JPH01286980A - Silicon carbide-coated graphite material and production thereof - Google Patents

Silicon carbide-coated graphite material and production thereof

Info

Publication number
JPH01286980A
JPH01286980A JP11419888A JP11419888A JPH01286980A JP H01286980 A JPH01286980 A JP H01286980A JP 11419888 A JP11419888 A JP 11419888A JP 11419888 A JP11419888 A JP 11419888A JP H01286980 A JPH01286980 A JP H01286980A
Authority
JP
Japan
Prior art keywords
silicon carbide
base material
graphite
graphite material
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11419888A
Other languages
Japanese (ja)
Inventor
Yukihiro Sugimoto
杉本 行廣
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11419888A priority Critical patent/JPH01286980A/en
Publication of JPH01286980A publication Critical patent/JPH01286980A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Abstract

PURPOSE:To remarkably reduce interlayer separation of a silicon carbide film, by previously subjecting a surface layer part of a graphite substrate to oxidation treatment with an oxidizing gas and cellulating the part before forming the silicon carbide film by a chemical vapor deposition method. CONSTITUTION:The surface of a graphite material substrate is previously reacted, oxidized with an oxidizing gas and cellulated. A silicon carbide film is then formed on the surface by a chemical vapor deposition method. Thereby, a silicon carbide-coated graphite material having the cellular surface layer part in the interface between the graphite material substrate and the silicon carbide coating layer is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭化珪素被覆黒鉛材料、特に半導体素子基板
用であるエピタキシャル成長をウエノ\−を製造する際
、ウェハー固定治具として使用することができる炭化珪
素被覆黒鉛材料とその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a silicon carbide-coated graphite material, which can be used as a wafer fixing jig when manufacturing epitaxial growth wafers, especially for semiconductor device substrates. This invention relates to a silicon carbide-coated graphite material that can be made and a method for producing the same.

〔従来の技術〕[Conventional technology]

一般に、半導体素子の製造において、エピタキシャル成
長は重要な工程の一つになっている。近年種々の化合物
のエピタキシャル成長ウェハーが実用化されつつあるが
、特にシリコンのエピタキシャル成長ウェハーが汎用化
され、量的にも格段の差が見られる。
In general, epitaxial growth is one of the important steps in the manufacture of semiconductor devices. In recent years, epitaxially grown wafers of various compounds have been put into practical use, but epitaxially grown wafers of silicon in particular have become widely used, and there are significant differences in quantity.

シリコンのエピタキシャル成長法には、四塩化珪素(S
iC1’4)の水素還元法やモノシラン(SiH4)の
熱分解法などがある。その成長法におけるエピタキシャ
ル成長装置としては、種々あり、代表的には縦型、シリ
ンダー型、水平型等の加熱炉が多く使用されている。こ
れらの加熱炉においてエピタキシャル成長ウェハーを製
造する際には、シリコンウヱハーなどのウェハー固定治
具(サセプター)の上に置かれ、高周波誘導加熱または
赤外線加熱により例えば1000℃以上という高温にさ
らされる加熱が行なわれる。
The silicon epitaxial growth method uses silicon tetrachloride (S
Examples include the hydrogen reduction method of iC1'4) and the thermal decomposition method of monosilane (SiH4). There are various epitaxial growth apparatuses used in this growth method, and typically, vertical, cylinder, horizontal, etc. heating furnaces are often used. When manufacturing epitaxially grown wafers in these heating furnaces, the wafer is placed on a wafer fixing jig (susceptor) such as a silicon wafer, and heated by high-frequency induction heating or infrared heating to a high temperature of, for example, 1000°C or higher. .

従って、エピタキシャル成長装置において使用されるウ
ェハー固定治具の場合は、熱的にも化学的にもより安定
な材料から作られることが要求されている。通常は高密
度、高強度を有する等方性黒鉛材料を基材とし、表面に
熱的かつ化学的に安定な炭化珪素膜を化学蒸着法により
形成させたものが使用されている。
Therefore, wafer fixing jigs used in epitaxial growth apparatuses are required to be made of thermally and chemically more stable materials. Usually, the base material used is an isotropic graphite material with high density and high strength, and a thermally and chemically stable silicon carbide film is formed on the surface by chemical vapor deposition.

