JPS6221868B2 - - Google Patents

Info

Publication number
JPS6221868B2
JPS6221868B2 JP7952984A JP7952984A JPS6221868B2 JP S6221868 B2 JPS6221868 B2 JP S6221868B2 JP 7952984 A JP7952984 A JP 7952984A JP 7952984 A JP7952984 A JP 7952984A JP S6221868 B2 JPS6221868 B2 JP S6221868B2
Authority
JP
Japan
Prior art keywords
substrate
silicon carbide
reaction
silicon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7952984A
Other languages
Japanese (ja)
Other versions
JPS60224783A (en
Inventor
Minoru Takamizawa
Tatsuhiko Motomya
Yasushi Kobayashi
Akira Hayashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7952984A priority Critical patent/JPS60224783A/en
Publication of JPS60224783A publication Critical patent/JPS60224783A/en
Publication of JPS6221868B2 publication Critical patent/JPS6221868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は炭化けい玠被芆物、特には各皮電子材
料郚品ずしお有甚ずされる炭化けい玠被芆物の補
造方法に関するものである。 高玔床の炭化けい玠が耐熱性、耐酞化性、耐薬
品性さらには熱䌝導性にすぐれた物性を瀺すもの
であるこずから、各皮電子材料およびその治具ぞ
の被芆材料ずするずいうこずが詊みられおいる。
他方、各皮基材衚面に結晶質の炭化けい玠被芆を
斜こす方法に぀いおは埓来から各皮の方法が提案
されおおり、䟋えば(1)炭化けい玠を2000℃以䞊の
高枩で昇華させ、これを基䜓䞊で再結晶させる方
法特公昭41−9332号公報参照、(2)シランたた
はハロゲン化シランず炭化氎玠ガスずの混合物を
熱分解させる方法特開昭57−116200号、特開昭
57−118082号公報参照、(3)SiO2たたはSiず炭玠
の混合粉末を1500℃以䞊の高枩で加熱する方法
特開昭52−42365号、特開昭56−26781号、特開
昭57−3780号公報参照が知られおいる。 しかし、この(1)および(3)の方法は1500℃以䞊の
高枩を必芁ずするため、䜿甚する基材に制限があ
るずいう䞍利があり、(2)の方法に぀いおも始発原
料ずしおモノシランSiH4、ゞシランSi2H6
を䜿甚するずこの氎玠化けい玠化合物ず炭化氎玠
化合物ずの間の熱分解枩床差速床差が倧きく
異なるために均質な炭化けい玠皮膜を埗るのに高
床な濃床調敎が必芁ずされるし、ハロゲン化シラ
ンを始発原料ずするずきにはこれらが加氎分解し
易いものであるし反応枩床も高く、さらには副生
する塩酞や塩玠の凊理に難点があるずいう䞍利が
あ぀た。 本発明はこのような䞍利を解決した炭化けい玠
被芆物の補造方法に関するものであり、これは分
子䞭に少なくずも個のけい玠−氎玠結合を有す
る有機けい玠化合物を氎玠化けい玠化合物の共存
䞋に光CVD法あるいは氎銀増感光CVD法によ぀
お炭化けい玠ずしおこれを基䜓䞊に薄膜状に堆積
させた埌、この䞊に前蚘有機けい玠化合物を700
〜1500℃で気盞熱分解させお埗た炭化けい玠を薄
膜状に堆積させおなるこずを特城ずするものであ
る。 すなわち、本発明者らは各皮基䜓䞊に高玔床の
炭化けい玠被芆を斜す方法に぀いおの研究を進
め、さきに分子䞭に少なくずも個のけい玠−氎
玠結合を有する有機けい玠化合物を700〜1400℃
で気盞熱分解させお基䜓䞊に炭化けい玠被芆を斜
す方法を芋出し特願昭57−195702号明现曞参
照、さらに䞊蚘した有機けい玠化合物をモノシ
ランたたはゞシランで代衚される氎玠化けい玠化
合物ず共に基䜓䞊に䟛絊し、これに玫倖光を照射
するずこれらが容易に分解しお基䜓䞊に非晶質の
炭化けい玠被芆を䞎えるこずを芋出した特願昭
59−55887が、さらに怜蚎を重ねた結果この
぀の方法を組合せ先づ基䜓䞊に玫倖線照射による
光CVD法たたは氎銀増感光CVD法で非晶質の炭
化けい玠を被芆させ、぀いでこの䞊に有機けい玠
化合物の気盞熱分解による炭化けい玠を被芆させ
るず、光CVD法により埗られる被芆がラゞカル
反応により埗られるもので膜質が均䞀であるこず
から、぀いで行なわれる熱分解反応によ぀お堆積
される被膜も埓来法にくらべお均質でクラツクも
なく、平滑性のすぐれたものになるずいうこずを
確認しお本発明を完成させた。 本発明の方法においお始発材料ずしお䜿甚され
る有機けい玠化合物は前蚘したように、その分子
䞭に少なくずも個のSi−結合を含むものであ
るが、しかし奜たしくはSiXはハロゲン原子
たたは酞玠原子結合を含たないものであり、こ
れに䟋えば䞀般匏2o+2Sio〔こゝにはその
少なくずも個が氎玠原子である、氎玠原子たた
はメチル基、゚チル基、プロピル基、プニル
基、ビニル基などから遞ばれる䟡の炭化氎玠
基、は〜の正数〕で瀺されるシランたたは
ポリシラン類、および䞀般匏 〔ここには前蚘ず同じ、R1はメチレン基、゚チ
レン基たたはプニレン基、は〜の正数〕
で瀺されるシルアルキレン化合物たたはシルプ
ニレン化合物、あるいは同䞀分子䞭にこの䞡者の
䞻骚栌をも぀化合物があげられる。そしお、この
有機けい玠化合物ずしおは、次匏CH3SiH3、
CH32SiH2、CH33SiH、C2H52SiH2、
C3H6SiH3、CH2CH・CH3SiH2、C6H5SiH3、
The present invention relates to a method for producing a silicon carbide coating, particularly a silicon carbide coating useful as various electronic material parts. High-purity silicon carbide exhibits excellent physical properties such as heat resistance, oxidation resistance, chemical resistance, and thermal conductivity, so it is used as a coating material for various electronic materials and their jigs. is being attempted.
On the other hand, various methods have been proposed in the past for applying crystalline silicon carbide coatings to the surfaces of various substrates. (2) A method of thermally decomposing a mixture of silane or halogenated silane and hydrocarbon gas (Japanese Patent Publication No. 57-116200, Japanese Patent Publication No. 116200/1989)
57-118082), (3) A method of heating SiO 2 or a mixed powder of Si and carbon at a high temperature of 1500°C or higher (JP-A-52-42365, JP-A-56-26781, JP-A-Sho 57-3780) is known. However, methods (1) and (3) require high temperatures of 1500°C or higher, which has the disadvantage of limiting the base material that can be used. Method (2) also uses monosilane (SiH) as the starting material. 4 ), disilane (Si 2 H 6 )
When using silicon carbide, the thermal decomposition temperature difference (speed difference) between the silicon hydride compound and the hydrocarbon compound is large, so advanced concentration adjustment is required to obtain a homogeneous silicon carbide film. However, when halogenated silanes are used as starting materials, there are disadvantages in that they are easily hydrolyzed and the reaction temperature is high, and furthermore, it is difficult to treat by-products such as hydrochloric acid and chlorine. The present invention relates to a method for producing a silicon carbide coating that solves these disadvantages, and is a method of manufacturing a silicon carbide coating by converting an organosilicon compound having at least one silicon-hydrogen bond in the molecule into a silicon hydride compound. Silicon carbide is deposited as a thin film on a substrate by photo-CVD or mercury-sensitized photo-CVD in coexistence, and then the organosilicon compound is deposited on the substrate for 700 g.
It is characterized by depositing silicon carbide obtained by vapor phase thermal decomposition at ~1500°C in the form of a thin film. That is, the present inventors have conducted research on methods for applying high-purity silicon carbide coatings on various substrates, and have first developed an organic silicon compound having at least one silicon-hydrogen bond in its molecule. 1400℃
They discovered a method of coating silicon carbide on a substrate by vapor-phase thermal decomposition (see Japanese Patent Application No. 57-195702). They discovered that when they are supplied onto a substrate together with an elementary compound and irradiated with ultraviolet light, these easily decompose and form an amorphous silicon carbide coating on the substrate (patent application
59-55887), but after further consideration, these two
By combining the two methods, first amorphous silicon carbide is coated on the substrate by photo-CVD method using ultraviolet irradiation or mercury-sensitized photo-CVD method, and then silicon carbide is coated on the substrate by vapor phase thermal decomposition of an organosilicon compound. Since the coating obtained by the photo-CVD method is obtained by a radical reaction and has a uniform film quality, the film deposited by the subsequent thermal decomposition reaction is also more homogeneous and less cracked than in the conventional method. The present invention was completed after confirming that the smoothness of the film was excellent. As mentioned above, the organosilicon compound used as a starting material in the method of the present invention is one containing at least one Si-H bond in its molecule, but preferably SiX (X is a halogen atom or an oxygen atom). ) does not contain a bond, and includes, for example, the general formula R 2o+2 (Si) o [wherein R is a hydrogen atom, at least one of which is a hydrogen atom, or a methyl group, an ethyl group, a propyl group, a monovalent hydrocarbon group selected from phenyl group, vinyl group, etc., n is a positive number of 1 to 4], and silanes or polysilanes represented by the general formula [Here, R is the same as above, R 1 is a methylene group, ethylene group, or phenylene group, m is a positive number of 1 to 2]
Examples include silalkylene compounds or silphenylene compounds represented by the above, or compounds having both main skeletons in the same molecule. And, as this organosilicon compound, the following formula CH 3 SiH 3 ,
( CH3 ) 2SiH2 , ( CH3 ) 3SiH , ( C2H5 ) 2SiH2 ,
C 3 H 6 SiH 3 , CH 2 = CH・CH 3 SiH 2 , C 6 H 5 SiH 3 ,

【匏】【formula】

【匏】【formula】

【匏】【formula】 【匏】【formula】

で瀺されるシラン、ポリシランが䟋瀺され、これ
らはその皮たたは皮あるいは皮以䞊の混合
物ずしお䜿甚されるが、これらに぀いおは 匏
Examples include silanes and polysilanes represented by the formula, and these can be used alone or as a mixture of two or more of them.

