JPH01287211A - Manufacture of silver fine oarticle - Google Patents

Manufacture of silver fine oarticle

Info

Publication number
JPH01287211A
JPH01287211A JP11530988A JP11530988A JPH01287211A JP H01287211 A JPH01287211 A JP H01287211A JP 11530988 A JP11530988 A JP 11530988A JP 11530988 A JP11530988 A JP 11530988A JP H01287211 A JPH01287211 A JP H01287211A
Authority
JP
Japan
Prior art keywords
particle size
silver
particles
silver nitrate
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11530988A
Other languages
Japanese (ja)
Inventor
Hiroshi Makino
洋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP11530988A priority Critical patent/JPH01287211A/en
Publication of JPH01287211A publication Critical patent/JPH01287211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture silver fine particle having uniform particle size and monodispersing by using reducing agent adjusting oxidation-reduction titration by adjusting pH and reducing silver nitrate water solution having the specific pH and temp. CONSTITUTION:The silver nitrate water solution is reduced with the reducing agent of reduced form riboflavin, etc., to manufacture the silver fine particle. In the above method, by adjusting pH in the reducing agent, the oxidation- reduction titration is adjusted in the range of #-1,000mV-+500mV. Further pH in the silver nitrate water solution at 0.1<=pH<=7 and reaction temp. at <=100 deg.C, are kept. By this method, the silver fine particle having monodispersed uniform and narrow particle size distribution is obtd. by controlling the particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微細な銀粒子の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing fine silver particles.

(従来技術とその問題点) 従来、銀微粒子の製造方法としては、硝酸銀水溶液に水
酸化す) IJウムを加えて酸化銀を作り、これをホル
マリンで還元する方法が用いられてきた。
(Prior Art and its Problems) Conventionally, as a method for producing silver fine particles, a method has been used in which silver oxide is produced by adding hydroxide to an aqueous solution of silver nitrate, and this is reduced with formalin.

ところが、この方法では析出した微粒子量子が引き寄せ
合って、凝集した粒度分布の幅の広い銀粒子しか得られ
ず、粒径のコントロールが難しいという欠点を有してい
た。
However, this method has the disadvantage that the precipitated fine particle quanta are attracted to each other, resulting in only aggregated silver particles with a wide particle size distribution, and that it is difficult to control the particle size.

(発明の目的) 本発明は、上記の欠点を解消せんがために、なされたも
のであり、分散した、粒度分布の幅の狭い微細な銀粒子
の粒径コントロール可能な製造方法を提供せんとするも
のである。
(Objective of the Invention) The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a method for producing dispersed fine silver particles with a narrow particle size distribution, in which the particle size can be controlled. It is something to do.

(問題点を解決するための手段) 本発明は、硝酸銀水溶液を還元して銀微粒子を製造する
方法において、還元剤のPHを調整することにより、還
元剤の酸化還元電位を、−1000mV〜+500m1
/の範囲に調整し、さらに硝酸銀水溶液のP Hを0.
 1≦PH≦7、反応温度を100℃以下に保つことに
よって、粒径が均一で、しかも単分散した、銀微粒子を
得ることを特徴とするものである。
(Means for Solving the Problems) The present invention provides a method for producing silver fine particles by reducing an aqueous silver nitrate solution, in which the redox potential of the reducing agent is adjusted from -1000 mV to +500 m
The pH of the silver nitrate aqueous solution was adjusted to within the range of /0.
By maintaining 1≦PH≦7 and the reaction temperature at 100° C. or lower, fine silver particles having a uniform particle size and monodisperse can be obtained.

而して、本発明の製造方法において、還元剤のPHを調
整することにより、還元剤の酸化還元電位を、−100
0mV〜+500mVの範囲に調整する理由は、この酸
化還元電位が硝酸銀水溶液を還元するのに適当であると
同時に、粒径が均一で単分散した粒子を析出させる働き
があるためであり、電位が、−1000mVより低いと
、反応は非常に速く、析出した粒子の一次粒子は細いが
、二次凝集してスポンジ状となってしまう。
Thus, in the production method of the present invention, by adjusting the pH of the reducing agent, the redox potential of the reducing agent can be adjusted to -100.
The reason for adjusting the range from 0 mV to +500 mV is that this redox potential is appropriate for reducing the silver nitrate aqueous solution, and at the same time has the effect of precipitating monodispersed particles with uniform particle size. , -1000 mV, the reaction is very fast and the primary particles of the precipitated particles are thin, but they are secondary agglomerated and become spongy.