また通常の化学蒸着法による炭化珪素膜形成以前に基材
である黒鉛材料表面の前処理を行なう方法や製品も提案
されている。例えば製造方法例として、コンバージョン
法(SiガスまたはSiOガスと黒鉛材料基材との反応
法)により、予め黒鉛材料基材(以下、黒鉛基材という
)の表面を炭化珪素に転化した後、化学蒸着法により炭
化珪素膜を形成する方法を提案している特開昭58−1
04078号公報や、製品例として黒鉛基材表面に熱分
解炭素からなる第1中間層、金属珪素からなる第2中間
層および炭化珪素からなる表面層を積層被覆したサセプ
ターを提案している特開昭51−38966号公報のも
のがあげられる。
Furthermore, methods and products have been proposed in which the surface of a graphite material, which is a base material, is pretreated before forming a silicon carbide film by the usual chemical vapor deposition method. For example, as an example of a manufacturing method, after converting the surface of a graphite material base material (hereinafter referred to as graphite base material) into silicon carbide in advance by a conversion method (a method of reaction between Si gas or SiO gas and a graphite material base material), chemical JP-A-58-1 proposes a method of forming a silicon carbide film by vapor deposition method.
04078, and Japanese Patent Laid-Open Publication No. 04078, which proposes a susceptor in which a first intermediate layer made of pyrolytic carbon, a second intermediate layer made of metallic silicon, and a surface layer made of silicon carbide are laminated and coated on the surface of a graphite base material. The one disclosed in Publication No. 51-38966 is mentioned.

ここで基材として黒鉛材料を使用するのは、高周波誘導
加熱が可能なこと、熱伝導性が良好で均一加熱が可能な
こと、耐熱衝撃性に優れていること、超高純度化が可能
なことなどによるものである。また炭化珪素膜で被覆す
るのは、エピタキシャル成長処理中に黒鉛基材から放出
される吸蔵ガスによりウェハーが汚染されることを防止
するためである。
Graphite material is used as a base material here because it is capable of high-frequency induction heating, has good thermal conductivity and can be heated uniformly, has excellent thermal shock resistance, and can be made to ultra-high purity. This is due to things like that. The purpose of covering the wafer with a silicon carbide film is to prevent the wafer from being contaminated by occluded gas released from the graphite base material during the epitaxial growth process.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体素子を製造するエピタキシャル工程においては、
温度条件として室温から1000〜1200℃の温度範
囲で急熱・急冷が繰り返される。このためエピタキシャ
ル成長装置において使用されるウェハー固定治具に対し
ては、かかる急激な熱サイクルに対する優れた耐久性を
有することが要求される。しかるに、従来の炭化珪素被
覆黒鉛材料でできたウェハー固定治具においては、急激
な熱サイクルを受けると黒鉛基材と炭化珪素膜との眉間
が剥離しやすくなるという欠点があり、すなわちウェハ
ー固定治具の耐久寿命が短いという問題があった。
In the epitaxial process for manufacturing semiconductor devices,
As for the temperature conditions, rapid heating and cooling are repeated in the temperature range from room temperature to 1000 to 1200°C. Therefore, the wafer fixing jig used in the epitaxial growth apparatus is required to have excellent durability against such rapid thermal cycles. However, the conventional wafer fixing jig made of silicon carbide-coated graphite material has the disadvantage that the glabella between the graphite base material and the silicon carbide film tends to peel off when subjected to rapid thermal cycles. There was a problem that the durability of the tool was short.