【匏】ここには正数〕 で瀺されるゞメチルポリシランを350℃以䞊の枩
床で熱分解させお埗られるメチルハむドロゞ゚ン
シラン類が奜たしいものずされる。なお、これら
の有機けい玠化合物は、埓来公知の方法で補造す
るこずができるが、これらは蒞留工皋によ぀お容
易に高玔床化するこずができるので、本反応によ
぀お埗られる炭化けい玠も極めお玔床の高いもの
になるずいう有利性が䞎えられる。 本発明方法の実斜は(1)䞊蚘した有機けい玠化合
物を氎玠化けい玠化合物の共存䞋で光CVD法た
たは氎銀増感光CVD法で分解させお炭化けい玠
ずしお基䜓に堆積させる第工皋ず、(2)この第
工皋で埗た炭化けい玠を被芆した基䜓䞊に䞊蚘し
た有機けい玠化合物の気盞熱分解によ぀お生成し
た炭化けい玠を被芆する第工皋ずによ぀お行な
われる。 この第工皋は䞊蚘した有機けい玠化合物を氎
玠ガスたたはヘリりム、ネオン、窒玠ガスなどの
䞍掻性ガスをキダリダヌガスずしおモノシラン
SiH4たたはゞシランSi2H6などの氎玠化けい
玠化合物ず共に基䜓を収容した反応噚内に導入
し、玫倖光を照射する光CVD法によ぀お行なわ
れる。この氎玠化けい玠化合物の添加は、それだ
けでは光分解速床の遅い前蚘した有機けい玠化合
物の光分解を光で励起されたSiH4たたはSi2H6な
どの氎玠化けい玠化合物ずの衝突によ぀お促進さ
せるためのものであるが、氎玠化けい玠化合物ず
しおSiH4を䜿甚し、可芖光に近い波長の玫倖線
によ぀お行なわせようずするずきは反応系に蒞気
圧量の氎銀を添加しお光照射によ぀お励起された
氎銀がガス分子ず衝突しおガス分子に゚ネルギヌ
を䞎える氎銀増感CVD法ずするこずがよい。こ
の反応を実斜するための光源ずしおは高゚ネルギ
ヌ光を照射できる高圧氎銀ランプ、䜎圧氎銀ラン
プを䜿甚すればよいが、この反応がプラズマ法の
ようなむオン化反応でなく、光の分解反応による
ラゞカル反応であるこずから、この氎玠化けい玠
化合物の添加量は氎玠化けい玠化合物有機けい
玠化合物氎玠化けい玠化合物のモル濃床比で
〜50モル、奜たしくは〜15モルずするこず
がよく、モル以䞋ずするず生成ラゞカル量が
少なすぎお炭化けい玠の堆積速床が遅くなり、50
モル以䞊ずするずSiH4、Si2H6などが高䟡栌で
あるこずから経枈的でなくなるずいう䞍利が生じ
る。この第工皋における反応枩床は100℃以䞊
では反応速床が遅くなるほかキダリダヌガスずし
お氎玠ガスを䜿甚するず生成する炭化けい玠にお
ける末端結合子SiCが倚くな぀お次工皋
でガスが発生し均質な皮膜が埗られなくなるし、
700℃以䞊ずするず有機けい玠化合物の熱分解反
応が同時に進行するようになり、たた光源を冷华
するための特別な装眮も必芁ずなるので、100〜
700℃の範囲、奜たしくは200〜400℃の範囲ずす
るこずがよい。たた、この工皋ではこゝに埗られ
る炭化けい玠被芆膜の電気特性を調節する目的で
䞊蚘した有機けい玠化合物にB2H6、PH3などのド
ヌピング剀を添加するこずは任意ずされる。な
お、この工皋で埗られる炭化けい玠被芆膜はこの
反応が䞊蚘したようにラゞカル反応だけで䜜られ
るので欠陥のない均質な膜ずなるが、堆積速床が
遅いので第工皋のみで厚膜品を埗るためには長
期間の反応が必芁であり、経枈的ではない。たた
この炭化けい玠皮膜は基䜓に察する接着匷床が匱
いので高枩を必芁ずしない甚途にはそのたゝでも
䜿甚するこずができるけれども、耐熱性を必芁ず
する甚途には限界があるので、これには぀ぎに述
べる第工皋によ぀お生成する炭化けい玠を堆積
させる必芁がある。なお、本発明の方法で第工
皋を䜵甚する堎合、第工皋で埗られる膜厚は
0.05〜0.6Όで充分である。 ぀ぎにこの第工皋は䞊蚘した有機けい玠化合
物を高枩の反応噚内で気盞熱分解させ、生成した
炭化けい玠を第工皋で埗た炭化けい玠被芆膜の
䞊に堆積させるものであるが、この反応枩床は
700℃以䞋では熱分解反応が遅く、䜿甚した有機
けい玠化合物が完党に熱分解されずに残存し、埗
られる皮膜も衚面の平滑性に欠けたものずなり、
1500℃以䞊では炭化けい玠結晶の成長速床は速く
なるが基䜓ず炭化けい玠ずの熱膚匵係数差が倧き
くな぀お接着匷床が䜎䞋するので、これは700〜
1500℃の範囲、奜たしくは900〜1300℃の範囲ず
するこずがよい。この膜厚は䜿甚する基板の熱膚
匵係数によ぀お倉るが、膚匵係数が金属板のよう
に倧きいものではΌ以䞋、セラミツクのよう
に小さいものではΌ以䞊も可胜である。た
た、この膜厚は䜿甚目的によ぀お倉化させおもよ
く、耐蝕性コヌテむングを目的ずしたものでは数
Όでもよいが、摺動郚材、半導䜓甚治具、加熱
甚容噚のように匷床、耐熱性、耐摩耗性が芁求さ
れるものでは数10Όの厚さが必芁ずされる。 ぀ぎに、本発明の実斜に䜿甚される基板は特に
これを限定する必芁はないが、電子材料甚あるい
は高枩反応郚材甚ずしおの炭化けい玠被芆物を埗
るためにはこれを炭玠、金属けい玠、サフアむ
ダ、窒化けい玠などのセラミツク物質、石英ガラ
ス、各皮金属板などずし、これらの衚面に䞊述し
た方法で適切な厚さの炭化けい玠被芆を斜せばよ
い。 なお、本発明方法の実斜に圓぀おは、この第
工皋が光照射を必芁ずしないし、氎玠化けい玠化
合物を必ずしも必芁ずしないのでこの第工皋ず
第工皋を別々の反応装眮で行なわせおもよい
が、生産性の面からは同䞀反応装眮内で行なうこ
ずが奜たしい。たた、耐熱性の芁求されない分野
で䜿甚するものは第工皋ず第工皋ずを逆にす
るこずも可胜である。 ぀ぎにこれを添付の図面にもずづいお説明する
ず、第図における石英補の反応噚は光CVD
反応垯ず気盞熱分解垯ずからできおおり、こ
の䞭には基板ヒヌタヌに茉眮された基板支持プ
レヌトの䞊に基板が収玍されおいる。反応噚
には有機けい玠化合物導入口、氎玠化けい玠
化合物導入口から所定のモル比ずなるようにし
た反応ガスが䟛絊されるが、これらのガスは光
CVD法ずするずきには管、氎銀増感光CVD法
ずするずきには20〜70℃に保持された恒枩槜の
䞭の氎銀の蒞気を䌎流するにした管を経お
䟛絊される。光CVD反応垯に導入された反応
ガスは䜎圧氎銀ランプから照射される玫倖光
によ぀お分解されお炭化けい玠を生成し、この炭
化けい玠は基板ヒヌタヌによ぀お200℃以䞊に
加熱されおいる基板の䞊に堆積され、このよう
に凊理された基板は぀いで基板ヒヌタヌず共に
気盞熱分解垯に移送される。この時点で反応ガ
スは有機けい玠化合物導入口からの有機けい玠
化合物だけずされ、これは加熱ヒヌタヌによ
぀お900〜1300℃に加熱された気盞熱分解垯で
分解されお炭化けい玠を生成し、これが基䜓䞊の
炭化けい玠被芆膜䞊に堆積され、反応埌の排ガス
は排気口から排気される。 本発明の方法で埗られる結晶質炭化けい玠被芆
物はこの被芆によ぀お耐熱性、耐酞化性、耐薬品
性、機密性が䞎えられるので各皮甚途に広く䜿甚
され、これは特に半導䜓基板、電子材料甚治具ず
しお、さらには各皮のシヌル材、たた熱導性郚材
ずしお、有甚ずされる。 ぀ぎに本発明方法の実斜䟋をあげるが、これら
は本発明の範囲を限定するものではない。 実斜䟋  内埄120mmの石英管からなる第図に瀺したよ
うな反応噚内に収玍した抵抗型ヒヌタヌを内蔵し
た基板ヒヌタヌ䞊のプレヌトに40×40×mmの黒
鉛質炭玠基板を茉眮し、これを500℃に加熱し
た。 ぀ぎにこの反応噚内に氎玠ガスで10容量に垌
釈したトリメチルシラン〔CH33SiH〕100c.c.
分ず氎玠ガスで10容量に垌釈したゞシラン
Si2H6200c.c.分を導入し、䜎圧氎銀灯1849
Åからの玫倖光を60分間照射したのち、この基
板を気盞熱分解垯に移動させ、この垯域の枩床を
1200℃ずしお30分間熱分解反応を行なわせた埌、
反応垯域を冷华し、基板を取り出したずころ、基
板䞊に厚さΌの均䞀なβ型SiCの埮现結晶被
芆が斜されおいるこずが認められた。 このものは぀いで空気䞭で1200℃に繰り返し加
熱したが、この被芆に倉化は芋られず、これには
ピンホヌル、クラツクの発生もなか぀たが、比范
のために䞊蚘した光CVD法を行なわず同䞀条件
での気盞熱分解法だけで厚さΌのβ型SiCの
被芆させたものは衚面が凹凞で平滑性も劣るもの
であ぀た。 実斜䟋  実斜䟋の方法においお基板の加熱枩床を300
℃ずし、この反応噚に氎玠ガスで10容量に垌釈
したテトラメチルゞシラン〔CH34Si2H2〕100
c.c.分ず氎玠ガスで10容量に垌釈したモノシラ
ンSiH4200c.c.分ずの混合ガスを50℃に保持
した氎銀貯槜を経由しお䟛絊し、これに氎銀ラン
プ2537Åからの玫倖光を20分間照射したの
ち、この基板を気盞熱分解垯に移動させ、SiH4
ガスの䟛絊を停止するず共に氎銀蒞気を遮断し、
