JPH01286407A - Rare earth permanent magnet superior in corrosion resistance and its manufacture - Google Patents

Rare earth permanent magnet superior in corrosion resistance and its manufacture

Info

Publication number
JPH01286407A
JPH01286407A JP11494388A JP11494388A JPH01286407A JP H01286407 A JPH01286407 A JP H01286407A JP 11494388 A JP11494388 A JP 11494388A JP 11494388 A JP11494388 A JP 11494388A JP H01286407 A JPH01286407 A JP H01286407A
Authority
JP
Japan
Prior art keywords
rare earth
corrosion resistance
plating
sintered magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11494388A
Other languages
Japanese (ja)
Other versions
JP2617113B2 (en
Inventor
Takafumi Sato
隆文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11494388A priority Critical patent/JP2617113B2/en
Publication of JPH01286407A publication Critical patent/JPH01286407A/en
Application granted granted Critical
Publication of JP2617113B2 publication Critical patent/JP2617113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To prevent the oxidation of a Nd-Fe solid solution phase in electrolytic plating while forming a plating film of good adhesion on the surface of a magnet and plan the improvement of corrosion resistance by using aqueous solution in which dissolved oxygen is eliminated to the utmost. CONSTITUTION:When an electrolytic plating layer is electrodeposited on the surface of an R-Fe-B (R shows rare earth element containing yttrium) based sintered magnet alloy in an alkaline bath containing metallic salt, the dissolved oxygen of 5.0ppm or less is contained in the alkaline bath. At the time the sintered magnet alloy is made a cathode, and it is desirable that it is soaked in the alkaline bath while an electric current in allowed to flow. Thereby the electrolytic plate layer of good adhesion of the thickness of 0.1mum or more is formed on the surface of the sintered magnet alloy from the interface with the sintered magnet alloy, an R-Fe solid solution phase is gradually decreased in formation toward the surface of the electrolytic plating layer, and the improvement of corrosion resistance can be made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はR,Fe、Bを主成分とする永久磁石合金に関
し、特に耐食性に優れた希土類永久磁石合金及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a permanent magnet alloy containing R, Fe, and B as main components, and particularly to a rare earth permanent magnet alloy with excellent corrosion resistance and a method for producing the same.

[従来の技術] R−Fe−B系焼結磁石合金は、所定の組成から成るイ
ンゴットを粉砕し、粉末冶金法による焼結して得られる
。そして、この合金は従来の希土類磁石であるSm−C
o系磁石に比較して高い磁気特性を有する。
[Prior Art] An R-Fe-B sintered magnet alloy is obtained by crushing an ingot having a predetermined composition and sintering it using a powder metallurgy method. This alloy is a conventional rare earth magnet, Sm-C.
It has higher magnetic properties than o-based magnets.

しかしながら、R−Fe−B系磁石合金は、この金属組
織中に、極めて酸化し易いNd−Fe固溶体相を含有し
ている為、磁気回路等の装置に組み込んだ場合、通常の
環境条件下でもSm−C。
However, since the R-Fe-B magnet alloy contains a Nd-Fe solid solution phase that is extremely easily oxidized in its metal structure, it cannot be used even under normal environmental conditions when incorporated into devices such as magnetic circuits. Sm-C.

系磁石に比べ磁石の酸化による特性の劣化、及びそのば
らつきも大きい、さらに、磁石から発生した酸化物の飛
散による周辺部への影響も引き起こす。
Compared to other magnets, the characteristics of the magnet deteriorate due to oxidation and the variation thereof is large.Furthermore, the scattering of oxides generated from the magnet also causes an impact on the surrounding area.

このため得られたこの磁石にめっきを施し耐食性を向上
させる試みが、特開昭49−86896号公報、あるい
は特開昭60−63901号公報などに見られるが、こ
の場合磁石製造中に発生する酸化を防ぐことは困難であ
る。
For this reason, attempts to improve the corrosion resistance by plating the obtained magnets can be seen in Japanese Patent Application Laid-Open No. 49-86896 and Japanese Patent Application Laid-Open No. 60-63901, but in this case, problems that occur during magnet manufacturing It is difficult to prevent oxidation.