前記問題点、すなわち黒鉛基材と炭化珪素膜の眉間剥離
を低減するために特開昭58−104078号公報記載
方法や特開昭51−38966号公報記載製品が提案さ
れているが、前者には次のような問題点があった。すな
わちコンバージョン法により黒鉛基材表面の炭化珪素転
化反応を行なうためには1800〜2000℃の高温で
処理が行なうことができる特殊な炉が必要であり、かつ
処理コストが高い。さらにコンバージョン処理時に黒鉛
基材表面に炭化珪素結晶粒が付着して表面平坦度が悪く
なるため、化学蒸着法による炭化珪素膜形成前にクリー
ニング処理が必要である。
In order to reduce the above-mentioned problem, that is, the peeling between the graphite base material and the silicon carbide film between the eyebrows, the method described in JP-A-58-104078 and the product described in JP-A-51-38966 have been proposed. had the following problems. That is, in order to perform a silicon carbide conversion reaction on the surface of a graphite substrate by the conversion method, a special furnace capable of performing the treatment at a high temperature of 1800 to 2000° C. is required, and the treatment cost is high. Furthermore, since silicon carbide crystal grains adhere to the surface of the graphite base material during the conversion process, resulting in poor surface flatness, a cleaning process is required before forming a silicon carbide film by chemical vapor deposition.

また後者には次のような問題点があった。すなわち熱分
解炭素層、金属珪素層、炭化珪素層形成のために処理コ
ストの高い化学蒸着法を3回繰返すためコスト高になる
。さらに多層膜形成により膜厚が厚くなるため、製品の
寸法精度を確保するのが困難である。しかも第2中間層
である金属珪素膜形成後、これを溶融処理するため表面
平坦度が悪くなる。
The latter also had the following problems. That is, the cost increases because the chemical vapor deposition method, which is expensive, is repeated three times to form the pyrolytic carbon layer, the metal silicon layer, and the silicon carbide layer. Furthermore, since the film thickness increases due to multilayer film formation, it is difficult to ensure the dimensional accuracy of the product. Furthermore, after the metal silicon film serving as the second intermediate layer is formed, it is melted and the surface flatness deteriorates.

本発明の目的は、従来の前記問題点を解決したすなわち
急熱急冷が繰り返されても黒鉛基材と炭化珪素膜の層間
の剥離が起こり難い、ウェハー固定治具として耐久寿命
の長い炭化珪素被覆黒鉛材料とその製造方法を提供する
ことにある。
The object of the present invention is to solve the above-mentioned conventional problems, that is, to provide a silicon carbide coating that has a long durable life as a wafer fixing jig, which does not easily cause delamination between the graphite base material and the silicon carbide film even when rapid heating and cooling are repeated. The purpose of the present invention is to provide a graphite material and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

黒鉛基材に炭化珪素膜を被覆する方法においては、化学
蒸着法という方法が採用されている。−般に通常の化学
蒸着法においては、適宜加熱炉内におかれた黒鉛に炭化
水素などの炭素源とハロゲン化珪素などの珪素源を還元
性気流(水素など)中で導入し、減圧下で加熱して両者
の熱分解により生成した炭化珪素を加熱状態にある黒鉛
基材表面に直接沈着させて炭化珪素膜を形成する方法が
行なわれている。この場合従来より黒鉛基材と炭化珪素
膜との界面における結合性が悪く、両者の発着強度が低
いため、急激な熱サイクルを受けるとこの黒鉛基材と炭
化珪素膜と層間で剥離が起こりやすくなる。
As a method for coating a graphite base material with a silicon carbide film, a method called a chemical vapor deposition method is employed. - In general, in the usual chemical vapor deposition method, a carbon source such as a hydrocarbon and a silicon source such as a silicon halide are introduced into graphite placed in an appropriate heating furnace in a reducing gas flow (such as hydrogen), and the mixture is heated under reduced pressure. A method of forming a silicon carbide film by directly depositing silicon carbide produced by thermal decomposition of the two on the surface of the heated graphite base material has been carried out. In this case, the bonding properties at the interface between the graphite base material and the silicon carbide film have been poor compared to before, and the adhesion strength between the two is low, so peeling between the graphite base material and the silicon carbide film is likely to occur when subjected to rapid thermal cycles. Become.

