JPS5980703A - Melt reduction method of powder and granular ore by vertical type furnace - Google Patents

Melt reduction method of powder and granular ore by vertical type furnace

Info

Publication number
JPS5980703A
JPS5980703A JP57189934A JP18993482A JPS5980703A JP S5980703 A JPS5980703 A JP S5980703A JP 57189934 A JP57189934 A JP 57189934A JP 18993482 A JP18993482 A JP 18993482A JP S5980703 A JPS5980703 A JP S5980703A
Authority
JP
Japan
Prior art keywords
furnace
ore
reducing
powder
vertical furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57189934A
Other languages
Japanese (ja)
Inventor
Toshihiro Inatani
稲谷 稔宏
Hisao Hamada
浜田 尚夫
Mitsuo Kadoto
角戸 三男
Nobuo Tsuchitani
槌谷 暢男
Shiko Takada
高田 至康
Eiji Katayama
英司 片山
Tsutomu Fujita
勉 藤田
Shunji Hamada
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57189934A priority Critical patent/JPS5980703A/en
Publication of JPS5980703A publication Critical patent/JPS5980703A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To perform advantageous melt reduction at a low cost without using costly electric power by reactive gaseous flow of a relatively low temp. by making use of the reducing waste gas produced in a vertical furnace by melt reduction for preliminary reducing and by-product gas for powder and granular ore. CONSTITUTION:Preheated air is blown through tuyere groups 5, 5' into a vertical furnace 3 where the packed layer of a carbonaceous solid reducing agent is fired and the reducing waste gas produced in the furnace 3 is discharged from an evacuation port 6. part of the waste gas is supplied 6' to the bottom of a preliminary reduction furnace 2 to dry and heat the powder and granular ore charged in the furnace 2, thereby reducing preliminarily the ore. The partially reduced ore produced in such a way is blown together with the preheating air through a waste ore port 7 and tuyeres 5, 5' into the furnace 3. The partially reduced iron blown together with the preheating air in a high temp. region formed in the furnace 3 is immediately heated and is easily melted. While the iron drops toward the lower part of the furnace 3, the iron is reduced to form a molten metal and molten slag, whereby the smelting is accomplished. The molten metal accumulating on the hearth is removed at a proper time from a tapping port 10 to the outside of the furnace 3. The molten slag is treated in a similar way.

Description

【発明の詳細な説明】 この発明は、粉、粒状鉱石のたて(竪)型炉溶融還元方
法に関し、とくに溶融還元によりたで型炉で発生する還
元性の排ガスを粉、粒状鉱石の予備還元ならびに副生ガ
スとして有利適切に活用することについての開発成果を
開示するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for melting and reducing powder and granular ore in a vertical furnace. This article discloses the development results regarding reduction and the advantageous and appropriate use of gas as a by-product gas.

近年、鉄鉱石をはじめ各種の金属酸化物より主として成
る原料鉱石は、塊状鉱石よりはむしろ、粉、粒状鉱石の
方が多くなりつつあり、今後もますますその比率は増加
傾向にあるとみられる。粉、粒状鉱石による製錬方法と
しては、流動層を用いて粉、粒状鉱石を予備還元しこの
予備還元鉱を電炉、転炉、その他の溶解炉で溶融還元す
る方式が一般的である。
In recent years, raw material ores mainly composed of various metal oxides, including iron ore, have become more powdery and granular ores rather than lumpy ores, and the proportion is expected to continue to increase in the future. A common method for smelting powder or granular ore is to pre-reduce the powder or granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace.

この場合予備還元鉱にバインダーの添加で塊成化をしそ
の塊成物を溶解炉で溶融還元する方式が多い。しかしこ
のような方式によれば塊成化のための資材、処理費、処
理エネルギーなどを必要とするばかりでなく、塊成化を
したのち焼成を必要とする場合にはその際に焼成炉から
排出されるガス中のNOx、SOxおよびダストなどを
処理するための費用が多大に上ぼるところにも難点を伴
う。
In this case, there are many methods in which the pre-reduced ore is agglomerated by adding a binder and the agglomerated product is melted and reduced in a melting furnace. However, this method not only requires materials for agglomeration, processing costs, processing energy, etc., but also requires a large amount of energy from the kiln when firing is required after agglomeration. Another drawback is that the cost for treating NOx, SOx, dust, etc. in the emitted gas increases considerably.