一方、従来からアルカリ性水溶液めっき浴にて電解めっ
きを行うと、金属Mi繊織中極めて酸化され易いNd−
Fe固溶体相が腐食し溶は出してしまい、きれいな密着
性の良いめっき膜は得られず、使用中にその部分より錆
が発生し、耐食性に優れためっき膜を得ることが出来な
い問題点を有している。
On the other hand, when electrolytic plating is conventionally performed in an alkaline aqueous plating bath, Nd-
The Fe solid solution phase corrodes and dissolves, making it impossible to obtain a clean plating film with good adhesion. Rust occurs from that area during use, making it impossible to obtain a plating film with excellent corrosion resistance. have.

本発明は、前項で述べた問題点を解決するためのもので
あり、その技術a題は電解めっき中でのNd−Fe固溶
体相の酸化を防ぐとともに、磁石表面に密着性の良いめ
っき膜を形成し、耐食性に優れた希土類永久磁石合金及
びその製造方法を提供することにある。
The present invention is intended to solve the problems mentioned in the previous section, and its technical objective is to prevent the oxidation of the Nd-Fe solid solution phase during electrolytic plating and to form a plating film with good adhesion on the magnet surface. An object of the present invention is to provide a rare earth permanent magnet alloy that can be formed and has excellent corrosion resistance, and a method for manufacturing the same.

[課題を解決するための手段] 本発明によれば、R−Fe−B(Rはイツトリウムを含
む希土類元素を表わす。)系焼結磁石台金め表面に0.
1μm以上の厚さの密着性の良い電解めっき層を有し、
この電解めっき層は、この焼結磁石合金との界面から、
この電解めっき層表面に向ってR−Fe固溶体相が漸減
していることを特徴とする耐食性に優れた希土類永久磁
石が得られる。
[Means for Solving the Problems] According to the present invention, the surface of the base plate of an R-Fe-B (R represents a rare earth element including yttrium) sintered magnet is coated with 0.
It has an electroplated layer with good adhesion with a thickness of 1 μm or more,
This electrolytic plated layer, from the interface with this sintered magnet alloy,
A rare earth permanent magnet with excellent corrosion resistance is obtained, which is characterized in that the R-Fe solid solution phase gradually decreases toward the surface of the electroplated layer.

本発明によれば、R−Fe−B(Rはイツトリウムを含
む希土類元素を表わす。)系焼結磁石合金の表面に、電
解めっき層を金属塩を含むアルカリ性浴で電着する希土
類永久磁石の製造方法において、上記アルカリ性浴は、
5.0ppm以下の溶存酸素を含むことを特徴とする耐
食性に優れた希土類永久磁石の製造方法が得られる。
According to the present invention, a rare earth permanent magnet is produced in which an electrolytic plating layer is electrodeposited on the surface of an R-Fe-B (R represents a rare earth element containing yttrium) based sintered magnet alloy in an alkaline bath containing a metal salt. In the manufacturing method, the alkaline bath includes:
A method for producing a rare earth permanent magnet having excellent corrosion resistance and containing 5.0 ppm or less of dissolved oxygen is obtained.

ここで、本発明の耐食性に優れた希土類永久磁石の製造
方法において、上記焼結磁石合金を陰極とし、通電しな
がら上記アルカリ性浴に浸漬することが望ましい。
In the method of manufacturing a rare earth permanent magnet with excellent corrosion resistance according to the present invention, it is desirable to use the sintered magnet alloy as a cathode and immerse it in the alkaline bath while applying electricity.