実斜䟋ず同様の方法でテトラメチルゞシランの
熱分解反応を行なわせ、冷华埌基板を取り出した
ずころ、基板䞊に厚さΌの均䞀で凹凞のない
匷固なβ型SiCの埮现結晶被芆が斜されおいるこ
ずが認められた。 実斜䟋  実斜䟋ず同じ反応噚内に、40×40×mmの反
応焌結型炭化けい玠けい玠含有基板を茉
眮しお300℃に加熱し、この反応噚に氎玠ガスで
容量に垌釈したビスゞメチルシリルメタン
〔CH32HSi−CH2−SiHCH32〕150c.c.分を
導入したほかは実斜䟋ず同様に凊理したずこ
ろ、この基板は厚さ玄Όの埮现な結晶状の均
質なβ型SiCで被芆された。 このものは1000℃の繰り返し加熱によ぀おもこ
のSiC被芆が剥離せず、基板に匷固に接着しおお
り、フツ硝酞液䞭に浞挬したずきも基板偎には酞
の浞出による凹凞が芋られたがSiC被芆には䜕の
異垞も芋られなか぀た。 たた、比范のため、䞊蚘においお光CVD埌の
基板を取り出し、これにムラむト補加熱管䞭にお
いお1550℃の枩床での気盞熱分解法による炭化け
い玠被芆を行な぀たずころ、この堎合にはSiC結
晶が倧きく成長したゝめ衚面に凹凞が認められ、
被芆党䜓にクラツクが発生しおいた。 実斜䟋  実斜䟋ず同じ反応噚内に50φ×mmの円板状
単結晶けい玠基板を茉眮しお500℃に加熱し、こ
の反応噚䞭にそれぞれヘリりムガスで10容量に
垌釈したトリメチルシランずモノメチルシラン
〔CH3SiH3〕ずの圓量混合ガス150c.c.分ず氎玠ガ
スで10容量に垌釈したゞシランc.c.分ずの混
合ガスを氎銀蒞気ず共に導入し、こゝに氎銀ラン
プ1849Åからの玫倖光を20分間照射したの
ち、この基板を気盞熱分解垯に移動させ、ゞシラ
ンガスの䟛絊を停止するず共に氎銀蒞気を遮断
し、1100℃で䞊蚘混合シランガスの熱分解反応を
時間行なわせ、冷华埌基板を取り出したずこ
ろ、これには25Όの厚さで炭化けい玠被芆がな
されおいた。 ぀いで、このものをフツ硝酞济䞭に浞挬しお単
結晶けい玠基板を陀去したずころ、均䞀な炭化け
い玠板が埗られたが、比范のために䞊蚘における
氎銀増感光CVD法を時間行な぀お埗た玄Ό
の炭化けい玠被芆の蚭けられた基板を䞊蚘ず同
様にフツ硝酞济で凊理しお埗た炭化けい玠板には
倚数のクラツクが発生した。
[Formula] (where x is a positive number) Methylhydrodienesilanes obtained by thermally decomposing dimethylpolysilane at a temperature of 350°C or higher are preferred.These organosilicon compounds are , can be produced by conventionally known methods, but since these can be easily purified to a high degree by a distillation process, the silicon carbide obtained by this reaction is also extremely pure. The method of the present invention is carried out by (1) decomposing the above-mentioned organosilicon compound in the coexistence of a silicon hydride compound by a photoCVD method or a mercury-sensitized photoCVD method to form silicon carbide on a substrate; a first step of depositing; (2) this first step;
A second step is performed in which silicon carbide produced by vapor phase thermal decomposition of the organosilicon compound described above is coated on the substrate coated with silicon carbide obtained in the step. In this first step, the above-described organosilicon compound is mixed with a hydrogenated silicon compound such as monosilane (SiH 4 ) or disilane (Si 2 H 6 ) using hydrogen gas or an inert gas such as helium, neon, or nitrogen gas as a carrier gas. This is carried out using a photo-CVD method in which the substrate is introduced into a reactor and irradiated with ultraviolet light. The addition of this silicon hydride compound prevents the photodecomposition of the above-mentioned organosilicon compound, which has a slow photodegradation rate, from colliding with a silicon hydride compound such as SiH 4 or Si 2 H 6 excited by light. However, when SiH 4 is used as the silicon hydride compound and the reaction is to be carried out using ultraviolet light with a wavelength close to visible light, mercury in the amount of vapor pressure is added to the reaction system. It is preferable to use a mercury-sensitized CVD method in which mercury excited by light irradiation collides with gas molecules to impart energy to the gas molecules. A high-pressure mercury lamp or a low-pressure mercury lamp that can irradiate high-energy light can be used as a light source to carry out this reaction, but this reaction is not an ionization reaction like the plasma method, but a radical reaction caused by a light decomposition reaction. Therefore, the amount of silicon hydride compound added is 1 in the molar concentration ratio of silicon hydride compound/organosilicon compound + silicon hydride compound.
It is good to set it to ~50 mol%, preferably 2 to 15 mol%; if it is less than 1 mol%, the amount of generated radicals will be too small and the deposition rate of silicon carbide will be slow;