また上記方式の他に、アーク炉やプラズマまたは純酸素
を利用する炉を用いて、予備還元鉱を、塊成ないしは焼
成を経ずに溶融還元する方式も企てられてはいるが、ア
ーク炉を用いる方式によれば可、力消費が莫大であるば
かりでなく立地条件にも制約があり、またプラズマを利
用する炉を用いる方式も電力消費が甚しく現在のところ
工業的規模での適用が困難であり、さらに純酸素を利用
する炉を用いる方式によれば高温雰囲気を得ることは容
易であっても還元雰囲気の維持が難しくまた酸素使用量
が嵩むなど、何れも技術的に解決を要する問題をはらん
でいる、 ところで微砕鉱石を予備還元した後、この予備還元鉱を
、石炭・酸素バーナーによる加熱により溶融還元するこ
とは、古く特公昭34−2108号公報に開示されまた
とくに予備還元鉱の還元率を特定するとともにその炭素
含有量を高めて酸素導入のみで溶融還元する改良方法に
ついても発明者の一部がさきに、特公昭56−4492
5号公報にて提案をしたが、これらは予備還元鉱を溶融
還元するのに燃料および還元剤として、前者で粉状石炭
また後者は還元鉄付着炭素を使用しその燃焼のために助
燃剤として常温の酸素を用いている。それに対し発明者
らはさらに進んで、炭素質固体還元剤の充てん層をたて
型炉内部で不断に形成する一層、このたで型炉の下部胴
壁に上下2段にわたり配設したそれぞれ複数の羽口群を
通して、該たて型炉から排出される還元性の排ガスを用
いて粉、粒状鉱石を予備還元した部分還元鉱をは必要な
らばさらにフラックスを〃uえて800 N1300’
cの高温の空気または酸素富化空気をもってする気流搬
送下にたて型炉内に吹込んで、上記部分還元鉱を溶融還
元することに関し特願昭68−138294号の発明を
さきに提案した。
In addition to the above-mentioned method, a method has also been proposed in which pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen. However, not only does it consume a huge amount of power, but there are also restrictions on location.Also, the method using a furnace that uses plasma consumes so much power that it cannot be applied on an industrial scale at present. Furthermore, although it is easy to obtain a high-temperature atmosphere using a method using a furnace that uses pure oxygen, it is difficult to maintain a reducing atmosphere and the amount of oxygen used increases, all of which require technical solutions. By the way, the method of pre-reducing finely crushed ore and then melting and reducing the pre-reduced ore by heating with a coal/oxygen burner was long ago disclosed in Japanese Patent Publication No. 34-2108, Some of the inventors previously proposed an improved method of specifying the reduction rate of reduced ore, increasing its carbon content, and melting and reducing it only by introducing oxygen.
As proposed in Publication No. 5, these methods use powdered coal as a fuel and reducing agent to melt and reduce pre-reduced ore, and the latter uses reduced iron-adhered carbon as a combustion aid for its combustion. It uses oxygen at room temperature. On the other hand, the inventors went further, by continuously forming a packed layer of carbonaceous solid reducing agent inside the vertical furnace, and by disposing a plurality of layers in upper and lower layers on the lower body wall of the vertical furnace. The partially reduced ore obtained by pre-reducing the powder and granular ore using the reducing exhaust gas discharged from the vertical furnace is heated to 800 N1300' with additional flux if necessary.
The invention of Japanese Patent Application No. 68-138294 was previously proposed in connection with melting and reducing the above partially reduced ore by blowing into a vertical furnace under pneumatic conveyance using high-temperature air or oxygen-enriched air.