即ち、金属塩を溶解した水溶液めっき浴、特にアルカリ
性のめっき浴にて電解めっきを行うと、Nd−Fe−R
磁石合金の場合、金属組織中で極めて酸化され易いNd
−Fe固溶体相が選択的に腐食してしまう0表面はNd
−Fe固溶体相が腐食し溶は出した部分に穴があき、き
れいな密着性の良いめっき膜は得られず、通常の環境条
件下でもその部分より酸化が進行する。電解めっき中電
流密度が高い程、その傾向は顕著である。
That is, when electrolytic plating is performed in an aqueous plating bath in which a metal salt is dissolved, especially an alkaline plating bath, Nd-Fe-R
In the case of magnetic alloys, Nd is extremely easily oxidized in the metal structure.
-The surface where the Fe solid solution phase is selectively corroded is Nd.
A hole is formed in the part where the -Fe solid solution phase corrodes and the solution is released, making it impossible to obtain a clean plating film with good adhesion, and oxidation progresses from that part even under normal environmental conditions. The higher the current density during electrolytic plating, the more remarkable this tendency is.

この事を様々調べてみると、水溶液中の溶存酸素の量が
大きく影響していることが判明した。通常水溶液中に含
まれる溶存酸素は多く(飽和値20ppl/j ) 、
水溶液中に酸素が溶存していると電解めっき中に、Nd
−Fe固溶体相は酸素の還元により腐食してしまう。
After various investigations into this matter, it was found that the amount of dissolved oxygen in the aqueous solution has a large effect. There is usually a lot of dissolved oxygen contained in an aqueous solution (saturation value 20 ppl/j),
When oxygen is dissolved in the aqueous solution, Nd
-Fe solid solution phase corrodes due to oxygen reduction.

この様に、溶存酸素を多く含む水溶液中で電解めっきを
行うと、耐食性に優れためっき膜を得ることが困難であ
る。
As described above, when electrolytic plating is performed in an aqueous solution containing a large amount of dissolved oxygen, it is difficult to obtain a plated film with excellent corrosion resistance.

そこで、本発明では使用する水溶液をあらかじめN2ガ
スあるいはArガス等の不活性ガスによりバブリングを
行い、溶存酸素を極力除去し、その量が5.0111)
II/ J以下、望ましくは1.0ppIl/J以下に
なる様にすることが必要であることを見い出し外。
Therefore, in the present invention, the aqueous solution used is bubbled in advance with an inert gas such as N2 gas or Ar gas to remove as much dissolved oxygen as possible, and the amount of dissolved oxygen is 5.0111).
It is outside the scope of this article that it is necessary to keep the concentration below II/J, preferably below 1.0 ppIl/J.

溶存酸素を抜いた水溶液を用いて電解めっきを行った場
合、Nd−Fe固溶体相が選択的に腐食することなく、
きれいな密着性の良いめっき膜が得られ、溶存酸素を抜
いた効果が顕著に見られた。
When electrolytic plating is performed using an aqueous solution free of dissolved oxygen, the Nd-Fe solid solution phase does not selectively corrode.
A clean plating film with good adhesion was obtained, and the effect of removing dissolved oxygen was noticeable.

アルカリ性浴電解めっきの金属は、磁石中に含まれる希
土類金属より酸化されにくい金属であれば何でもよく、
−数的にアルカリ性電解めっき浴として、Cuめっきで
はピロリン該別めっき浴、スズめっきでは、ナトリウム
浴あるいはカリウム浴、スズ−ニッケル合金めっきでは
ピロリン酸化浴等あげられる。
The metal for alkaline bath electroplating may be any metal as long as it is less oxidized than the rare earth metals contained in the magnet.
- Examples of numerically alkaline electrolytic plating baths include a pyrroline-separate plating bath for Cu plating, a sodium bath or potassium bath for tin plating, and a pyrrophosphate oxidation bath for tin-nickel alloy plating.

