JPS5980705A - Melt reduction method of powder and granular ore by vertical type furnace - Google Patents

Melt reduction method of powder and granular ore by vertical type furnace

Info

Publication number
JPS5980705A
JPS5980705A JP57189936A JP18993682A JPS5980705A JP S5980705 A JPS5980705 A JP S5980705A JP 57189936 A JP57189936 A JP 57189936A JP 18993682 A JP18993682 A JP 18993682A JP S5980705 A JPS5980705 A JP S5980705A
Authority
JP
Japan
Prior art keywords
ore
furnace
powder
granular
vertical furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57189936A
Other languages
Japanese (ja)
Other versions
JPH0242884B2 (en
Inventor
Toshihiro Inatani
稲谷 稔宏
Hisao Hamada
浜田 尚夫
Mitsuo Kadoto
角戸 三男
Nobuo Tsuchitani
槌谷 暢男
Shiko Takada
高田 至康
Eiji Katayama
英司 片山
Tsutomu Fujita
勉 藤田
Shunji Hamada
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57189936A priority Critical patent/JPS5980705A/en
Publication of JPS5980705A publication Critical patent/JPS5980705A/en
Publication of JPH0242884B2 publication Critical patent/JPH0242884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To perform advantageous and adequate melt reduction of powder and granular ore by blowing the powder and granular ore by reactive gaseous flow under heating into a vetical furnace packed therein with a carbonaceous solid reducing agent and reducing preliminarily said ore by the generating reducing gas. CONSTITUTION:Air is blown under heating through tuyere groups 5, 5' into a vertical furnace 3 where the packed layer of coke or the like is fired. Part of the reducing waste gas 6 generated in the furnace 3 is passed through a pressure increaser 7 into an ore feed pipe 2' to assist the conveyance of the powder and granular ore to the groups 5, 5' so that the ore is blown together with heating air through the groups 5, 5' into the furnace 3. The powder and granular ore blown together with the preheating air into the high temp. region formed in the furnace 3 is immediately heated and is easily melted. While the ore drops toward the lower part of the furnace 3, the ore is reduced to form a molten metal and molten slag, whereby the smelting is accomplished. The molten metal accumulating in the hearth is removed through a tapping port 10 to the outside of the furnace at a proper time. The molten slag is treated in a similar way.

Description

【発明の詳細な説明】 この発明は、粉、粒状鉱石のたて(竪)型炉溶融還元方
法に関し、とくに粉、粒状鉱石(別途に予備還元処理を
経たものを含む)を、有利適切にたで型炉を用いて、溶
融還元させることについての開発成果を開示するもので
ある。
[Detailed Description of the Invention] The present invention relates to a method for melting and reducing powder and granular ores in a vertical furnace, particularly for powder and granular ores (including those that have undergone preliminary reduction treatment). This paper discloses the development results regarding melting and reduction using a vertical furnace.

近年、鉄鉱石をはじめ各種の金属酸化物より主として成
る原料鉱石は、塊状鉱石よりはむしろ、粉、粒状鉱石の
方が多くなりつつあり、今後もますますその比率は増加
傾向にあるとみられる。粉、粒状鉱石による製錬方法と
しては、流動層を用いて粉、粒状鉱石を予備還元しこの
予備還元鉱を電炉、転炉、その他の溶解炉で溶融還元す
る方式が一般的である。
In recent years, raw material ores mainly composed of various metal oxides, including iron ore, have become more powdery and granular ores rather than lumpy ores, and the proportion is expected to continue to increase in the future. A common method for smelting powder or granular ore is to pre-reduce the powder or granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace.

この場合予備還元鉱にバインダーの添加で塊成化をし、
その塊成物をを溶解炉で溶融還元する方式が多い。しか
しこのような方式によれば塊成化のための資材、処理費
、処理エネルギーなどを必要とするばかりでなく、塊成
化をしたのち焼成を必要とする場合にはその際に焼成炉
から排出されるガス中のNOx、SOxおよびダストな
どを処理するための費用が多大に上ぼるところにも難点
を伴う。
In this case, a binder is added to the preliminary reduced ore to agglomerate it,
Many methods involve melting and reducing the agglomerates in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, processing energy, etc., but also requires a large amount of energy from the kiln when firing is required after agglomeration. Another drawback is that the cost for treating NOx, SOx, dust, etc. in the emitted gas increases considerably.