これについては、工業的規模における開発研究をさらに
重ねつつあるが、この段階で上記の部分還元鉱の気流搬
送による吹込み実験において、該気流の吹込み流量を増
すことにより、羞1反応性ガス、すなわち酸素含有気体
または酸化性気体をより低温裡に送・風したときでも、
たで型炉排ガス量の増加で、予備還元炉における所要熱
量が十分に充足され得ること、ここに送風温度の低下に
より、蓄熱型熱風炉の如き大規模施設の附帯を必要とぜ
ずして、たで型炉または予備還元炉排ガスとの熱交換に
よるような顕熱回収利用の如き簡便手段で代替し得るの
で熱ル(炉燃料も不要となし得ること、さらには、たで
型炉の排ガスの増加分はその全量が、副生ガスとして別
途に有利に活用され得ることなどの有用性を知見するに
至った。そこでこの発明は、粉、粒状鉱石の部分還元鉱
を1炭素系固体還元剤の充てん層が形成されたたて型炉
の胴壁下部でそれぞれ複数多段にわたり配設した羽口を
通して予熱下の反応性ガスの吹込みを行い該たて型炉か
ら排出される還元性の排ガスを用いて粉−粒状鉱石を予
備還元した部分還元鉱を必要により加えたフラックスと
ともに上記羽口群に導入して予熱下の反応性ガス気流に
帯同させたて型炉内に吹込み装入を行って溶融還元し、
この溶融還元によりたで型炉で発生する還元性の排ガス
を粉、粒状鉱石の予備還元に有効、適切に活用すること
で、止揚した従来方式の粉、粒状鉱石の触針方法におけ
る問題点の一層有利な克服を成就したものである〇 この発明において予熱下の反応性ガス気流にて搬送し、
羽口群からたて型炉内に吹込み装入を行う装入物は、羽
目先端部周辺で該炉内部に形成された炭素系固体還元剤
の充てん層の高熱領域中を滴下する間に溶融還元され炉
床に蓄溜するので適時に該炉から取り出せばよい。
Regarding this, further development research is being carried out on an industrial scale, but at this stage, in the above-mentioned blowing experiment using airflow conveyance of partially reduced ore, by increasing the blowing flow rate of the airflow, it was found that the photoreactive gas , that is, even when oxygen-containing gas or oxidizing gas is blown at a lower temperature,
The amount of heat required in the pre-reducing furnace can be fully met by increasing the amount of exhaust gas from the open-air furnace, and the reduction in blast temperature eliminates the need for large-scale facilities such as regenerative hot-blast furnaces. This can be replaced by simple means such as sensible heat recovery and utilization, such as heat exchange with the exhaust gas of a vertical furnace or pre-reducing furnace. The inventors have discovered that the entire amount of increased exhaust gas can be advantageously utilized as a by-product gas.Therefore, the present invention aims to transform partially reduced ore from powder and granular ore into a carbon-based solid. A preheated reactive gas is injected through tuyeres arranged in multiple stages at the lower part of the barrel wall of the vertical furnace where a packed layer of reducing agent is formed, and the reducing agent is discharged from the vertical furnace. Partially reduced ore obtained by pre-reducing powder-granular ore using the exhaust gas of to melt and reduce the
By effectively and appropriately utilizing the reducing exhaust gas generated in the vertical furnace due to this smelting reduction for the preliminary reduction of powder and granular ore, we can solve the problems in the conventional method of stylus for powder and granular ore. In this invention, the reactive gas is conveyed by a preheated reactive gas stream,
The charge that is blown into the vertical furnace from the tuyere group drops into the high-temperature region of the packed layer of carbon-based solid reducing agent formed inside the furnace around the tip of the tuyeres. Since it is melted and reduced and accumulated in the hearth, it can be taken out from the furnace at the appropriate time.

この発明において、炭素系固体還元剤としてとくに好ま
しくは粒径25〜75酩程度の塊コークスを可とするが
、石炭塊やチャーなどもまた利用でき、何れも、たて型
炉内にその頂部から連続供給して、充てん層を不断に形
成させる。
In this invention, lump coke with a particle size of about 25 to 75 mm is particularly preferably used as the carbon-based solid reducing agent, but coal lumps, char, etc. can also be used. A filled layer is continuously formed by continuous supply from

次に予備還元炉にてたて型炉から放出される還元性の排
ガスと好ましくは対向接触させる流動層貸元に供するを
可とする粉、粒状鉱石は、粒径0.5〜2 雪x (7
) M B R鉱石、フイリツビン産クロム磁石、オー
ストラリア産マンガン鉱石などをそのまままたときに必
要ならば常法に従う造粒を経たものも用い得る。
Next, the powder and granular ore that can be supplied to the fluidized bed, which is preferably placed in face-to-face contact with the reducing exhaust gas discharged from the vertical furnace in a preliminary reduction furnace, has a particle size of 0.5 to 2 snow x (7
) MBR ore, filitubine chromium magnet, Australian manganese ore, etc. may be used as they are or, if necessary, after granulation according to a conventional method.