If it is more than mol %, there will be a disadvantage that SiH 4 , Si 2 H 6 and the like are expensive, making it uneconomical. If the reaction temperature in this first step is 100°C or higher, the reaction rate will be slow, and if hydrogen gas is used as a carrier gas, the number of terminal bonds (SiC:H) in the silicon carbide produced will increase, causing gas to be generated in the next step. It becomes impossible to obtain a homogeneous film,
If the temperature is higher than 700℃, the thermal decomposition reaction of the organosilicon compound will proceed at the same time, and a special device will be required to cool the light source, so
The temperature is preferably in the range of 700°C, preferably in the range of 200 to 400°C. In addition, in this step, it is optional to add doping agents such as B 2 H 6 and PH 3 to the above-mentioned organosilicon compound for the purpose of adjusting the electrical properties of the silicon carbide coating film obtained. Ru. Note that the silicon carbide coating film obtained in this process is produced solely by the radical reaction as described above, resulting in a homogeneous film with no defects. A long-term reaction is required to obtain the product, which is not economical. In addition, this silicon carbide film has a weak adhesive strength to the substrate, so it can be used as is for applications that do not require high temperatures, but there are limits to applications that require heat resistance, so the following It is necessary to deposit silicon carbide produced by the second step described in . In addition, when using the second step in the method of the present invention, the film thickness obtained in the first step is
0.05 to 0.6 ÎŒm is sufficient. Next, in this second step, the above-mentioned organosilicon compound is subjected to vapor phase thermal decomposition in a high-temperature reactor, and the generated silicon carbide is deposited on the silicon carbide coating film obtained in the first step. However, this reaction temperature is
At temperatures below 700℃, the thermal decomposition reaction is slow, the organic silicon compound used remains without being completely thermally decomposed, and the resulting film lacks surface smoothness.
At temperatures above 1500°C, the growth rate of silicon carbide crystals increases, but the difference in thermal expansion coefficient between the substrate and silicon carbide increases and the adhesive strength decreases;
The temperature is preferably in the range of 1500°C, preferably in the range of 900 to 1300°C. This film thickness varies depending on the thermal expansion coefficient of the substrate used, but it can be 1 Όm or less for a substrate with a large expansion coefficient such as a metal plate, and 5 Όm or more for a substrate with a small expansion coefficient such as a ceramic. The thickness of this film may be changed depending on the purpose of use; it may be several micrometers for corrosion-resistant coatings, but it may be used for applications such as sliding parts, semiconductor jigs, heating containers, etc. due to its strength and heat resistance. A thickness of several tens of micrometers is required for materials that require high durability and abrasion resistance. Next, the substrate used in carrying out the present invention is not particularly limited, but in order to obtain a silicon carbide coating for electronic materials or high-temperature reaction components, it is necessary to use carbon, metal silicon, etc. , sapphire, ceramic materials such as silicon nitride, quartz glass, various metal plates, etc., and the surfaces thereof may be coated with silicon carbide to an appropriate thickness by the method described above. Note that when implementing the method of the present invention, this second