また上記方式の他に、アーク炉やプラズマまたは純酸素
を利用する炉を用いて、予備還元鉱を塊成ないしは焼成
を行わずに溶融還元する方式も企てられてはいるが、ア
ーク炉を用いる方式によれば電力消費が莫大であるばか
りでなく、立地条件・にも制約があり、またプラズマを
利用する炉を用いる方式も電力消費が甚しく現在のとこ
ろ工業的規模での適用が困難であり、さらに純酸素を利
用する炉を用いる方式によれば高温雰囲気を得ることは
容易であっても還元雰囲気の維持が難しくまた酸素使用
量が嵩むなど、何れも技術的に解決を要する問題2はら
んでいる。
In addition to the above-mentioned method, methods have also been proposed in which the pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen. The method used not only consumes a huge amount of power, but also has restrictions on location and location.Also, the method using a furnace that uses plasma consumes enormous amounts of power, making it currently difficult to apply on an industrial scale. Furthermore, although it is easy to obtain a high-temperature atmosphere using a furnace that uses pure oxygen, it is difficult to maintain a reducing atmosphere and the amount of oxygen used increases, all of which have problems that require technical solutions. 2 is pregnant.

ところで微砕鉱石を予備還元した後、この予備還元鉱を
、石炭・酸素バーナーによる加熱により溶融還元するこ
とは、古く特公昭34−2101号公報に開示され、ま
たとくに予備還元鉱の還元率を特定するとともにその炭
素含有量を高めて酸素導入のみで溶融還元する改良方法
についても発明者の一部がさきに、特公昭56−449
25号公報にて提案したが、これらは予備還元鉱を溶融
還元するのに燃料および還元剤として前者で粉状石炭ま
た後者は還元鉄付着炭素を使用しその燃焼のために助燃
剤として常温の酸素を用いている。
By the way, the method of pre-reducing finely crushed ore and then melting and reducing the pre-reduced ore by heating with a coal/oxygen burner was disclosed long ago in Japanese Patent Publication No. 34-2101. Some of the inventors previously proposed an improved method of identifying and reducing the carbon content by increasing its carbon content and melting and reducing it only by introducing oxygen.
As proposed in Publication No. 25, the former uses powdered coal as a fuel and reducing agent to melt and reduce the pre-reduced ore, and the latter uses reduced iron-adhered carbon, and uses room temperature as a combustion aid for combustion. It uses oxygen.

これに対し発明者らはさらに進んで、炭素質固体還元剤
の充てん層をたて型炉内部で不断に形成する一方、電炉
の下部胴壁に上下2段にわたり配設したそれぞれ複数の
羽目群を通して、電炉から排出される還元性の排ガスを
用いて粉、粒状鉱石を予備還元した部分還元鉱を必要□
により加えたフラックスとともに、800〜1800℃
程度の高温の空気または酸素富化空気をもってする気流
搬送下にたて型炉内に吹込んで、上記部分還元鉱を溶融
還元することに関し特願昭56−63294号の発明を
さきに提案した。
In response to this, the inventors went further and continuously formed a packed layer of carbonaceous solid reducing agent inside a vertical furnace, and at the same time formed a plurality of groups of panels arranged in two stages, upper and lower, on the lower body wall of the electric furnace. Partially reduced ore is required, in which powder and granular ore are pre-reduced using reducing exhaust gas discharged from the electric furnace.
800-1800℃ with flux added by
The invention of Japanese Patent Application No. 56-63294 was previously proposed for melting and reducing the above partially reduced ore by blowing into a vertical furnace under pneumatic conveyance using relatively high temperature air or oxygen-enriched air.