部分還元鉱は必要により、石灰石、けい石ドロマイトさ
らには蛇紋岩などの7ラツクスを鉱石の種別性状に応じ
て混合するなりまた、上記造粒過程にて粉、粒状鉱石と
フラックスとの混合粒子として、予備還元を行うかして
から、予熱下の反応ガス気流によりたて型炉内に吠込み
、装入をし溶融還元を行わせる。
Partially reduced ore may be mixed with 7 luxes such as limestone, silica dolomite, or serpentine depending on the type and properties of the ore, or may be made into mixed particles of powder, granular ore, and flux in the above granulation process. After performing preliminary reduction, the reactant gas is introduced into a vertical furnace using a preheated gas flow, and the reactant is charged into a vertical furnace to undergo melting and reduction.

予熱下の反応性ガス気流は、上記予備還元炉で発生する
還元性の排ガスとの熱交換による顕熱回収で、aOO〜
800’Cの範囲の温度に予熱すれば足り、反応性ガス
は、たとえば空気のような酸素含%程度以下)その他酸
素−アルゴン混合気のような、上記温度域にて送風配管
に問題を生じることのない酸化性ガスが利用できる、 この発明では、斤i分還元鉱の予熱下の反応性ガス気流
によるたて型炉内への吹込みを為上段羽口群で行い〜下
段羽目群は、反応性ガスのみの吹込みを行うこと、また
該気流を、予備還元炉の排ガスとの熱交換により予熱す
ること、そして部分還元鉱が、粉、粒状鉱石の、たで型
炉の排ガスを用いた流動層還元によるものであることを
実咋上好適とする。
The reactive gas stream under preheating recovers sensible heat by heat exchange with the reducing exhaust gas generated in the pre-reducing furnace, and aOO~
Preheating to a temperature in the range of 800'C is sufficient; reactive gases (e.g., air containing less than 2% oxygen) and other gases (e.g., oxygen-argon mixtures) that may cause problems in the ventilation piping in the above temperature range In this invention, the oxidizing gas that can be used without any oxidizing gas is injected into the vertical furnace by the reactive gas stream while the reduced ore is preheated. , only the reactive gas is injected, and the air stream is preheated by heat exchange with the exhaust gas of the preliminary reduction furnace. In practice, it is preferable to use fluidized bed reduction.

第1図にこの発明の実施に適合する溶融還元系統を模式
に示し、■は粉、粒状鉱石の供給装置、2は予備還元炉
、8は溶融還元に供したたで型炉であり、4はたで型炉
8の頂部から炭素質固体還元剤たとえば塊コークスの装
入を司り、該炉の内部に充てん層を形成するための還元
剤供給装置、また5、5′はたで型炉8の胴周下部で上
下2段にそれぞれ複数あて配設した羽口群である。
Fig. 1 schematically shows a smelting reduction system suitable for carrying out the present invention, where ① is a supply device for powder and granular ore, 2 is a preliminary reduction furnace, 8 is a vertical furnace used for smelting reduction, and 4 A reducing agent supply device for charging a carbonaceous solid reducing agent, such as lump coke, from the top of the vertical furnace 8 and forming a packed layer inside the furnace; This is a group of multiple tuyeres arranged in two stages, upper and lower, at the lower part of the body circumference of No. 8.

この羽目群5,5′を通してたとえば空気を予熱下に吹
込むことによりたで型炉8内の充てん層に着火し、かく
してたで型炉8中で発生する還元性の排ガスを、排気口
6から、その一部を分岐管6′より予備還元炉2の底部
に導き予備還元炉2内に装入された粉、粒状鉱石を乾燥
、加熱し予備還元させる。かくして予備還元された部分
還元鉱は排鉱ロアより破線で示す給鉱管7′を通り1羽
口す、5′を経て予熱空気と共にたで型炉8内に吹き込
み装入する。この際給鉱−管7′内における予備還元鉱
の移送を容易にするため、分岐管6′内排ガスの一部を
昇[E機8により加圧してこれにより搬送を助成させる
ことができる。
For example, by blowing air under preheating through these blade groups 5, 5', the packed layer in the mold furnace 8 is ignited, and the reducing exhaust gas generated in the mold furnace 8 is thus transferred to the exhaust port 6. Then, a part of the ore is led to the bottom of the pre-reducing furnace 2 through the branch pipe 6', and the powder and granular ore charged in the pre-reducing furnace 2 are dried, heated and pre-reduced. The partially reduced ore thus preliminarily reduced is blown from the ore discharge lower through an ore feed pipe 7' shown by a broken line through one tuyere, 5', and charged into a draft furnace 8 together with preheated air. At this time, in order to facilitate the transfer of the preliminary reduced ore in the feed pipe 7', a part of the exhaust gas in the branch pipe 6' is pressurized by the elevating machine 8, thereby aiding the transfer.

