689070A (en) High temperature electromagnetic acoustic transducer (EMAT) probe and coil assemblies
EP0067065A1 (en) Electromagnetic-acoustic measuring apparatus
US5036277A (en) Method of and apparatus for detecting cross sectional area variations in an elongate object by the non-inductive measurement of radial flux variations
AU1620502A (en) Measurement of stress in a ferromagnetic material
JP2007527532A (en) Electromagnetic ultrasonic probe
JPH0146028B2 (en)
US4659990A (en) Eddy current test system including a member of high permeability material effective to concentrate flux in a very small region of a part
CN211718192U (en) Metal pipeline pulse eddy current testing probe
IE47295B1 (en) Ultrasonic testing
JPS58179305A (en) Electromagnetic ultrasonic measuring device
JP2006010646A (en) Method and apparatus for detecting degradation of inner surface of steel pipe
CN107607623A (en) Squirrel-cage magnetostriction longitudinal mode Guided waves sensor
Jackiewicz et al. New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting
US3379053A (en) Means for measuring mechanical stresses in magneto-strictive material
JPH08271304A (en) Electrostatic capacity type electromagnetic flow meter
CN113176017B (en) Method and system for monitoring prestress distribution in steel strand body and application method of system
JPH0145577B2 (en)
JPS58843Y2 (en) Eddy current flaw detector
JP2554075B2 (en) Electromagnetic flow meter
SU1539551A1 (en) Method of measuring pressure in pipe-lines made of ferromagnetic material
JPS5832119A (en) Electromagnetic flow meter
RU2085931C1 (en) Flaw detector electromagnetic transducer
Dixon et al. Electromagnetic acoustic transducers for testing power station boiler tubes
JPS6319023B2 (en)