Since the process does not require light irradiation and does not necessarily require a silicon hydride compound, the first and second steps may be performed in separate reactors, but from the viewpoint of productivity, it is possible to perform the same reaction. Preferably, this is carried out within the device. Furthermore, for those used in fields where heat resistance is not required, the first and second steps can be reversed. Next, to explain this based on the attached drawings, the quartz reactor 1 in FIG.
It consists of a reaction zone A and a gas phase pyrolysis zone B, in which a substrate 4 is housed on a substrate support plate 3 placed on a substrate heater 2. Reaction gases are supplied to the reactor 1 from an organosilicon compound inlet 5 and a hydrogenated silicon compound inlet 6 at a predetermined molar ratio, but these gases are not exposed to light.
When the CVD method is used, the mercury is supplied through a tube 7, and when the mercury-sensitized CVD method is used, the mercury is supplied through a tube 10 in which vapor of mercury 9 flows in a constant temperature bath 8 maintained at 20 to 70°C. The reaction gas introduced into the photoCVD reaction zone A is decomposed by ultraviolet light irradiated from the low-pressure mercury lamp 11 to produce silicon carbide, and this silicon carbide is heated to 200°C or higher by the substrate heater 2. The substrate 4, which is deposited on a heated substrate 4 and thus treated, is then transferred to a vapor phase pyrolysis zone B together with a substrate heater. At this point, the only reaction gas is the organosilicon compound from the organosilicon compound inlet 5, which is decomposed and carbonized in the gas phase pyrolysis zone B heated to 900 to 1300°C by the heating heater 12. Silicon is produced and deposited on the silicon carbide coating film on the substrate, and the exhaust gas after the reaction is exhausted from the exhaust port 13. The crystalline silicon carbide coating obtained by the method of the present invention has heat resistance, oxidation resistance, chemical resistance, and airtightness, and is therefore widely used in various applications, particularly for semiconductor substrates, It is said to be useful as a jig for electronic materials, various sealing materials, and thermally conductive members. Examples of the method of the present invention will be given below, but these are not intended to limit the scope of the present invention. Example 1 A graphitic carbon substrate measuring 40 x 40 x 5 mm was placed on a plate on a substrate heater containing a built-in resistance heater housed in a reactor as shown in Figure 1, which was made of a quartz tube with an inner diameter of 120 mm. , which was heated to 500°C. Next, 100 c.c. of trimethylsilane [(CH 3 ) 3 SiH] diluted to 10% by volume with hydrogen gas was placed in this reactor.
200c.c./min of disilane (Si 2 H 6 ) diluted to 10% by volume with hydrogen gas was introduced, and a low-pressure mercury lamp (1849
After 60 minutes of irradiation with ultraviolet light from a
After carrying out the thermal decomposition reaction at 1200℃ for 30 minutes,
When the reaction zone was cooled and the substrate was taken out, it was found that the substrate was coated with a uniform microcrystalline β-type SiC coating with a thickness of 5 Όm. This product was then repeatedly heated to 1200°C in air, but no change was observed in the coating, and no pinholes or cracks were generated. However, for comparison, the photo-CVD method described above was not performed. A product coated with β-type SiC to a thickness of 5 Όm using only the vapor phase pyrolysis method under the same conditions had an uneven surface and poor smoothness. Example 2 In the method of Example 1, the heating temperature of the substrate was set to 300°C.