たで型炉8内に吹込む予熱空気は800〜800°Cが
好ましく、ここにことさらガス加熱炉のような燃料を必
要とする加熱設備を要せずに、たとえば予備還元炉排ガ
スの顕熱を回収するように、熱交換器9に分岐管6′か
ら排ガスを導いて空気を予熱するようにすれば操業コス
トが極めて安価となる。
The temperature of the preheated air blown into the vertical furnace 8 is preferably 800 to 800°C, and it is preferable that the temperature of the preheated air is 800 to 800°C. If the exhaust gas is guided from the branch pipe 6' to the heat exchanger 9 to preheat the air so as to recover the air, the operating cost will be extremely low.

なおたで型炉8内に部分還元鉱を予熱空気によって吹込
みを行うのに上段の羽口群6を用し1、そσ〕溶融還元
製錬を有利に行わせるため図示しなし)カイ7ラツクス
なも羽目群5から同時吹込みをし、下段の羽目群5′は
予熱空気のみの吹込みとすることがのぞましい。
The upper tuyere group 6 is used to blow partially reduced ore into the mold furnace 8 using preheated air. It is preferable that air is blown into the 7-lux bed group 5 at the same time, and only preheated air is blown into the lower bed group 5'.

こうしてたて型炉8内に形成された充てん層力5羽ロ先
端近傍で高炉の羽口先におけると同様なレースウェイを
生成して高温領域が形成され、この領域内に予熱空気と
共に吹込まれる部分還元鉱+1直ちに加熱され、容易に
溶融し、たで型炉8の下部に向は滴下する間に還元され
て溶融金属と溶融スラグが生成して製錬が行われる。炉
床部(こ蓄溜した溶融金属を出湯口lOより適時炉外に
取出し、fg 融ス5グについても同様とする0なお充
てん層の高温領域を形成するレースウェイ部周辺は塊状
の炭素系還元剤の燃焼雰囲気下Gこ酸素含有量が低く、
すなわち酸素分圧が低くなっているので、たて型炉8内
のレースウェイ部で溶融される部分還元鉱の還元は極め
て好適に行われる0 この発明において炭素系固体還元剤として塊コークスが
好適であるが塊状のチャーや石炭をもって代え、またそ
れらを併用することもできる。
In this way, a raceway similar to that at the tip of a blast furnace tuyere is generated near the tip of the five packing layer forces formed in the vertical furnace 8, and a high temperature region is formed, and the preheated air is blown into this region. Partially reduced ore +1 is immediately heated and easily melted, and while dropping into the lower part of the furnace 8, it is reduced to produce molten metal and molten slag, and smelting is performed. The accumulated molten metal is taken out of the furnace from the outlet lO in a timely manner, and the same goes for the molten metal in the hearth. Under the combustion atmosphere of the reducing agent, the oxygen content is low,
In other words, since the partial pressure of oxygen is low, the reduction of the partially reduced ore melted in the raceway section in the vertical furnace 8 is carried out very favorably. In this invention, lump coke is preferred as the carbon-based solid reducing agent. However, it can be replaced with lump char or coal, or they can be used together.

たで型炉3は通常の高炉に比しはるかに低くすることが
できるので操業に至便なほかとくに部分還元鉱をたで型
炉8の胴壁下部の羽目群5からたて型炉内に吹込み供給
するので、高炉におけるように強度の大きい還元剤は全
く必要なく、シたがって高価な強粘結炭でなくとも弱粘
結炭や、非粘結炭でも充分利用でき経済的にも有利であ
る。
The vertical furnace 3 can be operated at a much lower temperature than a normal blast furnace, so it is very convenient for operation. Because it is injected, there is no need for a strong reducing agent like in blast furnaces, and therefore, instead of expensive highly caking coal, weakly caking coal or non-caking coal can be used, making it economical. It's advantageous.