そこで、本発明者らは、炭化珪素被覆黒鉛材料において
前記のような黒鉛基材と炭化珪素膜の眉間剥離現象を低
減してウェハー固定治具の耐久寿命を延長する方法につ
いて種々検討を加えた結果、化学蒸着法による炭化珪素
膜形成を行なう前に、予め黒鉛基材の表層部を酸化性ガ
スによる適度な酸化処理によって多孔質化させれば、化
学蒸着時における黒鉛基材表層邪気孔中への炭化珪素沈
着という現象により、黒鉛基材と炭化珪素膜との密着性
が改善され、黒鉛基材と炭化珪素膜との層間剥離低減に
有効であることを見出したものである。
Therefore, the present inventors conducted various studies on methods for extending the durable life of the wafer fixing jig by reducing the above-mentioned glabellar peeling phenomenon between the graphite base material and the silicon carbide film in silicon carbide-coated graphite materials. As a result, if the surface layer of the graphite base material is made porous by appropriate oxidation treatment with an oxidizing gas before forming a silicon carbide film by chemical vapor deposition, it is possible to reduce the amount of harmful air inside the surface layer of the graphite base material during chemical vapor deposition. It has been discovered that the phenomenon of silicon carbide deposition on the graphite base material improves the adhesion between the graphite base material and the silicon carbide film, and is effective in reducing delamination between the graphite base material and the silicon carbide film.

すなわち本発明は、炭化珪素被覆黒鉛材料において、黒
鉛材料基材と炭化珪素被覆層との界面の黒鉛材料基材側
表面層が多孔質化してなることを特徴とする、炭化珪素
被覆黒鉛材料、ならびに化学蒸着法により炭化珪素膜を
形成させる炭化珪素被覆黒鉛材料の製造方法において、
化学蒸着前に黒鉛材料を含んでなる基材側の、少なくと
も炭化珪素の化学蒸着面を、予め酸化性ガスと反応させ
て、該基材の表層部を多孔質化させた後、化学蒸着法に
より、該表面に炭化珪素膜を形成することを特徴とする
、炭化珪素被覆黒鉛材料の製造方法を提供するものであ
る。
That is, the present invention provides a silicon carbide-coated graphite material, characterized in that a surface layer on the graphite material base side at the interface between the graphite material base material and the silicon carbide coating layer is made porous. and a method for producing a silicon carbide-coated graphite material in which a silicon carbide film is formed by a chemical vapor deposition method,
Before chemical vapor deposition, at least the chemical vapor deposition surface of silicon carbide on the side of the substrate containing the graphite material is reacted with an oxidizing gas to make the surface layer of the substrate porous, and then the chemical vapor deposition method is performed. The present invention provides a method for producing a silicon carbide-coated graphite material, which is characterized by forming a silicon carbide film on the surface.

〔作 用〕[For production]

本発明において、黒鉛基材と炭化珪素被覆層との界面の
黒鉛基材側表面層が多孔質であることにより、炭化珪素
被覆層が黒鉛基材に強固に密着し、眉間剥離低減効果が
得られる。気孔率は10〜30%が望ましい。黒鉛基材
と酸化性ガスとの反応温度は300℃以上が好ましく、
より好ましい範囲は400〜900℃である。300℃
未満の温度では黒鉛基材と酸化性ガスとの反応がほとん
ど起こらず、黒鉛基材表層部の多孔質化が進行しない。
In the present invention, since the surface layer on the graphite base side at the interface between the graphite base material and the silicon carbide coating layer is porous, the silicon carbide coating layer firmly adheres to the graphite base material, resulting in the effect of reducing glabella peeling. It will be done. The porosity is preferably 10 to 30%. The reaction temperature between the graphite base material and the oxidizing gas is preferably 300°C or higher,
A more preferable range is 400 to 900°C. 300℃
At a temperature lower than that, almost no reaction between the graphite base material and the oxidizing gas occurs, and the surface layer of the graphite base material does not become porous.

従って効果が現われない。一方900℃を超える温度で
は、黒鉛基材の酸化反応が著しく進行して黒鉛基材の表
層部を過度に多孔質化するため、後で化学蒸着法により
形成される炭化珪素膜と黒鉛基材との密着強度が逆に低
下し、黒鉛基材と炭化珪素膜との眉間剥離が起りやすく
なる。
Therefore, no effect appears. On the other hand, at temperatures exceeding 900°C, the oxidation reaction of the graphite base material progresses significantly, making the surface layer of the graphite base excessively porous. On the contrary, the adhesion strength between the graphite base material and the silicon carbide film decreases, and peeling between the eyebrows between the graphite base material and the silicon carbide film becomes more likely to occur.