これらアルカリ性電解めっき浴のpHは8〜12、浴温
は20〜50℃、電流密度は0.5〜10 A/dn+
’の条件下でめっき膜の形成がなされる。
These alkaline electrolytic plating baths have a pH of 8 to 12, a bath temperature of 20 to 50°C, and a current density of 0.5 to 10 A/dn+.
A plating film is formed under the following conditions.

特にCuめっきは、めっき膜表面が大気中にても酸化し
てしまう為、Niめっきの下地として使われる。
In particular, Cu plating is used as a base for Ni plating because the surface of the plating film oxidizes even in the air.

めっき膜の厚さは0.1(μm)未満ではめっきが十分
に行なわれない為、磁石表面での酸化が進行し、また1
0(μm)以上では磁石の単位体積当りに含まれる非磁
性部分が多くなり、磁石の磁気性能が低下する為、めっ
き膜の厚さは0.1〜10(μm)の範囲が望ましい。
If the thickness of the plating film is less than 0.1 (μm), plating will not be performed sufficiently, and oxidation will progress on the magnet surface, and
If it is more than 0 (μm), the non-magnetic portion included per unit volume of the magnet will increase and the magnetic performance of the magnet will deteriorate, so the thickness of the plating film is preferably in the range of 0.1 to 10 (μm).

電解めっきを行う時、通常、試料をめっき液に浸漬して
から後、電圧をかけ、電解めっきを行うのが常である。
When performing electrolytic plating, the sample is usually immersed in a plating solution and then a voltage is applied to perform electrolytic plating.

しかしながら、Nd−Fe−B磁石試片をアルカリ性め
っき浴に浸漬し、そのままにして置くとNd−Fe固溶
体相が溶は出し腐食してしまう。液に浸漬し電解めっき
を行うと、密着性の良いきれいなめっき膜が形成される
However, if a Nd-Fe-B magnet sample is immersed in an alkaline plating bath and left as is, the Nd-Fe solid solution phase will dissolve and corrode. When immersed in a solution and electrolytically plated, a clean plating film with good adhesion is formed.

本発明によれば、溶存酸素を抜いた水溶液を用いたアル
カリ性洛中にて電解めっきを行なった場合、磁石表面に
密着性の良いめっき膜が形成され、耐食性に優れ、かつ
磁石特性においても劣らない実用上非常に有益な磁石を
得ることが可能となった。
According to the present invention, when electrolytic plating is performed in an alkaline solution using an aqueous solution from which dissolved oxygen has been removed, a plating film with good adhesion is formed on the magnet surface, has excellent corrosion resistance, and has comparable magnetic properties. It has now become possible to obtain a magnet that is extremely useful in practice.

以下、その実施例示す。Examples are shown below.

[実施例] 実施例1 粉末冶金法によって得られた33wt%Nd−1,ow
t%B−Febalの組成を6つ焼結体を1x 7 x
 10 (ll)の大きさに加工し、試料とした。
[Example] Example 1 33 wt% Nd-1,ow obtained by powder metallurgy method
t%B-Febal composition 6 sintered body 1x 7x
It was processed into a size of 10 (ll) and used as a sample.

第1表に示すピロリン該別めっき浴(ストライク浴)に
て、アノード側にCu板、カソード側にNd−Fe−B
焼結体試片とし、25°Cの浴温中にて、電流密度0.
5〜2.OA/dl12の範囲で30分間Cuめっき行
った。この時金属塩を溶解するに用いた水溶液は予めN
2ガスにて3時間バブリングし、溶存酸素を極力除去し
たものであり1.0ppi/1の溶存酸素量であった。
In the pyrroline plating bath (strike bath) shown in Table 1, Cu plate is placed on the anode side and Nd-Fe-B is placed on the cathode side.
A sintered specimen was placed in a bath temperature of 25°C at a current density of 0.
5-2. Cu plating was performed for 30 minutes at an OA/dl of 12. At this time, the aqueous solution used to dissolve the metal salt was prepared with N
2 gases were bubbled for 3 hours to remove dissolved oxygen as much as possible, and the amount of dissolved oxygen was 1.0 ppi/1.