また部分還元鉱はレースウェイ部において、加熱空気中
の酸素との間の反応熱によっても加熱されるほか予備還
元炉z内の環境温度下にその保有熱がたて型炉3内に持
込まれるので有利である。
In addition, the partially reduced ore is heated in the raceway section by the heat of reaction with oxygen in the heated air, and the retained heat is brought into the vertical furnace 3 under the environmental temperature in the preliminary reduction furnace z. Therefore, it is advantageous.

なお予0111還元率は鉱石の種類その他により一定し
ないが、30〜80%の範囲内のとき最も良い結果を得
ることができる。
Although the pre-0111 reduction rate is not constant depending on the type of ore and other factors, the best results can be obtained when it is within the range of 30 to 80%.

この発明において羽目群5,5′を上下2段に配設した
のはこれらの羽目群5,5′または羽口群5のみを経て
予熱空気と共に炉内に吹込まれる部分還元鉱が羽口先端
近傍で溶融還元されるために必要な熱量がもしも不足す
ると、たとえ羽口先端近傍で溶融したとしても、炉底部
に向う途中で熱の補給が不充分になって還元が阻害され
るような炉床の冷え込みにより操業できなくなるおそれ
をなくするためで、この短味で部分還元鉱を主として上
段の羽目群5より供給し、下段の羽目群5′によって炉
床部を高温に加熱してここに滴下する溶融物の還元に必
要な熱量を(i(fh保することがのぞましいわけであ
る。
In this invention, the tuyere groups 5, 5' are arranged in two stages, upper and lower, because the partially reduced ore that is blown into the furnace together with preheated air only through these tuyere groups 5, 5' or the tuyere group 5. If the amount of heat required for melting and reduction near the tip is insufficient, even if melting occurs near the tip of the tuyere, there will be insufficient heat supply on the way to the bottom of the furnace, inhibiting reduction. This is to eliminate the possibility that the operation will not be possible due to the cooling of the hearth.With this short taste, the partially reduced ore is mainly supplied from the upper siding group 5, and the hearth is heated to a high temperature by the lower siding group 5'. It is desirable to maintain the amount of heat required to reduce the melt dropped to (i(fh).

実施例1 第1図に示した系統方式に従う試験炉で実掩した。その
結果を下記する。
Example 1 An experiment was carried out in a test furnace according to the system system shown in FIG. The results are shown below.

1)鉱石の銘柄: フィリッピン産鉱石粒径: 0.4
關以下 供給jiJ、:  801  kq/hr2)炭素系固
体還元剤の種類、コークス粒径:20〜4o關 供給ffl :   502  kg/hr8)たて型
炉への送風量?  1210  Nm8/hr送風湿度
: 760”C 送風羽口:上下各4本 計 8本 (上段4本に部分還元鉱を供給) 予イ1111還元率= 35% 4)フェロクロム生産屓: 171 kg/hr組成Q
r: 52.0%、G:6.7%。
1) Ore brand: Philippine ore particle size: 0.4
Supply below: 801 kq/hr2) Type of carbon-based solid reducing agent, coke particle size: 20-4o Supply ffl: 502 kg/hr8) Amount of air blown to the vertical furnace? 1210 Nm8/hr Blowing humidity: 760”C Blowing tuyeres: 4 each on the upper and lower 8 in total (Partially reduced ore is supplied to the upper 4 tuyere) Preliminary 1111 reduction rate = 35% 4) Ferrochrome production capacity: 171 kg/hr Composition Q
r: 52.0%, G: 6.7%.