また、+500mVより高いと、析出した粒子は不定形
で、凝集したものとなってしまうためである。
On the other hand, if the voltage is higher than +500 mV, the precipitated particles will be amorphous and aggregated.

また、硝酸銀水溶液のPHを0.1≦P H≦7にする
理由は、PHが01より低いと還元剤が分解したり、粒
子が凝集しやすくなり、7より高いと反応が遅くなり、
工業的生産の場合に酸化物が生じ易くなるためである。
In addition, the reason why the pH of the silver nitrate aqueous solution is set to 0.1≦PH≦7 is that when the pH is lower than 0.1, the reducing agent tends to decompose and particles tend to aggregate, and when the pH is higher than 7, the reaction slows down.
This is because oxides are likely to be produced during industrial production.

また、反応温度を100℃以下に保つ理由は、100℃
を超えると銀微粒子が凝集してくるとともに、粒度分布
の幅が広くなってしまうためである。
Also, the reason why the reaction temperature is kept below 100℃ is that 100℃
This is because if it exceeds this, the silver particles will aggregate and the width of the particle size distribution will become wider.

ここで、本発明の実施例について説明する。Examples of the present invention will now be described.

〔実施例・1〕 硝酸銀結晶2gを水に溶解し、31の水溶液とした後、
希硝酸を加えてそのPHを4に調整する。
[Example 1] After dissolving 2 g of silver nitrate crystals in water to make an aqueous solution of 31,
Adjust its pH to 4 by adding dilute nitric acid.

また、還元型リボフラビン1gを水に溶解し、31の水
溶液とした後、28%アンモニア水を加えてPH=7に
調整する。
Further, 1 g of reduced riboflavin was dissolved in water to make an aqueous solution of 31, and then 28% ammonia water was added to adjust the pH to 7.

この還元型リボフラビン溶液の酸化還元電位を測定する
と、+200mVであった。
When the redox potential of this reduced riboflavin solution was measured, it was +200 mV.

ここで、この2液の温度を20℃に保ち、硝酸銀水溶液
を攪拌しながら、還元型リボフラビン溶液を添加し、4
分間反応させる。
Here, while maintaining the temperature of these two liquids at 20°C and stirring the silver nitrate aqueous solution, the reduced riboflavin solution was added,
Let it react for a minute.

得られた銀微粒子は、濾過、洗浄して粒度分布測定及び
電子顕微鏡観察を行った。
The obtained silver particles were filtered, washed, and subjected to particle size distribution measurement and electron microscopy observation.

その結果、この銀微粒子は球形で単分散しており、平均
粒径が0.5虜、粒度分布は、0.48〜0.52屑に
70%が入る狭いもので、非常に均一な粒子が得られた
As a result, these fine silver particles were spherical and monodisperse, with an average particle diameter of 0.5 mm and a narrow particle size distribution of 0.48 to 0.52 particles, with 70% of the particles falling into the particle size range, making them extremely uniform particles. was gotten.

〔実施例・2〕 硝酸銀結晶1.5gを水に溶解し、11の水溶液とした
後、希硝酸を加えて、そのPHを3に調整する。
[Example 2] After dissolving 1.5 g of silver nitrate crystals in water to make an aqueous solution of No. 11, dilute nitric acid was added to adjust the pH to 3.

また、2−グルタチオン1gを水に溶解し、11の水溶
液とした後、28%のアンモニア水を加えてP H= 
7に調整する。
Further, 1 g of 2-glutathione was dissolved in water to make an aqueous solution of 11, and then 28% ammonia water was added to make P H=
Adjust to 7.

この2−グルタチオン溶液の酸化還元電位を測定すると
、−40mVであった。
When the redox potential of this 2-glutathione solution was measured, it was -40 mV.

ここで、この2液の温度を30℃保ち、硝酸銀水溶液を
攪拌しながら、2−グルタチオン溶液を添加し、5分間
反応させる。
Here, the temperature of these two liquids is maintained at 30° C., and while stirring the silver nitrate aqueous solution, the 2-glutathione solution is added and allowed to react for 5 minutes.

得られた銀微粒子は、濾過、洗浄して、粒度分布測定及
び電子顕微鏡観察を行った。
The obtained silver particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銀微粒子は球形で単分散しており、平均
粒径が0.7虜、粒度分布は、0.68〜0.72虜に
70%が入る狭いもので、非常に均一な粒子が得られた
As a result, these fine silver particles were spherical and monodispersed, with an average particle size of 0.7mm and a narrow particle size distribution with 70% falling between 0.68 and 0.72mm, making them extremely uniform particles. was gotten.

〔実施例・3〕 硝酸銀結晶3gを水に溶解し、11の水溶液とした後、
希硝酸を加えて、そのP Hを5に調整する。
[Example 3] After dissolving 3 g of silver nitrate crystals in water to make an aqueous solution of 11,
Adjust the pH to 5 by adding dilute nitric acid.

また、リンゴ酸3gを水に溶解し、11の水溶液とした
後、28%のアンモニア水を加えてPH=7に調整する
Further, 3 g of malic acid was dissolved in water to make an aqueous solution of No. 11, and then 28% aqueous ammonia was added to adjust the pH to 7.

このリンゴ酸溶液の酸化還元電位を測定すると+102
mVであった。
The redox potential of this malic acid solution is +102
It was mV.

ここで、この2液の温度を15℃保ち、硝酸銀水溶液を
攪拌しながら、リンゴ酸溶液を添加し、6分間反応させ
る。
Here, the temperature of these two liquids is maintained at 15° C., and the malic acid solution is added while stirring the silver nitrate aqueous solution, and the mixture is allowed to react for 6 minutes.

得られた銀微粒子は、濾過、洗浄して、粒度分布測定及
び電子顕微鏡観察を行った。
The obtained silver particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銀微粒子は球形で単分散しており、平均
粒径が0. 3tim、粒度分布は、0.28〜0.3
2虜に70%が入る狭いもので、非常に均一な粒子が得
られた。
As a result, the silver particles were spherical and monodispersed, with an average particle size of 0. 3tim, particle size distribution is 0.28-0.3
Very uniform particles were obtained, with 70% of the particles contained within the two cells.

〔従来例〕[Conventional example]

硝酸銀結晶15gを30−の水に溶解し、これに48%
の水酸化ナトリウム水溶液を加え、酸化銀の粒子を沈澱
させ、この粒子をホルマリンで還元して銀粒子を作った
Dissolve 15g of silver nitrate crystals in 30% water and add 48%
An aqueous solution of sodium hydroxide was added to precipitate silver oxide particles, and the particles were reduced with formalin to produce silver particles.

得られた銀微粒子は、濾過、洗浄して、粒度分布測定及
び電子顕微鏡観察を行った。
The obtained silver particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銀粒子は不定形で凝集しており、平均粒
径は6.2虜で、粒度分布は0.5〜10即と幅が広く
、非常に不均一なものであった。
As a result, the silver particles were irregularly shaped and aggregated, the average particle size was 6.2 mm, the particle size distribution was wide from 0.5 to 10 mm, and was extremely non-uniform.

(発明の効果) 上記の説明で明らかなように、本発明の製造方法は、硝
酸銀水溶液を還元して、銀微粒子を製造する方法におい
て、還元剤のP Hを調整することにより、還元剤の酸
化還元電位を、−1000mV〜+500mVの範囲に
調整し、さらに硝酸銀水溶液のP Hを0.1≦PH≦
7、反応温度を100℃以下に保つことにより、従来法
では得られなかった、単分散した均一で粒度分布の幅の
狭い、微細な銀粒子を、粒径をコン)・ロールして製造
できるので、従来の製造方法にとって代わることのでき
る画期的なものである。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention is a method for producing silver fine particles by reducing an aqueous silver nitrate solution, by adjusting the pH of the reducing agent. The redox potential was adjusted to a range of -1000mV to +500mV, and the pH of the silver nitrate aqueous solution was adjusted to 0.1≦PH≦
7. By keeping the reaction temperature below 100℃, it is possible to produce monodisperse, uniform, fine silver particles with a narrow particle size distribution, which cannot be obtained by conventional methods, by controlling the particle size. Therefore, it is an epoch-making method that can replace conventional manufacturing methods.

出願人  田中貴金属工業株式会社Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、硝酸銀水溶液を還元して銀微粒子を製造する方法に
おいて、還元剤のPHを調整することにより、還元剤の
酸化還元電位を、−1000mV〜+500mVの範囲
に調整し、さらに硝酸銀水溶液のPHを0.1≦PH≦
7、反応温度を100℃以下に保つことによって、粒径
が均一で、しかも単分散した、銀微粒子を得ることを特
徴とする銀微粒子の製造方法。
1. In the method of producing silver fine particles by reducing an aqueous silver nitrate solution, the oxidation-reduction potential of the reducing agent is adjusted to a range of -1000 mV to +500 mV by adjusting the pH of the reducing agent, and the pH of the aqueous silver nitrate solution is further adjusted. 0.1≦PH≦
7. A method for producing fine silver particles, which is characterized by obtaining fine silver particles having a uniform particle size and monodisperse by maintaining the reaction temperature at 100° C. or lower.
JP11530988A 1988-05-12 1988-05-12 Manufacture of silver fine oarticle Pending JPH01287211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11530988A JPH01287211A (en) 1988-05-12 1988-05-12 Manufacture of silver fine oarticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11530988A JPH01287211A (en) 1988-05-12 1988-05-12 Manufacture of silver fine oarticle

Publications (1)

Publication Number Publication Date
JPH01287211A true JPH01287211A (en) 1989-11-17

Family

ID=14659434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11530988A Pending JPH01287211A (en) 1988-05-12 1988-05-12 Manufacture of silver fine oarticle

Country Status (1)

Country Link
JP (1) JPH01287211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513543A (en) * 2011-12-06 2012-06-27 上海工程技术大学 Microwave heating reduction technology for preparing superfine silver powder
JP2020143322A (en) * 2019-03-05 2020-09-10 国立大学法人 宮崎大学 Separation recovery method of precious metal and precious metal fine particle recovered by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513543A (en) * 2011-12-06 2012-06-27 上海工程技术大学 Microwave heating reduction technology for preparing superfine silver powder
JP2020143322A (en) * 2019-03-05 2020-09-10 国立大学法人 宮崎大学 Separation recovery method of precious metal and precious metal fine particle recovered by the method

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
JPH01287210A (en) Manufacture of silver fine particle
JPH01287211A (en) Manufacture of silver fine oarticle
JPS63179009A (en) Production of fine silver particles
JPH0211709A (en) Production of silver colloid
JPH01104338A (en) Manufacture of silver colloid
JPH07107168B2 (en) Method for producing fine copper particles
JPH11189812A (en) Manufacture of granular silver powder
JPH0211707A (en) Production of silver fine particle
JPS63179012A (en) Production of fine silver particles
JPH0211706A (en) Production of silver fine particle
JPS63179010A (en) Production of fine silver particles
JPS63186805A (en) Production of fine copper particles
JPH01225708A (en) Production of fine palladium particles
JPS63179011A (en) Production of fine silver particles
JPH01104340A (en) Manufacture of silver colloid
JPS63186809A (en) Production of fine copper particles
JPH01225706A (en) Production of fine copper particles
JPH07107169B2 (en) Method for producing fine copper particles
JPH01104337A (en) Manufacture of silver colloid
JPS63186807A (en) Production of fine copper particles
JPH04321523A (en) Production of tricobalt tetroxide
JPH01225707A (en) Production of fine palladium particles
JPH01225710A (en) Production of fine palladium particles
JPS63186810A (en) Production of fine copper particles