以下示日 電解密度を変化させた各試料について測定しなめっき層
の厚さとその外観を第2表に示す。
Table 2 below shows the thickness and appearance of the plating layer measured for each sample with different electrolyte densities.

第2表に示される様に電流密度が増加するにつれ、めっ
き層は厚くなり、特に0.75〜1.OA/d12の電
流密度で非常にきれいな金属光沢のあるCuめつきが得
られた。
As shown in Table 2, as the current density increases, the plating layer becomes thicker, especially from 0.75 to 1. Cu plating with very beautiful metallic luster was obtained at a current density of OA/d12.

以下宗日 この時、素地(Nd−Fe−B)とCuめっきとの界面
に組織写真を第1図のSEM写真1に示した。第1図は
素地との密着性が非常に良く、のりの良いCuめっきが
得られていることを示している。
Below, a photograph of the structure of the interface between the base material (Nd-Fe-B) and the Cu plating is shown in SEM photograph 1 in Figure 1 at this time. FIG. 1 shows that the Cu plating has very good adhesion to the substrate and has good adhesion.

次に、密着力試験として試片に外力(摩擦、折り曲げ、
衝撃等)を加えた時の影響を定性的に確かめた結果を第
3表に示した。
Next, as an adhesion test, external forces (friction, bending,
Table 3 shows the results of qualitatively confirming the effects of applying shock, etc.).

以下余日 さらにNd−Fe−B磁石表面にCu下地めっき後電解
Niめっき処理を施した。これら試験片を60℃×95
%の恒温恒湿の条件下で1000時間耐時間状験を行っ
た時の結果を第4表に示す。
In the following days, the surface of the Nd-Fe-B magnet was subjected to Cu underplating and then electrolytic Ni plating. These test pieces were heated at 60°C x 95°C.
Table 4 shows the results of a 1000 hour durability test under constant temperature and humidity conditions.

以下余日 (−7−、、。Remaining days below (-7-,,.

i : : 二      (J        Uまた、第5表に
溶存酸素量とめっき表面状態を示した。
i : : 2 (JU Table 5 also shows the amount of dissolved oxygen and the condition of the plating surface.

本発明による試験片は赤さび、剥離、ふくれ等の欠点を
生ずることなく、非常に耐食性に優れていることがわか
る。
It can be seen that the test piece according to the present invention has excellent corrosion resistance without causing defects such as red rust, peeling, and blistering.

以下*S 実施例2 第6表に示す様に、溶存酸素を抜いた水溶液を用いたス
ズめっき浴(ナトリウム浴)にて、アノード側にSn板
、カソード側にNd−Fe−B焼結体試片とし、60°
Cの浴温中にて、電流密度1、OA/dl’で10分間
電解めっきを行ったところ、5.0−μmスズめっき層
が得られた。
Below *S Example 2 As shown in Table 6, in a tin plating bath (sodium bath) using an aqueous solution from which dissolved oxygen was removed, a Sn plate was placed on the anode side and a Nd-Fe-B sintered body was placed on the cathode side. As a specimen, 60°
When electrolytic plating was performed for 10 minutes at a current density of 1 and OA/dl' in a bath temperature of C, a 5.0-μm tin plating layer was obtained.

素地とスズめっきとの密着性は非常に良く、密着力試験
でもふくれ、剥離等の欠陥は無かった。
The adhesion between the substrate and the tin plating was very good, and there were no defects such as blistering or peeling in the adhesion test.

又、60℃X95%の恒温、恒湿の粂件下で1000時
間耐食性試験を行ったところ、赤さび、ふくれ、剥離等
の変化は何ら観察されなかった。
Further, when a corrosion resistance test was conducted for 1000 hours under constant temperature and humidity conditions of 60° C. and 95%, no changes such as red rust, blistering, or peeling were observed.