Si:  5.2% 5)スラグ排出量;  808 k7/hr6)たて型
炉炉頂温度:  1190°C実施例 実施例1と同様な試験結果を下記する。
Si: 5.2% 5) Slag discharge amount: 808 k7/hr 6) Vertical furnace top temperature: 1190°C Example Test results similar to Example 1 are shown below.

l)クロム鉱石の銘柄:フィリッピン産クロム鉱石粒径
:  Q、4mm以下 供給量: 250 kg/hr 2)炭素系固体還元剤の種類: コークス粒径:20〜
40間 供給量: 690 ’9/hr 3)たて型炉への送風ffi :  1245 Nm8
/br(内富化酸素量 195 Nm /hr )送風
温度: 850℃ 送風羽目二 上下各4本 計8本 (上段4本に予備還元生成物を供給) 予備還元率: 31% 4)フェロクロム生産N :  140 Ir9/hr
X、Ii成: On 51.(1%、06.1%。
l) Brand of chromium ore: Chrome ore from the Philippines Particle size: Q, 4 mm or less Supply rate: 250 kg/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 20~
Supply amount for 40 minutes: 690 '9/hr 3) Air blowing ffi to vertical furnace: 1245 Nm8
/br (with enriched oxygen amount: 195 Nm /hr) Air blowing temperature: 850°C Two air blowers: 4 each on the upper and lower stages, 8 in total (preliminary reduction product is supplied to the upper 4) Preliminary reduction rate: 31% 4) Ferrochrome production N: 140 Ir9/hr
X, Ii formation: On 51. (1%, 06.1%.

Sl 5.1% 5)スラグ排出jjf、 ’  295 kg/hr6
)たて型炉炉頂温度:1175’C 実施例3 実施例1と同様な試験結果を下記する。
Sl 5.1% 5) Slag discharge jjf, ' 295 kg/hr6
) Vertical furnace top temperature: 1175'C Example 3 The same test results as in Example 1 are shown below.

1)−rンjfンffi石の銘柄:オーストラリア産マ
ンガンfiz 石粒 径:  1mm以下 供給hi ; 250 kg/hr 2)炭素系固体還元剤の種類: コークス粒径:20〜
40謝n 供給fd ;  820 kqlhr 3)たて型炉への送風ta :  1170 Nm8/
hr送風渇度ニア50’C 送風羽口:上下各4本 計8本 (上段4本に予備還元生成物を供給) 予備還元率: 51% 4)フェロマンガン生産量:  185 kqlhr組
成: In 72.3%、 07.3%倉Si 2.3
% 5)スラグ排出Eel : tsokvhr6)たて型
炉炉頂温度:  1120’cこの発明によれば高価な
電力の使用を要せずまた必ずしも強粘結炭でなくとも比
較的安価な弱粘結炭や非粘結炭を用いて、これら炭素質
固体還元剤の充てん層を形成したたて型炉に比較的低温
の反応性ガス気流をもって部分還元鉱の吹込み操入を行
うので、反応性ガスの予熱温度の低下に見合う吹込み流
tdの増加によってたて型炉の排ガス流量が増加し、こ
の副生ガスの別途利用による利益も多大であり近年益々
エネルギーコストの上昇が危惧される今後の粉、粒状鉱
石の製錬方法として期待されるところが大きい。
1) -Rnjfnffi Stone brand: Australian manganese fiz stone particle diameter: 1 mm or less Supply rate: 250 kg/hr 2) Type of carbon-based solid reducing agent: Coke particle size: 20~
40 mm Supply fd; 820 kqlhr 3) Air blowing to the vertical furnace ta: 1170 Nm8/
hr air dryness near 50'C Air tuyere: 4 each on upper and lower, 8 in total (preliminary reduction product is supplied to the upper 4) Preliminary reduction rate: 51% 4) Ferromanganese production: 185 kqlhr composition: In 72 .3%, 07.3%Kura Si 2.3
%5) Slag discharge Eel: tsokvhr6) Vertical furnace furnace top temperature: 1120'c According to this invention, it is not necessary to use expensive electric power, and the use of relatively inexpensive weakly coking coal is not necessarily required. Partially reduced ore is injected into a vertical furnace in which a packed layer of carbonaceous solid reducing agent is formed using charcoal or non-caking coal, and a relatively low-temperature reactive gas stream is used to inject the partially reduced ore into the furnace. The exhaust gas flow rate of the vertical furnace increases due to the increase in the blowing flow TD commensurate with the decrease in the gas preheating temperature, and the profit from the separate use of this byproduct gas is also large, and there are concerns that energy costs will increase in recent years. It holds great promise as a method for smelting powder and granular ores.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の系統方式を示す模式図である。 百璽図 第1頁の続き 0発 明 者 藤田勉 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 0発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 FIG. 1 is a schematic diagram showing the system system of the present invention. hundred seals Continuation of page 1 0 shots clear person Tsutomu Fujita Kawasaki Steel Co., Ltd., 1 Kawasakicho, Chiba City Ceremony company Chiba Works 0 shots by Shunji Hamada Kawasaki Steel Co., Ltd., 1 Kawasakicho, Chiba City Ceremony company Chiba Works

Claims (1)

【特許請求の範囲】 L 炭素系固体還元剤の充てん層をたて型炉内部で不断
に形成する一方、このたで型炉の胴壁下■(で上下2段
にわたり配設したそれぞれ! 複数の羽口群を通して予熱下の反応性ガスの吹込みを行
い、該炉から排出される還元性の排ガスを用いて粉、粒
状鉱石を予備還元した部分還元鉱を必要な7ラツクスと
ともに上記羽目群に導入して予熱下の反応性ガス気流に
帯同させたて型炉内に吹込み装入を行うことから成る粉
、粒状鉱石のたで型炉溶融還元方法。 区 部分還元鉱の予熱下の反応性ガス気流によるたて型
炉内吹込みを、上段羽目群で行い、下段羽目群は反応性
ガスのみの吠込みを行うl記載の方法。 & 予熱下の反応性ガス気流が、予備還元炉の排ガスと
の熱交換によるものである1または2記載の方法。 4 部分還元鉱が、粉、粒状鉱石のたで型炉の排ガスを
用いた流動層還元によるものである1、2または8記載
の方法。
[Scope of Claims] L A filled layer of a carbon-based solid reducing agent is continuously formed inside the vertical furnace, and at the same time, under the trunk wall of the vertical furnace. A reactive gas is injected under preheating through the tuyere group, and the partially reduced ore obtained by pre-reducing powder and granular ore using the reducing exhaust gas discharged from the furnace is added to the above tuyeres together with the necessary 7 lux. A method for melting and reducing powder and granular ores in a vertical furnace, which comprises blowing them into a vertical furnace and entraining them into a reactive gas stream under preheating. The method described in l, in which the reactive gas airflow is injected into the vertical furnace in the upper row group, and the lower row group is injected with only the reactive gas. 4. The method according to 1 or 2, wherein the partially reduced ore is produced by fluidized bed reduction using the exhaust gas of a furnace of powder or granular ore. Method described.
JP57189934A 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace Pending JPS5980703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189934A JPS5980703A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189934A JPS5980703A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Publications (1)

Publication Number Publication Date
JPS5980703A true JPS5980703A (en) 1984-05-10

Family

ID=16249650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189934A Pending JPS5980703A (en) 1982-10-28 1982-10-28 Melt reduction method of powder and granular ore by vertical type furnace

Country Status (1)

Country Link
JP (1) JPS5980703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157807A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Operation of smelting reduction furnace with carbonic material packing layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918452A (en) * 1982-07-23 1984-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918452A (en) * 1982-07-23 1984-01-30 Sumitomo Metal Ind Ltd Electromagnetic ultrasonic measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157807A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Operation of smelting reduction furnace with carbonic material packing layer

Similar Documents

Publication Publication Date Title
CN1036471C (en) A smelting reduction method with high productivity
CN1036075C (en) Fusion reducing iron smelting method and its equipment
WO2015101304A1 (en) System and method for fluidized bed reduction of powdered iron ore
CN114317852B (en) 2500m 3 Low-carbon iron-making method of blast furnace gas carbon cycle
US6858061B2 (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
KR20230159407A (en) Metal oxide material reduction means
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
CN107849622B (en) Method for reducing iron oxide pellets by utilizing waste gas of smelting furnace
CN114395697A (en) Method for reducing carbon emission in reduction dezincification process
JPS5980704A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPS5980705A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS62227022A (en) Preheating and reducing device for iron ore
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production
CN116640893A (en) Direct reduction-side blowing furnace smelting-separating iron-making method adopting hydrogen-rich coal-based rotary kiln
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JP2502976B2 (en) Iron ore preliminary reduction device
JPS59110712A (en) Reduction of powdery granular ore
CN114990274A (en) Powdery DRI device system for reducing powdery iron ore through gas-based/hydrogen-based suspension
JPH032922B2 (en)
CN116606977A (en) Two-stage reduction smelting iron-making process
JPH01111437A (en) Coal ash-treating oven and operation thereof
CN114921602A (en) Ultrashort flow steelmaking device system