本発明において黒鉛基材と酸化性ガスとの反応時間は5
分以上が好ましく、より好ましくは10〜70分間であ
る。5分間未満の反応時間では黒鉛基材表層部の多孔質
化が不十分で黒鉛基材と炭化珪素膜との眉間剥離低減効
果が現われない。−方70分間を越える反応時間では、
黒鉛基材表層部の過度の多孔質化による悪影響が起り始
める。
In the present invention, the reaction time between the graphite base material and the oxidizing gas is 5
The time is preferably at least 1 minute, more preferably from 10 to 70 minutes. If the reaction time is less than 5 minutes, the surface layer of the graphite base material will not be sufficiently made porous, and the effect of reducing glabellar peeling between the graphite base material and the silicon carbide film will not appear. - For reaction times exceeding 70 minutes,
Negative effects begin to occur due to excessive porosity in the surface layer of the graphite base material.

本発明で使用する酸化性ガスについては特に限定するも
のではないが、好ましくは0!、 CO,、水蒸気、ま
たはこれらの混合ガス、またはこれらと不活性ガスの混
合ガスなどを用いるのが適当である。
The oxidizing gas used in the present invention is not particularly limited, but is preferably 0! , CO, water vapor, a mixed gas of these, or a mixed gas of these and an inert gas is suitable.

また本発明において使用する黒鉛基材については特に限
定するものではなく、密度、純度等に関してあらゆる種
類の黒鉛素材を使用することができる。
Further, the graphite base material used in the present invention is not particularly limited, and any type of graphite material in terms of density, purity, etc. can be used.

本発明において化学蒸着法が採用されているが化学蒸着
法によって炭化珪素膜を形成させる方法については何ら
制限されず、例えば慣用の手段を用いてもよい。
Although a chemical vapor deposition method is employed in the present invention, the method of forming a silicon carbide film by the chemical vapor deposition method is not limited at all, and, for example, conventional means may be used.

〔実施例〕〔Example〕

以下本発明を実施例により更に具体的に説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

(実施例1) 大きさ30X30X10m(7)黒鉛基材(2500℃
黒鉛化品)を横型電気炉内にセットし、300〜900
℃の各温度でそれぞれ30分間、空気流通状態の下で加
熱処理を行なった。処理時の空気流量は5ONcc/分
で一定とした。加熱処理後の各黒鉛基材を温度1300
°Cに加熱し、5iC14とCH4をモル比で1.1の
割合で含むH2を流通させて、圧力50Torrの下で
2時間化学蒸着を行なった。その結果形成された炭化珪
素膜の厚さは平均50μmであった。
(Example 1) Size: 30 x 30 x 10 m (7) Graphite base material (2500°C
Graphitized product) was set in a horizontal electric furnace and
Heat treatment was carried out at each temperature of .degree. C. for 30 minutes under air circulation. The air flow rate during the treatment was kept constant at 5ONcc/min. Each graphite base material after heat treatment is heated to a temperature of 1300.
Chemical vapor deposition was carried out under a pressure of 50 Torr for 2 hours by heating to °C and flowing H2 containing 5iC14 and CH4 in a molar ratio of 1.1. The resulting silicon carbide film had an average thickness of 50 μm.

このようにして得られた炭化珪素被覆黒鉛材料をAr雰
囲気下で1200℃の温度まで加熱した後、温度20℃
の水中に投下して急冷するという熱サイクルを繰り返し
与えて、黒鉛基材と炭化珪素膜との眉間剥離が起こるま
でのサイクル数を測定した。
The silicon carbide-coated graphite material thus obtained was heated to a temperature of 1200°C in an Ar atmosphere, and then heated to a temperature of 20°C.
The graphite substrate was repeatedly subjected to a thermal cycle of being dropped into water and rapidly cooled, and the number of cycles until separation between the graphite base material and the silicon carbide film occurred between the eyebrows was measured.

得られた結果を第1表に示す。なお、このような熱サイ
クル試験は一種の加速試験であり、実用上の耐久寿命を
相対的に比較評価することが可能である。
The results obtained are shown in Table 1. Note that such a thermal cycle test is a type of accelerated test, and it is possible to comparatively evaluate the practical durability life.