℃, and tetramethyldisilane [(CH 3 ) 4 Si 2 H 2 ] 100 diluted to 10% by volume with hydrogen gas was added to this reactor.
A mixed gas of cc/min and 200cc/min of monosilane (SiH 4 ) diluted to 10% by volume with hydrogen gas was supplied via a mercury storage tank maintained at 50°C, and a mercury lamp (2537Å) was supplied to this gas. After 20 minutes of UV light irradiation from
Stop the gas supply and shut off the mercury vapor,
When the thermal decomposition reaction of tetramethyldisilane was carried out in the same manner as in Example 1, and the substrate was taken out after cooling, it was found that a 6 Όm thick, uniform, smooth and strong microcrystalline coating of β-type SiC was formed on the substrate. It was recognized that Example 3 A reaction sintered silicon carbide (containing 5% silicon) substrate of 40 x 40 x 5 mm was placed in the same reactor as in Example 1, heated to 300°C, and hydrogen was added to the reactor. The same treatment as in Example 2 was carried out except that 150 c.c./min of bisdimethylsilylmethane [(CH 3 ) 2 HSi-CH 2 -SiH (CH 3 ) 2 ] diluted with gas to 5% by volume was introduced. , this substrate was coated with fine crystalline homogeneous β-type SiC with a thickness of about 6 Όm. This SiC coating does not peel off even after repeated heating at 1000°C, and is strongly adhered to the substrate. Even when immersed in a nitric acid solution, unevenness due to acid leaching was observed on the substrate side. However, no abnormality was observed in the SiC coating. For comparison, the substrate after photo-CVD was taken out and coated with silicon carbide by vapor phase pyrolysis at a temperature of 1550°C in a mullite heating tube. Unevenness is observed on the surface where SiC crystals have grown large,
Cracks had occurred throughout the coating. Example 4 A 50φ x 5 mm disc-shaped single crystal silicon substrate was placed in the same reactor as in Example 1 and heated to 500°C, and diluted to 10% by volume with helium gas in each reactor. A mixed gas of 150 c.c./min of equivalent mixed gas of trimethylsilane and monomethylsilane [CH 3 SiH 3 ] and 3 c.c./min of disilane diluted to 10% by volume with hydrogen gas was introduced together with mercury vapor. After irradiating the substrate with ultraviolet light from a mercury lamp (1849Å) for 20 minutes, the substrate was moved to a gas phase pyrolysis zone, the supply of disilane gas was stopped, and the mercury vapor was shut off, and the above mixed silane gas was heated at 1100°C. The thermal decomposition reaction was carried out for 2 hours, and when the substrate was taken out after cooling, it was found that it was coated with silicon carbide to a thickness of 25 ÎŒm. Next, when this material was immersed in a nitric acid bath to remove the single crystal silicon substrate, a uniform silicon carbide plate was obtained.However, for comparison, the mercury-sensitized photoCVD method described above was performed for 3 hours. Approximately 3ÎŒ obtained over time
A large number of cracks were generated in a silicon carbide plate obtained by treating a substrate with a silicon carbide coating of 1.0 m in a nitric acid bath in the same manner as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明方法を実斜するための反応装眮
の瞊断面芁図を䟋瀺したものである。   反応噚、  基板ヒヌタヌ、  プ
レヌト、  基板、  ガス導入口、
  恒枩槜、  氎銀、  氎銀ランプ、
  加熱ヒヌタヌ、  排気口、  
光CVD反応垯、  気盞熱分解垯。
FIG. 1 illustrates a longitudinal cross-sectional view of a reaction apparatus for carrying out the method of the present invention. 1... Reactor, 2... Substrate heater, 3... Plate, 4... Substrate, 5, 6... Gas inlet, 8
...Thermostatic bath, 9...Mercury, 11...Mercury lamp,
12... Heater, 13... Exhaust port, A...
PhotoCVD reaction zone, B...gas phase pyrolysis zone.

Claims (1)

【特蚱請求の範囲】[Claims]  分子䞭に少なくずも個のけい玠−氎玠結合
を有する有機けい玠化合物を氎玠けい玠化合物の
共存䞋に光CVD法あるいは氎銀増感光CVD法に
よ぀お炭化けい玠ずしおこれを基䜓䞊に薄膜状に
堆積させた埌、この䞊に前蚘有機けい玠化合物を
700〜1500℃で気盞熱分解させお埗た炭化けい玠
を薄膜状に堆積させおなるこずを特城ずする炭化
けい玠被芆物の補造方法。
1 An organosilicon compound having at least one silicon-hydrogen bond in the molecule is formed into a thin film on a substrate by photo-CVD or mercury-sensitized photo-CVD in the presence of a hydrogen-silicon compound. After depositing the organosilicon compound on top of the
A method for producing a silicon carbide coating, comprising depositing silicon carbide obtained by vapor phase pyrolysis at 700 to 1500°C in the form of a thin film.
JP7952984A 1984-04-20 1984-04-20 Production of silicon carbide coating Granted JPS60224783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7952984A JPS60224783A (en) 1984-04-20 1984-04-20 Production of silicon carbide coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7952984A JPS60224783A (en) 1984-04-20 1984-04-20 Production of silicon carbide coating