以下余日 実施例3 第7表に示す様に、溶存酸素を抜いた水溶液を用いたス
ズ−ニッケル合金めっき浴(ピロリン酸浴、5n70−
Ni30浴)にて、アノード側に70wt%Sロー30
wt%Ni合金板、カソード側にNd−Fe−B焼結体
試片とし、50℃の浴温中にて、電流密度1.OA/d
n”で10分間電解めっきを行ったところ、4.0μm
スズ−ニッケルめっき層が得られた。
As shown in Table 7, Example 3 for the rest of the day is a tin-nickel alloy plating bath (pyrophosphoric acid bath, 5n70-
Ni30 bath), 70 wt% S low 30 on the anode side.
A wt% Ni alloy plate, a Nd-Fe-B sintered specimen on the cathode side, and a current density of 1. OA/d
When electrolytic plating was performed for 10 minutes at 4.0μm
A tin-nickel plating layer was obtained.

合金板の素地とスズめっき層との密着性は非常に良く、
密着力試験でもふくれ、剥離等の欠陥は無かった。
The adhesion between the alloy plate base and the tin plating layer is very good.
There were no defects such as blistering or peeling in the adhesion test.

又、60℃×95%の恒温恒湿の条件下で1000時間
耐食性試験を行ったところ、赤さび、ふくれ、剥離等の
変化は何ら見られず、耐食性に非常に優れていることが
わかった。
In addition, when a corrosion resistance test was conducted for 1000 hours under constant temperature and humidity conditions of 60° C. and 95%, no changes such as red rust, blistering, or peeling were observed, indicating that the material had excellent corrosion resistance.

獣下舎日 [発明の効果] 以上の詳述したように、本発明によれば、溶存酸素量を
極力とり除いた水溶液を用いることにより、アルカリ性
洛中にて電解めっきした場合、R−Fe−B磁石合金表
面に密着性の良いめっき膜が形成され、耐食性に非常に
優れた希土類永久磁石番得ることが出来る。
[Effects of the Invention] As detailed above, according to the present invention, when electrolytic plating is carried out in an alkaline environment by using an aqueous solution with as little dissolved oxygen as possible, R-Fe- A plating film with good adhesion is formed on the surface of the B magnet alloy, and a rare earth permanent magnet number with excellent corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNd−Fe−B磁石表面にCuめっきした時の
境界付近の破断面の金属組織を示すSEM写真である。 第2図は従来法によるめっき表面の金属組織を示すSE
M写真である。 ゛・こ゛−,′L
FIG. 1 is an SEM photograph showing the metal structure of a fractured surface near the boundary when the surface of a Nd-Fe-B magnet is plated with Cu. Figure 2 is an SE showing the metal structure of the plating surface by the conventional method.
This is an M photo.゛・ko゛−、′L

Claims (3)