第1表 第1表には未処理の黒鉛基材について、前記と同様な化
学蒸着法により炭化珪素膜を形成させ、前記と同様な方
法により熱サイクル実験を行なった結果を比較例として
示す。
Table 1 Table 1 shows, as a comparative example, a silicon carbide film formed on an untreated graphite substrate by the same chemical vapor deposition method as described above, and a thermal cycle experiment conducted in the same manner as described above.

第1表から明らかなように、化学蒸着法による炭化珪素
膜形成前に空気との反応により黒鉛基材の表層部を多孔
質化した炭化珪素被覆黒鉛材料の炭化珪素膜の界面にお
ける耐剥離性は、かかる前処理を全〈実施しない従来例
の試験患5に比べていずれも向上していることが判る。
As is clear from Table 1, the peeling resistance at the interface of the silicon carbide film of the silicon carbide-coated graphite material in which the surface layer of the graphite base material was made porous by reaction with air before forming the silicon carbide film by chemical vapor deposition. It can be seen that all of these cases are improved compared to test patient 5 of the conventional example in which no such pretreatment was performed.

しかしながら空気との反応温度が900℃を超える場合
に、は、炭化珪素膜の耐剥離性が低下していることが判
った。従って以上より前処理において酸化性ガスすなわ
ち空気との反応温度は400〜900℃が好ましいこと
を知見した。
However, it was found that when the reaction temperature with air exceeds 900° C., the peeling resistance of the silicon carbide film decreases. Therefore, from the above, it has been found that the reaction temperature with the oxidizing gas, ie, air, in the pretreatment is preferably 400 to 900°C.

(実施例2) 大きさ30X30X10n+の黒鉛基材(2500℃黒
鉛化品)を横型電気炉内にセントし、600℃の反応温
度でそれぞれ5〜70分間空気流通下で加熱処理を行な
った。処理時の空気流量は508cc/分で一定とした
。加熱処理後の黒鉛基材に対しては、実施例1と同様な
化学蒸着法により炭化珪素膜を形成させ、実施例1と同
様な方法により熱サイクル実験を行なった。その結果を
第2表にまとめて示す。
(Example 2) A graphite base material (graphitized product at 2500° C.) having a size of 30×30×10n+ was placed in a horizontal electric furnace and heat-treated at a reaction temperature of 600° C. for 5 to 70 minutes under air circulation. The air flow rate during treatment was kept constant at 508 cc/min. A silicon carbide film was formed on the graphite base material after the heat treatment by the same chemical vapor deposition method as in Example 1, and a thermal cycle experiment was conducted in the same manner as in Example 1. The results are summarized in Table 2.

第2表 第2表には第1表に示した未処理の黒鉛基材についての
結果を従来例として示す。
Table 2 Table 2 shows the results for the untreated graphite base material shown in Table 1 as a conventional example.

第2表から明らかなごとく、本発明に従って反応温度6
00℃で5分間以上空気との反応により黒鉛基材の表層
部を多孔質化した後、化学蒸着法による炭化珪素膜の形
成を行なった炭化珪素被覆黒鉛材料の膜の耐剥離性は、
前処理を全〈実施しない従来例の試験11h5に比べい
ずれも向上していることが判る。しかしながら、空気と
の反応時間が5分間未満や70分間を超える場合には炭
化珪素被覆黒鉛材料の膜の耐剥離性は低下していること
が判った。従って以上より前処理において空気との反応
時間は10〜70分間がより好ましいことを知見した。
As is clear from Table 2, according to the invention the reaction temperature 6
The peeling resistance of the silicon carbide-coated graphite material film, which is made by making the surface layer of the graphite base material porous by reacting with air at 00°C for 5 minutes or more and then forming a silicon carbide film by chemical vapor deposition, is as follows:
It can be seen that all of the results are improved compared to the conventional test 11h5 in which no pretreatment was performed. However, it has been found that when the reaction time with air is less than 5 minutes or more than 70 minutes, the peeling resistance of the silicon carbide-coated graphite material film is reduced. Therefore, from the above, it has been found that the reaction time with air in the pretreatment is more preferably 10 to 70 minutes.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、ウェハー固定治具として
使用する炭化珪素被覆黒鉛材料において、その炭化珪素
膜の眉間剥離を著しく低減することが可能である。従っ
て半導体工業においてエピタキシャル成長法によりウェ
ハーを製造する際にウェハー固定治具の耐久寿命を大き
く延長できるので、ウェハー製造コストの削減効果が極
めて大きい。
As described above, according to the present invention, it is possible to significantly reduce glabellar peeling of a silicon carbide film in a silicon carbide-coated graphite material used as a wafer fixing jig. Therefore, when manufacturing wafers by the epitaxial growth method in the semiconductor industry, the durability of the wafer fixing jig can be greatly extended, and the effect of reducing wafer manufacturing costs is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化珪素被覆黒鉛材料において、黒鉛材料基材と
炭化珪素被覆層との界面の黒鉛材料基材側表面層が多孔
質化してなることを特徴とする、炭化珪素被覆黒鉛材料
(1) A silicon carbide-coated graphite material, characterized in that a surface layer on the graphite material base side at the interface between the graphite material base material and the silicon carbide coating layer is made porous.
(2)化学蒸着法により、黒鉛材料基材表面に炭化珪素
膜を形成させる炭化珪素被覆黒鉛材料の製造方法におい
て、黒鉛材料基材側の、少なくとも炭化珪素の化学蒸着
面を、予め酸化性ガスと反応させて、該基材の表面部を
多孔質化させた後、化学蒸着法により、該表面に炭化珪
素膜を形成することを特徴とする、炭化珪素被覆黒鉛材
料の製造方法。
(2) In a method for manufacturing a silicon carbide-coated graphite material in which a silicon carbide film is formed on the surface of a graphite material base material by a chemical vapor deposition method, at least the chemical vapor deposition surface of silicon carbide on the graphite material base material side is coated with an oxidizing gas in advance. A method for producing a silicon carbide-coated graphite material, which comprises making the surface of the base material porous by reacting with the base material, and then forming a silicon carbide film on the surface by chemical vapor deposition.
JP11419888A 1988-05-11 1988-05-11 Silicon carbide-coated graphite material and production thereof Pending JPH01286980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11419888A JPH01286980A (en) 1988-05-11 1988-05-11 Silicon carbide-coated graphite material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11419888A JPH01286980A (en) 1988-05-11 1988-05-11 Silicon carbide-coated graphite material and production thereof

Publications (1)

Publication Number Publication Date
JPH01286980A true JPH01286980A (en) 1989-11-17

Family

ID=14631659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11419888A Pending JPH01286980A (en) 1988-05-11 1988-05-11 Silicon carbide-coated graphite material and production thereof

Country Status (1)

Country Link
JP (1) JPH01286980A (en)

Similar Documents

Publication Publication Date Title
JPH0710665A (en) Ceramic heater with electrostatic chuck
EP0781739B1 (en) Jig for heat treatment and process for fabricating the jig
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
JP2000302577A (en) Graphite member coated with silicon carbide
JPH0127568B2 (en)
JPH01293970A (en) Fitting and manufacture thereof and method of joining part
JP2000302576A (en) Graphite material coated with silicon carbide
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JPH01286980A (en) Silicon carbide-coated graphite material and production thereof
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS63225591A (en) Manufacture of silicon carbide-coated graphite material
JPH0789776A (en) Production of boron nitride coated carbon material
JP4105776B2 (en) Method for forming silicon carbide coating
JPH1135391A (en) Silicon carbide-coated susceptor
JPH0583517B2 (en)
JPH05310487A (en) Production of sic-coated graphite material
JP3739507B2 (en) Manufacturing method of heat treatment jig
JPH10256108A (en) Silicon carbide dummy wafer
JP2002128580A (en) METHOD FOR MANUFACTURING HIGH-PURITY SiC-COATED CARBON SUBSTANCE
JPH06163439A (en) Semiconductor diffusion oven boat and manufacture thereof
JPH01145400A (en) Jig for heating silicon wafer
JPS6221868B2 (en)
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JPH01148772A (en) Production of graphite material coated with sic film
JPS5988307A (en) Manufacture of product coated with silicon carbide