Publications (2)

Publication Number Publication Date
JPS60224783A JPS60224783A (en) 1985-11-09
JPS6221868B2 true JPS6221868B2 (en) 1987-05-14

Family

ID=13692512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7952984A Granted JPS60224783A (en) 1984-04-20 1984-04-20 Production of silicon carbide coating

Country Status (1)

Country Link
JP (1) JPS60224783A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211579B1 (en) * 1985-08-02 1990-03-28 Ngk Insulators, Ltd. Method of making a silicon nitride sintered member
JPS6272583A (en) * 1985-09-26 1987-04-03 日本碍子株匏䌚瀟 Zirconia-coated silicon carbide sintered member
JPS62197370A (en) * 1986-02-20 1987-09-01 日本碍子株匏䌚瀟 Silicon nitride sintered body
JP7261542B2 (en) * 2018-03-13 2023-04-20 むビデン株匏䌚瀟 Method for producing SiC-coated silicon material

Also Published As

Publication number Publication date
JPS60224783A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
JP3168002B2 (en) Transition metal nitride chemical vapor deposition method
JP3517934B2 (en) Method of forming silicon film
JPS59128281A (en) Manufacture of silicon carbide coated matter
JPH0710665A (en) Ceramic heater with electrostatic chuck
JP2003332333A (en) Low-temperature deposition method of insulation film
EP0723600B1 (en) Process for the preparation of silicon carbide films using single organosilicon compounds
TWI525213B (en) Process for production of silicon layers
US5061514A (en) Chemical vapor deposition (CVD) process for plasma depositing silicon carbide films onto a substrate
TW200419005A (en) Method of forming Si-containing thin film using organic Si-containing compound having Si-Si bond
JPS6221868B2 (en)
JP2723472B2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
JPS61210179A (en) Coating blade for microtome and its production
JP2019112288A (en) Silicon carbide member and member for semiconductor manufacturing device
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
JPH0587171B2 (en)
JPS5988307A (en) Manufacture of product coated with silicon carbide
JP3084395B2 (en) Semiconductor thin film deposition method
JP3857446B2 (en) SiC molded body
Ermakova et al. Carbon‐rich plasma‐deposited silicon oxycarbonitride films derived from 4‐(trimethylsilyl) morpholine as novel single‐source precursor
JPS63256596A (en) Method for synthesizing diamond in vapor phase
JPS64323B2 (en)
JP2681481B2 (en) Method of forming silicon oxide film
JPS60234973A (en) Manufacture of thin silicon nitride film
WO2003005432A1 (en) Method and apparatus for forming film having low dielectric constant, and electronic device using the film
CN116815161A (en) Method for preparing silicon film by using organic silicon precursor