これについては、工業的規模における開発研究を重ねつ
つあるが、この段階で上記の部分還元鉱の気流搬送によ
る吹込み実験において、該気流の吹込み流量を増すこと
により、より低温の酸素含有気体または酸化性気体を用
いても、たて型炉排ガス量の増加で、予備還元炉におけ
る所要熱量が十分に充足され得ること、こ−に送風温度
の低下により、蓄熱型熱風炉の如き大規模施設の附帯を
必要とせずして、たて型炉または予備還元炉排ガスとの
熱交換によるような顕熱回収利用の如き簡便手段で代替
し得るので、熱風炉燃料も不要となし得ること、さらに
は、たて型炉の排ガスの増加分はその全量が、副生ガス
として別途Gこ有利に活用され得ることなどの有用性が
知見され、従ってたで型炉へ吹込む反応性ガス温度域は
、むし、ろ300℃程度まで低温側に拡張することが好
ましいことに着目し、進んで検討を加えた結果、上記の
ような予備還元処理や、また塊成化処理を省略しても粉
、粒状鉱石をそのままたて型炉に加熱下の反応性ガスで
吹込み装入を行うことGこより、有利に直接的な溶融還
元を行い得ることを究明した。
Regarding this, we are continuing to conduct research and development on an industrial scale, but at this stage, in the above-mentioned blowing experiment using airflow conveyance of partially reduced ore, we were able to increase the blowing flow rate of the airflow to generate a lower temperature oxygen-containing gas. Even if oxidizing gas is used, the required amount of heat in the pre-reducing furnace can be sufficiently satisfied by increasing the amount of exhaust gas from the vertical furnace. Hot stove fuel can also be made unnecessary as it can be replaced by simple means such as sensible heat recovery and utilization such as heat exchange with vertical furnace or pre-reducing furnace exhaust gas without the need for attached facilities; Furthermore, it has been found that the entire amount of increased exhaust gas from a vertical furnace can be advantageously utilized as a by-product gas, and therefore the temperature of the reactive gas blown into the vertical furnace has been found to be useful. We focused on the fact that it is preferable to extend the temperature range to about 300°C, and as a result of further consideration, we found that it is possible to omit the preliminary reduction treatment and agglomeration treatment as described above. It has been found that direct smelting reduction can be advantageously carried out by charging powdered or granular ore as it is into a vertical furnace by blowing reactive gas under heating.

炭素系固体還元剤の充てん層が形成されたたで型炉の胴
壁下部でそれぞれ複数多段にわたり配設した羽口群を通
して必要ならばフラックスとともに加熱下の反応性ガス
気流により粉、粒状鉱石を、炉内に吹込み装入を行って
有利に溶融還元し、またこの溶融還元により発生する還
元性の排ガスをま副生ガスとして有効に活用することが
でき、力)くして従来方式の粉、粒状鉱石の製錬方法に
お&する問題点の適切な克服を成就したものである。
Powder and granular ore are removed by a heated reactive gas stream together with flux if necessary through a group of tuyeres arranged in multiple stages at the lower part of the trunk wall of the oven-type furnace in which a packed layer of carbon-based solid reducing agent is formed. The powder is blown into the furnace for advantageous melting and reduction, and the reducing exhaust gas generated by this melting and reduction can be effectively used as a by-product gas. This method successfully overcomes the problems associated with the smelting method of granular ore.

この発明において予熱下の反応性ガス気流にて搬送し、
羽口群からたて型炉内に吹込み装入される装入物は、羽
口先端部周辺でたて型炉内部に形成された炭素系固体還
元剤の充てん層の高熱領域内を滴下する間に溶融還元さ
れ、炉床に蓄溜するので適時たて型炉から取り出せばよ
い。
In this invention, conveying by a reactive gas stream under preheating,
The charge that is blown into the vertical furnace from the tuyere group drips into the high-temperature region of the packed layer of carbon-based solid reducing agent formed inside the vertical furnace around the tip of the tuyere. During this process, it is melted and reduced and accumulated in the hearth, so it can be removed from the vertical furnace at any time.

この発明において、炭素系固体還元剤として、とくに好
ましくは粒径25〜75m程度の塊コークスを可とする
が、石炭塊やチャーなどもまた利用でき、何れもシャフ
ト炉内にその頂部から連続供給して充てん層を不断に形
成させる。
In this invention, as the carbon-based solid reducing agent, lump coke with a particle size of about 25 to 75 m can be used, but coal lumps and char can also be used, and either of them can be continuously fed into the shaft furnace from the top. to form a filled layer continuously.

次に予備還元処理中塊成処理を施すことなく直接たて型
炉への吹込み装入に供される粉、粒状鉱石は、0.5〜
4闘のMBR鉱石、フィリピン産クロム鉱石、オースト
ラリア産マンガン鉱石などをそのままでも用いることが
できる。
Next, the powder and granular ore that is directly charged into the vertical furnace without being subjected to agglomeration treatment during preliminary reduction treatment is 0.5~
Four types of MBR ore, chromium ore from the Philippines, manganese ore from Australia, etc. can be used as they are.

粉、粒状鉱石は必要により、石灰石、けい石、ドロマイ
トさらには蛇紋岩などのフラックスを鉱石の種別性状に
応じて混合して、加熱下の反応ガス気流によりたて型炉
内に吠込み装入し、溶融還元を行わせる。
Powder and granular ore are mixed with flux such as limestone, silica, dolomite, and even serpentine according to the type and properties of the ore, and charged into a vertical furnace using a heated reactive gas stream. and melt reduction.

加熱下の反応性ガス気流は、上記たて型炉への吹込みに
より、該炉内で発生する還元性の排ガスとの熱交換によ
る顕熱回収で300〜1000°C程度の範囲の温度に
予熱するか、またさらに必要ならば1300°C程度ま
での温度に通常のガス加熱炉によって加熱して用いる。
The reactive gas stream under heating is brought to a temperature in the range of about 300 to 1000°C through sensible heat recovery through heat exchange with the reducing exhaust gas generated in the furnace by being blown into the vertical furnace. It is used by preheating or, if necessary, by heating it to a temperature of about 1300° C. in a conventional gas heating furnace.

何れにしても反応性ガスは、たとえば空気のような酸素
含有ガス、もしくは酸素富化空気(醗素含有量50%程
度以下)その他、酸素−アルゴン混合気のような、上記
温度域にて送気配管に問題を生じることのない酸化性ガ
スが利用できる。
In any case, the reactive gas may be an oxygen-containing gas such as air, oxygen-enriched air (with a nitrogen content of about 50% or less), or an oxygen-argon mixture, which is delivered in the above temperature range. Oxidizing gases can be used that do not cause problems in air piping.

この発明では、粉、粒状鉱石の予熱下の反応性ガス気流
によるたて型炉内への吹込みを、上段羽目群で行い、下
段羽目群は反応性ガスのみの吹込みを行うこと、また該
気流を、たて型炉の排ガスとの熱交換により予熱するこ
とが実施上好適である0 第1図にこの発明の実施に適合する溶融還元系統を模式
に示し、1は粉、粒状鉱石の供給装置、2はその給鉱口
、3は溶融還元に供したたて型炉であり、4はたて型炉
8の頂部がら炭素質固体還元剤たとえば塊コークスの装
入を司り電炉の内部に充てん層を形成するための、還元
剤供給装置、また5、5′はたて型炉3の胴壁下部で上
下2段にわたりそれぞれ複数あて配設した羽口群である
In this invention, the blowing of powder and granular ore into the vertical furnace by a reactive gas stream under preheating is carried out in the upper siding group, and only the reactive gas is blown into the lower siding group, and It is practically preferable to preheat the air stream by heat exchange with the exhaust gas of the vertical furnace.0 Figure 1 schematically shows a smelting reduction system suitable for implementing the present invention. 2 is the ore feeder, 3 is a vertical furnace for melting reduction, and 4 is the top of the vertical furnace 8 for charging a carbonaceous solid reducing agent, such as lump coke, to the electric furnace. A reducing agent supply device is used to form a packed layer inside the furnace, and 5 and 5' are a plurality of tuyere groups arranged in upper and lower two stages at the lower part of the trunk wall of the vertical furnace 3.

この羽口群5,5′を通してたとえば空気を加熱下に吹
込むことによりたて型炉3内の充てん層に着火し、かく
してたて型炉8中で発生する還元性の排ガスを、排気口
6から、その一部を分岐管6′より昇圧機7に導いて破
線で示す給鉱管2′を通り、羽目群5,5′に至る粉、
粒状鉱石の搬送を助成しつつ、羽口群5,5′から加熱
空気と共にたで型炉3内に吹き込み装入を行う。たて型
炉S内に吹き込む加熱空気は300〜800 ’Cがす
でにのべたように好ましいが、必要によってはガス加熱
炉8のような手段で1300”Cまでに加熱を行っても
よい。なお、たて型炉8内に粉、粒状鉱石を加熱空気に
よって吹込み装入を行うのに、上段の羽目群5を用い、
その溶融還元製錬を有利に行わせるため図示しないがフ
ラックスをも羽口群5がら同時に吹込み企し、下段の羽
口群5′は予熱空気のみの吹込みとすることがのぞまし
い。
For example, by blowing air under heating through these tuyere groups 5, 5', the packed layer in the vertical furnace 3 is ignited, and the reducing exhaust gas generated in the vertical furnace 8 is removed from the exhaust port. 6, a part of it is led from a branch pipe 6' to a booster 7, passes through a feed pipe 2' shown by a broken line, and reaches a group of feathers 5, 5';
While assisting in transporting the granular ore, it is blown and charged into the vertical furnace 3 along with heated air through the tuyere groups 5, 5'. As mentioned above, the heated air blown into the vertical furnace S is preferably 300 to 800'C, but if necessary, it may be heated up to 1300'C using a means such as the gas heating furnace 8. , the upper panel group 5 is used to blow and charge powder and granular ore into the vertical furnace 8 using heated air;
In order to carry out the melting reduction smelting advantageously, it is desirable that flux (not shown) is also blown into the tuyere group 5 at the same time, and only preheated air is blown into the lower tuyere group 5'.

こうしてたて型炉8内に形成された充てん層が羽口先端
近傍で高炉の羽口先におけると同様なレースウェイを生
成して高温領域が形成され、この領域内に予熱空気と共
に吹込まれる粉、粒状鉱石は直ちに加熱され、容易に溶
融し、たで型炉3の下部に向は滴下する間に還元されて
溶融金属と溶融スラグが生成して製錬が行われる。炉床
部に蓄溜した溶融金属を出湯口10により適時炉外に取
出す。溶融スラグについても同様にする。
The packed layer thus formed in the vertical furnace 8 generates a raceway near the tip of the tuyere similar to that at the tip of the tuyere of a blast furnace, forming a high-temperature region, into which powder is blown together with preheated air. The granular ore is immediately heated and easily melted, and while dropping into the lower part of the furnace 3, it is reduced to produce molten metal and molten slag, thereby performing smelting. The molten metal accumulated in the hearth is timely taken out of the furnace through the tap 10. The same applies to molten slag.

なお充てん層の高温領域を形成するレースウェイ部周辺
は塊状の炭素系還元剤の燃焼雰囲気下に酸素含有量が低
く、すなわち酸素分圧が低くなっているので、炉8内の
レースウェイ部で溶融される粉、粒状鉱石の還元は極め
て好適に行われる。
Note that the area around the raceway that forms the high-temperature region of the packed layer has a low oxygen content under the combustion atmosphere of the lumpy carbon-based reducing agent, that is, the oxygen partial pressure is low. The reduction of the powder and granular ore to be melted is carried out very favorably.

この発明において炭素系固体還元剤として塊コークスが
好適であるが塊状のチャーや石炭をもって代え、またそ
れらを併用することもできる。
In this invention, lump coke is suitable as the carbon-based solid reducing agent, but lump coke or coal may be used instead, or they may be used in combination.

たて型炉8は通常の高炉に比しはるかに低くすることが
できるので操業に至便なほかとくに粉、粒状鉱石をたて
型炉8の胴壁下部の羽口5から該炉8内に吹込み供給す
るので、高炉におけるように強度の大きい還元剤は全く
必要なく、シたがって高価な強粘結炭でなくとも弱粘結
炭や、非粘結炭でも充分利用でき経済的にも有利である
The vertical furnace 8 can be built at a much lower temperature than a normal blast furnace, so it is convenient for operation, and in particular, powder and granular ore can be transported into the furnace 8 through the tuyere 5 at the lower part of the body wall of the vertical furnace 8. Because it is injected, there is no need for a strong reducing agent like in blast furnaces, and therefore, instead of expensive highly caking coal, weakly caking coal or non-caking coal can be used, making it economical. It's advantageous.

この発明において羽口群5,5′を上下2段に配設した
のはこれらの羽口群または羽口5のみを経て予熱空気と
共に炉内に吹込まれる鉱石が羽口先端近傍で溶融還元さ
れるために必要な熱量がもしも不足すると、たとえ羽口
先端近傍で溶融したとしても、炉底部に向う途中で熱の
補給が不充分になって還元が阻害されるような炉床の冷
え込みにより円滑に操業できなくなるおそれをなくする
ためで、この意味で粉、粒状鉱石を主として上段の羽口
群5より供給し、下段の羽口群5′によって炉床部を高
温に加熱してこ\に滴下する溶融物の還元に必要な熱量
を確保することがのぞましいわけである。
In this invention, the tuyere groups 5 and 5' are arranged in two stages, upper and lower, because the ore that is blown into the furnace together with preheated air through these tuyere groups or only through the tuyere 5 is melted and reduced near the tips of the tuyeres. If the amount of heat required for the tuyere to melt is insufficient, even if it melts near the tip of the tuyere, the hearth will cool down enough that heat will not be supplied on the way to the bottom of the hearth, inhibiting reduction. This is to eliminate the risk of not being able to operate smoothly.In this sense, powder and granular ore are mainly supplied through the upper tuyere group 5, and the hearth is heated to a high temperature by the lower tuyere group 5'. It is desirable to secure the amount of heat necessary for reducing the melt that is dropped.

実施例1 第1図に示した系統方式に従う試験炉で実施した。その
結果を下記する。
Example 1 The experiment was carried out in a test reactor according to the system system shown in FIG. The results are shown below.

1)クロム鉱石の銘柄:フィリピン産りロムli粒 径
:0.4酩以下 供給量: aso kg/hr 2)炭素系固体還元剤の種類、コークス粒径:20〜4
0闘 供給量ニア90に9/hr 3)たて型炉への送風量:  1900 Nm3/hr
送風温度二〇80°C 送風羽口:上下各4本計8本 (上段4本にクロム鉱石を供給) 4)フェロクロム生産量:210に9/hr組成: O
r 58.0%、06.8%、 si 5.9%1・5
)スラグ排出量  : 38011’9/hr実施例2 実施例1と同様な試験結果を下記する。
1) Brand of chromium ore: Rom Li grains from the Philippines Size: 0.4 or less Supply amount: aso kg/hr 2) Type of carbon-based solid reducing agent, coke particle size: 20-4
0 supply amount near 90 to 9/hr 3) Amount of air blown to vertical furnace: 1900 Nm3/hr
Blow temperature: 2080°C Blow tuyeres: 4 each on the top and bottom, 8 in total (chromium ore is supplied to the upper 4) 4) Ferrochrome production: 210 to 9/hr Composition: O
r 58.0%, 06.8%, si 5.9%1.5
) Slag discharge amount: 38011'9/hr Example 2 The same test results as in Example 1 are shown below.

1)マンガン鉱石の銘柄:オーストラリア産マンガン鉱
石粒 径;l態量下 供給量:440に9/hr 2)炭素系固体還元剤の種類、コークス粒径120〜4
0間 供給i : 710 kg7’hr 8)たて型炉への送風量j 2620 Nm3/llr
送風温度二〇50°C 送風羽口:上下各4本計8本 (上段4本にマンガン鉱石を供給) 4)フxo’vンガン生産量= 280に9/hr組成
:Mn72.2%、07.1%、si、2.2%5)ス
ラグ排出量  :350’C9/hrこの発明によれば
高価な電力の使用を要せず、また必ずしも強粘結炭でな
くとも比較的安価な弱粘結炭や非粘結炭を用いて炭素質
固体還元剤の充てん層を形成したたて型炉により粉、粒
状鉱石(別途に予備還元処理を経た部分還1元鉱を含む
)の溶融還元が行え、電炉で発生する還元性の排ガスは
、副生ガスとして別途の使途に活用され得るので、近年
益々エネルギーコストの上昇が危惧される今後の粉、粒
状鉱石の製錬方法として期待さ・れるところが大きい。
1) Brand of manganese ore: Australian manganese ore particle size; l-state supply amount: 440 to 9/hr 2) Type of carbon-based solid reducing agent, coke particle size 120 to 4
0 supply i: 710 kg7'hr 8) Amount of air blown to the vertical furnace j 2620 Nm3/llr
Blow temperature: 2,050°C Blow tuyeres: 4 each on the upper and lower tuyere, 8 in total (manganese ore is supplied to the upper 4 tuyere) 4) Production amount = 280 to 9/hr Composition: Mn 72.2%, 07.1%, si, 2.2%5) Slag discharge amount: 350'C9/hr According to this invention, it is not necessary to use expensive electricity, and it is not necessary to use highly coking coal, which is relatively inexpensive. Melting powder and granular ore (including partially reduced ore that has undergone preliminary reduction treatment) in a vertical furnace in which a packed layer of carbonaceous solid reducing agent is formed using weakly coking coal or non-caking coal. Since reduction can be performed and the reducing exhaust gas generated in the electric furnace can be used for other purposes as a by-product gas, this method is expected to be used as a method for smelting powder and granular ores in the future, where energy costs are expected to rise more and more in recent years. There are a lot of things you can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の系統方式を示す模式図である0 特許出願人   川崎製鉄株式会社 −4ニ 第1丙 第1頁の続き @発 明 者 藤田勉 、 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 ■発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 43− FIG. 1 is a schematic diagram showing the system system of this invention. Patent applicant: Kawasaki Steel Corporation -4 d 1st C Continuation of page 1 @Published by Tsutomu Fujita, Kawasaki Steel Co., Ltd., 1 Kawasakicho, Chiba City Ceremony company Chiba Works ■Initiator: Shunji Hamada Kawasaki Steel Co., Ltd., 1 Kawasakicho, Chiba City Ceremony company Chiba Works 43-

Claims (1)

【特許請求の範囲】[Claims] 1 炭素系固体還元剤の充てん層をたて型炉内で不断に
形成する一方、このたで型炉の胴壁下部で上下多段にわ
たり配設したそれぞれ複数の羽目群を通して加熱下の反
応性ガスの吹込みを行い、この羽口群の少くとも1部を
通して粉、粒状鉱石を、吹込みガス気流に帯同させてた
て型炉内に吹込み装入することからなる粉、粒状鉱石の
たて型炉溶融還元方法。
1. While a packed layer of carbon-based solid reducing agent is continuously formed in a vertical furnace, the reactive gas under heating is passed through a plurality of groups of panels arranged in upper and lower stages in the lower part of the trunk wall of the vertical furnace. A method of blowing powder and granular ore into a vertical furnace through at least a part of the tuyeres and entraining the powder and granular ore into a vertical furnace. Mold furnace melting reduction method.
JP57189936A 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace Granted JPS5980705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189936A JPS5980705A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189936A JPS5980705A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Publications (2)

Publication Number Publication Date
JPS5980705A true JPS5980705A (en) 1984-05-10
JPH0242884B2 JPH0242884B2 (en) 1990-09-26

Family

ID=16249683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189936A Granted JPS5980705A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Country Status (1)

Country Link
JP (1) JPS5980705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157807A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Operation of smelting reduction furnace with carbonic material packing layer
JPH01240628A (en) * 1988-03-18 1989-09-26 Nisshin Steel Co Ltd Method of recovering valuable metal from by-product of stainless steel production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918452A (en) * 1982-07-23 1984-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918452A (en) * 1982-07-23 1984-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157807A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Operation of smelting reduction furnace with carbonic material packing layer
JPH01240628A (en) * 1988-03-18 1989-09-26 Nisshin Steel Co Ltd Method of recovering valuable metal from by-product of stainless steel production
JPH0726160B2 (en) * 1988-03-18 1995-03-22 日新製鋼株式会社 Method for recovering valuable metals from by-products during stainless steel production

Also Published As

Publication number Publication date
JPH0242884B2 (en) 1990-09-26

Similar Documents

Publication Publication Date Title
AU2003238774A1 (en) Finisher-hearth-melter furnace and method of using for iron-making / steel-making
WO2003064708A1 (en) Finisher-hearth-melter furnace and method of using for iron-making / steel-making
CN101724726B (en) Method and device for ironmaking by smelting
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
WO1999036581A1 (en) Sustainable steelmaking by efficient direct reduction of iron oxide and solid waste minimisation
WO1999063119A1 (en) Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation
CN102618684A (en) Continuous melting reduction iron-making device
CN107849622B (en) Method for reducing iron oxide pellets by utilizing waste gas of smelting furnace
JPS5980705A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPH0130888B2 (en)
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JP2004176170A (en) Method for producing molten iron
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS62227022A (en) Preheating and reducing device for iron ore
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPH0867907A (en) Operation of vertical iron scrap melting furnace
JP2502976B2 (en) Iron ore preliminary reduction device
JPS59110712A (en) Reduction of powdery granular ore
JPH0310030A (en) Treating furnace for by-product in process for producing stainless steel
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides
JPS59107011A (en) Operating method of vertical type melt reduction furnace
JPH01319620A (en) Method of operating smelting reduction furnace
JPH01111437A (en) Coal ash-treating oven and operation thereof