【特許請求の範囲】[Claims] 1.R−Fe−B(Rはイットリウムを含む希土類元素
を表わす。)系焼結磁石合金の表面に0.1μm以上の
厚さの密着性の良い電解めっき層を有し、上記電解めっ
き層は、上記焼結磁石合金との界面から該電解めつき層
表面に向つてR−Fe固溶体相が漸減していることを特
徴とする耐食性に優れた希土類永久磁石。
1. The surface of the R-Fe-B (R represents a rare earth element containing yttrium) based sintered magnet alloy has an electrolytic plating layer with a thickness of 0.1 μm or more and good adhesion, and the electrolytic plating layer is A rare earth permanent magnet having excellent corrosion resistance, characterized in that the R-Fe solid solution phase gradually decreases from the interface with the sintered magnet alloy toward the surface of the electrolytically plated layer.
2.R−Fe−B(Rはイットリウムを含む希土類元素
を表わす。)系焼結磁石合金の表面に電解めつき層をア
ルカリ性浴から電着させる希土類永久磁石の製造方法に
おいて、 上記アルカリ性浴は、5.0ppm以下の溶存酸素を含
むことを特徴とする耐食性に優れた希土類永久磁石の製
造方法。
2. In a method for producing a rare earth permanent magnet in which an electrolytically plated layer is electrodeposited on the surface of an R-Fe-B (R represents a rare earth element containing yttrium) based sintered magnet alloy from an alkaline bath, the alkaline bath comprises: A method for producing a rare earth permanent magnet with excellent corrosion resistance, characterized by containing .0 ppm or less of dissolved oxygen.
3.上記焼結磁石合金を陰極とし、通電しながら上記ア
ルカリ性浴に浸漬することを特徴とする第2の請求項記
載の耐食性に優れた希土類永久磁石の製造方法。
3. 2. The method of manufacturing a rare earth permanent magnet having excellent corrosion resistance according to claim 2, wherein the sintered magnet alloy is used as a cathode and the magnet is immersed in the alkaline bath while being energized.
JP11494388A 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same Expired - Fee Related JP2617113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11494388A JP2617113B2 (en) 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11494388A JP2617113B2 (en) 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01286407A true JPH01286407A (en) 1989-11-17
JP2617113B2 JP2617113B2 (en) 1997-06-04

Family

ID=14650493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11494388A Expired - Fee Related JP2617113B2 (en) 1988-05-13 1988-05-13 Rare earth permanent magnet excellent in corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2617113B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314756A (en) * 1991-11-27 1994-05-24 Hitachi Metals, Ltd. Permanent magnet of rare-earth-element/transition-metal system having improved corrosion resistance and manufacturing method thereof
US7473343B2 (en) 2003-03-05 2009-01-06 Tdk Corporation Method of manufacturing rare-earth magnet, and plating bath
WO2012111353A1 (en) * 2011-02-15 2012-08-23 日立金属株式会社 Production method for r-fe-b sintered magnet having plating film on surface thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314756A (en) * 1991-11-27 1994-05-24 Hitachi Metals, Ltd. Permanent magnet of rare-earth-element/transition-metal system having improved corrosion resistance and manufacturing method thereof
US7473343B2 (en) 2003-03-05 2009-01-06 Tdk Corporation Method of manufacturing rare-earth magnet, and plating bath
WO2012111353A1 (en) * 2011-02-15 2012-08-23 日立金属株式会社 Production method for r-fe-b sintered magnet having plating film on surface thereof
US9267217B2 (en) 2011-02-15 2016-02-23 Hitachi Metals, Ltd. Production method for R—Fe—B based sintered magnet having plating film on surface thereof

Also Published As

Publication number Publication date
JP2617113B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPS59136491A (en) Cyanide-free copper plating process and alloy anode plating solution
US4910096A (en) Cold-rolled steel strip with electrodeposited nickel coating exhibiting a great diffusion depth
JP2007291457A (en) HEAT-RESISTANT Sn SOLDERED STRIP OF Cu-Zn ALLOY WITH SUPPRESSED GENERATION OF WHISKER
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JPH01286407A (en) Rare earth permanent magnet superior in corrosion resistance and its manufacture
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JP3672374B2 (en) Lead frame manufacturing method
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
Saubestre Electroplating on Certain Transition Metals:(Groups IV, V, VI)
JP3377605B2 (en) Corrosion resistant magnetic alloy
JP3650141B2 (en) permanent magnet
JP4539179B2 (en) Method for improving the wettability of a nickel plating film formed on the surface of an article
JPH0533074A (en) Method for reuse of ni-coated rare earth alloy
JPH07135121A (en) Method for surface treatment of permanent magnet
GB2152533A (en) Producing acicular or equiaxed or iron alloy particles
JP3868380B2 (en) Plating bath, plating film manufacturing method, and rare earth magnet manufacturing method
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JPS582595B2 (en) Plating method for electronic components that prevents zinc whiskers from occurring
JPH06251978A (en) Soft magnetic thin film and manufacture thereof
JPH0582320A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees