JP4538959B2 - Electric Ni plating method for rare earth permanent magnet - Google Patents

Electric Ni plating method for rare earth permanent magnet Download PDF

Info

Publication number
JP4538959B2
JP4538959B2 JP2001013288A JP2001013288A JP4538959B2 JP 4538959 B2 JP4538959 B2 JP 4538959B2 JP 2001013288 A JP2001013288 A JP 2001013288A JP 2001013288 A JP2001013288 A JP 2001013288A JP 4538959 B2 JP4538959 B2 JP 4538959B2
Authority
JP
Japan
Prior art keywords
plating
electric
film
plating film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001013288A
Other languages
Japanese (ja)
Other versions
JP2002212775A (en
Inventor
一英 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001013288A priority Critical patent/JP4538959B2/en
Publication of JP2002212775A publication Critical patent/JP2002212775A/en
Application granted granted Critical
Publication of JP4538959B2 publication Critical patent/JP4538959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Description

【0001】
【発明の属する技術分野】
本発明は、新規な組成のNiめっき液を使用して希土類系磁石の表面に均一電着性や緻密性や外観などに優れたNiめっき被膜を形成するための電気Niめっき方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石などの希土類系永久磁石は、高い磁気特性を有しているが、大気中で酸化腐食されやすい金属種(特にR)を含むので、表面処理を行わずに使用した場合には、わずかな酸やアルカリや水分などの影響によって表面から腐食が進行して錆が発生し、それに伴って、磁気特性の劣化やばらつきを招くことになる。さらに、磁気回路などの装置に組み込んだ磁石に錆が発生した場合、錆が飛散して周辺部品を汚染する恐れがある。従って、これらの問題点を回避するために、従来から、該磁石に要求される耐食性を付与すべく電気Niめっきにより、耐食性被膜としてのNiめっき被膜をその表面に形成することが行われている。
希土類系永久磁石の電気Niめっきにおいては、例えば、特開平6−13218号公報に記載されているめっき液のように、ホウ酸を含んだめっき液が広く採用されている。ホウ酸含有Niめっき液は、ホウ酸が優れた緩衝作用を有しており、希土類系永久磁石のめっき処理に適したpH(概ね4〜8)環境を容易に作り出すことができることや、該めっき液を使用して形成されるNiめっき被膜が均一電着性や緻密性や外観などに優れることから、希土類系永久磁石の表面にNiめっき被膜を形成するためのめっき液として最良とされており、また、電流効率や操業性に優れること、薬液コストが低いことといったような利点も有している。
【0003】
【発明が解決しようとする課題】
ところで、ホウ酸含有Niめっき液において、ホウ酸の作用を如何なく発揮させるためには、一般的にはホウ酸をめっき液中に30g/l程度含ませることが必要とされている。前記公報に記載されたNiめっき液はホウ酸の含有量が比較的少ないが、それでも実施例に記載されためっき液でホウ酸の含有量が最も少ないものでもその含有量は15g/lである。環境問題への対応が不可欠な近年においては、水質汚濁を防止するためにもめっき液の排水問題への対応が重要課題となっており、ホウ酸含有Niめっき液についても、環境に好ましいとはいえないホウ酸の含有量を低減化させる必要がある。
一方、希土類系永久磁石表面に直接Niめっき被膜を形成する場合、特に、バレル式電気めっきを行う場合、全ての磁石に均一に通電されるまでにNiが置換析出することがある。表面にNiが置換析出した磁石に電気Niめっきを行っても、形成されるNiめっき被膜は均一電着性に劣り、結果として磁石の耐食性に影響を及ぼすことになる。従って、Niめっき被膜形成の効率は維持しつつもめっき液に含まれるNiイオン濃度はできるだけ低減化させる必要がある。
そこで本発明は、新規な組成のNiめっき液を使用して希土類系磁石の表面に均一電着性や緻密性や外観などに優れたNiめっき被膜を形成するための電気Niめっき方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、上記の点に鑑み種々の検討を行った結果、Niめっき液に含まれるNiイオン濃度と塩素イオン濃度の重量比、ホウ酸に代わる緩衝剤の使用とその含有量を調整することにより、Niめっき液中のホウ酸の含有量を低減させても、従来量のホウ酸を含有するNiめっき液を使用して形成されるNiめっき被膜が有する均一電着性や緻密性や外観などの優れた特性を維持したNiめっき被膜を形成することができることやNiの置換析出を抑制して均一電着性に優れたNiめっき被膜を形成することができることを知見した。
【0005】
本発明は、上記の知見に基づいてなされたものであり、本発明の電気Niめっき方法は、請求項1記載の通り、希土類系永久磁石の電気Niめっき方法において、Niイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)が0.19〜11.4になるような含量でのNiイオンと塩素イオン(但しNiイオンは15g/l〜80g/l、塩素イオンは7g/l〜80g/l)、緩衝剤としてコハク酸、マロン酸、クエン酸、リンゴ酸、酢酸およびこれらの塩から選ばれる少なくとも1種を0.03mol/l〜1.0mol/l、ホウ酸を0〜15g/l、含むめっき液を使用して磁石表面にNiめっき被膜を形成することを特徴とする
た、請求項記載の電気Niめっき方法は、請求項記載の電気Niめっき方法において、前記めっき液がホウ酸を0〜10g/l含むことを特徴とする。
また、請求項記載の電気Niめっき方法は、請求項記載の電気Niめっき方法において、磁石表面に多層めっき被膜層を形成するに際しての第2層目以降にNiめっき被膜を形成するための電気Niめっきであることを特徴とする。
また、請求項記載の電気Niめっき方法は、請求項1記載の電気Niめっき方法において、磁石表面に直接Niめっき被膜を形成するに際しての前記めっき液のNiイオン濃度の塩素イオン濃度に対する重量比が0.19〜4.0であることを特徴とする。
また、請求項記載の電気Niめっき方法は、請求項1乃至のいずれかに記載の電気Niめっき方法において、パルス電解を行いながら電気Niめっきを行うことを特徴とする。
また、請求項記載の電気Niめっき方法は、請求項1乃至のいずれかに記載の電気Niめっき方法において、希土類系永久磁石がR−Fe−B系永久磁石であることを特徴とする。
【0006】
【発明の実施の形態】
本発明の電気Niめっき方法は、希土類系永久磁石の電気Niめっき方法において、Niイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)が0.19〜11.4になるような含量でのNiイオンと塩素イオン、緩衝剤としてコハク酸、マロン酸、クエン酸、リンゴ酸、酢酸およびこれらの塩から選ばれる少なくとも1種を0.03mol/l〜1.0mol/l、ホウ酸を0〜15g/l、含むめっき液を使用して磁石表面にNiめっき被膜を形成することを特徴とするものである。
【0007】
本発明の電気Niめっき方法において使用されるNiめっき液には、Niイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)が0.19〜11.4になるようにNiイオンと塩素イオンを含ませる。Niイオン濃度の塩素イオン濃度に対する重量比が0.19よりも小さい場合、磁石表面に塩素イオンが残留したり、形成されるNiめっき被膜の内部応力が高くなりすぎるなどの問題が生じる恐れがあり、11.4よりも大きい場合、Niめっき液の電気伝導度に影響を及ぼす恐れがある。このような重量比に調整するためには、例えば、めっき液中にNiイオンを15g/l〜80g/l、塩素イオンを7g/l〜80g/l含ませればよい。なお、Niイオンの供給源としては、硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル、臭化ニッケル、酢酸ニッケルなどがある。また、塩素イオンの供給源としては、前記の塩化ニッケルの他、塩化アンモニウムや塩化ナトリウムなどがある。
【0008】
緩衝剤としてはコハク酸、マロン酸、クエン酸、リンゴ酸、酢酸およびこれらの塩から選ばれる少なくとも1種を0.03mol/l〜1.0mol/l含ませる。これらの緩衝剤の含有量が0.03mol/lよりも少ない場合、緩衝作用が十分に発揮されない恐れがあり、1.0mol/lよりも多い場合、Niめっき液の長期安定性に影響を及ぼす恐れがある。磁石表面に直接Niめっき被膜を形成する場合には緩衝剤は0.2mol/l〜1.0mol/l含ませることがNiの置換析出を極力抑制する観点から望ましい。緩衝剤の中ではクエン酸およびその塩が形成されるNiめっき被膜の緻密性の点において望ましい。なお、コハク酸、マロン酸、クエン酸、リンゴ酸、酢酸の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩、ニッケル塩などがある。
【0009】
Niめっき液に含まれるNiイオン濃度と塩素イオン濃度の重量比、ホウ酸に代わる緩衝剤の使用とその含有量を上記のように調整することにより、Niめっき液中のホウ酸の含有量を15g/l以下としても、従来量のホウ酸を含有するめっき液を使用して形成されるNiめっき被膜が有する均一電着性や緻密性や外観などの優れた特性を維持したNiめっき被膜を形成することができる。
【0010】
希土類系永久磁石表面に直接Niめっき被膜を形成する場合、高い電流効率を確保して迅速にNiめっき被膜を形成することが肝要であることから、Niめっき液中にはホウ酸を最大15g/lの範囲内で含ませることが望ましいが、本発明の電気Niめっき方法において、特に、Niめっき液中のホウ酸の含有量が10g/l以下の場合、即ち、究極的にはめっき液中にホウ酸を含ませない場合でも優れた特性を有するNiめっき被膜を形成することができることは、めっき液の排水問題への対応において非常に望ましいことであり、磁石表面に多層めっき被膜層を形成するに際しての第2層目以降にNiめっき被膜を形成する場合に効果を発揮する。
【0011】
また、希土類系永久磁石表面に直接Niめっき被膜を形成するに際してのNiめっき液のNiイオン濃度の塩素イオン濃度に対する重量比を0.19〜4.0に調整することにより、Niの置換析出を抑制して均一電着性に優れたNiめっき被膜を形成することができる。
【0012】
Niめっき液のpHは4〜8に調整することが望ましい。pH調整剤は、例えば、炭酸ニッケルや硫酸など、めっき液の成分に応じた公知のものを使用すればよい。また、Niめっき液には優れた外観を有するNiめっき被膜を形成するためや、電子部品への適用時に要求される清浄性や接着性などを満たすために、ラウリル硫酸ナトリウム、2−ブチン1,4−ジオール、ベンゼンスルホン酸、プロパギルアルコール、クマリンなどの光沢剤のような各種自体公知の有機添加剤や無機添加剤を添加してもよい。また、導電補助剤として、硫酸ナトリウムや塩化アンモニウムなどを添加してもよい。
【0013】
本発明においては、電気Niめっきを行うに際してのめっき浴の液温は30℃〜70℃に調整することが望ましい。
【0014】
本発明においては、パルス電解を行いながら電気Niめっきを行うことが望ましい。本発明におけるNiめっき液を使用してパルス電解を行いながら電気Niめっきを行うことにより、金属結晶の微細緻密化や形成されるNiめっき被膜の密着性向上などの効果が得られる。パルス電解条件としては、パルス周期が2msec〜100msec、TONが1msec〜95msec、TOFFが1msec〜95msec、ピーク電流密度Iが0.2A/dm〜100A/dmなる条件が挙げられる。
【0015】
本発明の電気Niめっき方法で形成されるNiめっき被膜の膜厚は、希土類系永久磁石表面にこのNiめっき被膜のみを形成する場合は5μm〜30μmが望ましく、磁石表面に多層めっき被膜層を形成するに際しての第1層目にこのNiめっき被膜を形成する場合は0.2μm〜10μmが望ましく、第2層目以降にこのNiめっき被膜を形成する場合は1μm〜30μmが望ましい。磁石表面に多層めっき被膜層を形成するに際しての第2層目以降にこのNiめっき被膜を形成する場合、第1層目にはNiめっき被膜の他、Cuめっき被膜やSnめっき被膜やZnめっき被膜などの異なる金属めっき被膜を公知の成膜法にて形成してもよい。また、本発明の電気Niめっき方法で形成されるNiめっき被膜の上に、異なる金属めっき被膜を形成してもよいし、化成処理被膜などの別種の被膜を形成してもよい。
【0016】
本発明に適用される希土類系永久磁石の内、R−Fe−B系永久磁石における希土類元素(R)は、Nd、Pr、Dy、Ho、Tb、Smのうち少なくとも1種、あるいはさらに、La、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含むものが望ましい。
また、通常はRのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタルやジジムなど)を入手上の便宜などの理由によって使用することもできる。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、Gaのうち少なくとも1種を添加することで、保磁力や減磁曲線の角型性の改善、製造性の改善、低価格化を図ることが可能となる。また、Feの一部をCoで置換することによって、得られる磁石の磁気特性を損なうことなしに温度特性を改善することができる。
【0017】
【実施例】
本発明を以下の実施例によってさらに詳細に説明するが、本発明は以下の記載に何ら限定されるものではない。
【0018】
実施例1:
粉末冶金法により作製した15Nd−1Dy−7B−77Fe(原子%)の組成をもつ焼結体をアルゴン雰囲気中600℃で2時間時効処理を施し、厚さ3mm、幅12mm、長さ30mmの平板状に加工し、さらにバレル面取り加工を行って得られた焼結磁石を希釈硝酸で酸洗清浄化した。
この磁石に対し、硫酸ニッケル・6水和物と塩化ニッケル・6水和物と塩化アンモニウム(めっき液7についてはさらに塩化ナトリウムを使用)で表1に示した各種の濃度に調整したNiイオンと塩素イオン、緩衝剤としてクエン酸ナトリウム・2水和物147g/l(0.5mol/l)、ホウ酸8g/l、添加剤としてラウリル硫酸ナトリウム0.02g/lと2−ブチン1,4−ジオール0.5g/lを含み、pHを塩基性炭酸ニッケルを添加することにより5に調整した7種類のNiめっき液を使用し、めっき浴の液温50℃、電流密度2A/dm、陽極としてNi板という電気Niめっき条件にて、膜厚が10μmのNiめっき被膜を磁石表面に形成した。形成されたNiめっき被膜の性能を表1に示す。
【0019】
表1における被膜健全性の評価はめっき被膜の緻密性及び耐食性促進評価(発色反応試験)により行った。評価方法を簡単に説明すると以下の通りである。フェリシアン化カリウム3g/l、エタノール100ml/lおよび塩酸にてpH2に調整した試験液にめっき磁石サンプルを常温で浸漬して60分間観察した。磁石素材に腐食が至ったり被膜欠陥(ピンホールなど)が存在する場合には青色斑点が発生するので、30分浸漬後も青色斑点の発生がない場合は◎、浸漬後20〜30分で青色斑点が発生した場合は○、浸漬後10分〜20分で青色斑点が発生した場合は△、浸漬後10分未満で青色斑点が発生した場合は×と評価した。
【0020】
表1におけるめっき付廻り性の評価は同一めっき磁石サンプルの平面部の10箇所観察によるめっき付着量(膜厚)のバラツキについて、バラツキが±10%以内の場合は○、バラツキが±10%〜20%の場合は△、バラツキが±20%を超える場合は×と評価することで行った。
【0021】
【表1】

Figure 0004538959
【0022】
表1から明らかなように、Niめっき液におけるNiイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)を所定の重量比に調整することで、ホウ酸の含有量を従来のホウ酸含Niめっき液の含有量より大幅に低減させても優れた特性のNiめっき被膜を形成することができることがわかった(めっき液2〜めっき液6)。
【0023】
実施例2:
実施例1と同様の方法で得られた焼結磁石を希釈硝酸で酸洗清浄化した。この磁石に対し、硫酸ニッケル・6水和物と塩化ニッケル・6水和物と塩化アンモニウムで表2に示した各種の濃度に調整したNiイオンと塩素イオン、表2に示した各種の濃度に調整した緩衝剤、ホウ酸8g/l、添加剤としてラウリル硫酸ナトリウム0.02g/lと2−ブチン1,4−ジオール0.5g/lと1,3,6ナフタレントリスルホン酸ナトリウム2.0g/lを含み、pHを塩基性炭酸ニッケルを添加することにより6に調整した11種類のNiめっき液を使用し、めっき浴の液温50℃、電流密度3A/dm、陽極としてNi板という電気Niめっき条件にて、膜厚が10μmのNiめっき被膜を磁石表面に形成した。形成されたNiめっき被膜の性能を表2に示す。
【0024】
表2における被膜健全性の評価は実施例1と同様にして行った。耐食性の評価はプレッシャークッカー試験により行った。評価方法を簡単に説明すると以下の通りである。めっき磁石サンプルを125℃、85%RH、2気圧の環境下に200時間放置し、赤錆やフクレが発生しない場合は○、わずかな赤錆やフクレが発生した場合は△、赤錆やフクレが多数発生した場合は×と評価した。
【0025】
【表2】
Figure 0004538959
【0026】
表2から明らかなように、ホウ酸に代わるクエン酸などの緩衝剤の含有量を0.03mol/l以上に調整することで、ホウ酸の含有量を従来のホウ酸含Niめっき液の含有量より大幅に低減させても優れた特性のNiめっき被膜を形成することができることがわかった(めっき液2〜めっき液11)。
【0027】
実施例3:
実施例1と同様の方法で得られた焼結磁石を希釈硝酸で酸洗清浄化した。この磁石に対し、実施例1のNiめっき液4を使用し、実施例1と同様の電気Niめっき条件にて、膜厚が3μmのNiめっき被膜を磁石表面に形成した。
次に、硫酸ニッケル・6水和物と塩化ニッケル・6水和物と塩化アンモニウムで表3に示した各種の濃度に調整したNiイオンと塩素イオン、表3に示した各種の濃度に調整した緩衝剤、添加剤としてラウリル硫酸ナトリウム0.02g/lと2−ブチン1,4−ジオール0.5g/lを含み、pHを塩基性炭酸ニッケルを添加することにより5に調整した5種類のNiめっき液を使用し、実施例1と同様の電気Niめっき条件にて、第2層Niめっき被膜として膜厚が15μmの被膜を第1層Niめっき被膜表面に形成した。形成されたNiめっき被膜の性能を表3に示す。
【0028】
表3における被膜健全性の評価は実施例1と同様にして行った。耐食性の評価は実施例2と同様にして行った。めっき密着性の評価はめっき磁石サンプルにエポキシ系樹脂(SW2214:住友3M製の熱硬化型エポキシ系接着剤で塗布接着後120℃、60分で加熱硬化)を塗布して鋼製治具と接着した後、180度剪断圧縮試験にて破壊強度(めっき剥離強度)を測定し、接着強度が400kg/cm以上の場合は○、接着強度が300kg/cm〜400kg/cmの場合は△、接着強度が300kg/cm未満の場合は×と評価することで行った。
【0029】
【表3】
Figure 0004538959
【0030】
表3から明らかなように、Niめっき液にホウ酸を含ませなくても、Niめっき液におけるNiイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)を所定の重量比に調整し、ホウ酸に代わるクエン酸などの緩衝剤の含有量を調整することで、優れた特性のNiめっき被膜を形成することができることがわかった(めっき液1〜めっき液4)。
【0031】
実施例4:
実施例1と同様の方法で得られた焼結磁石を希釈硝酸で酸洗清浄化した。この磁石に対し、自体公知のアルカリ浴Cuめっきを行って膜厚が3μmのCuめっき被膜を磁石表面に形成した。
次に、硫酸ニッケル・6水和物と塩化ニッケル・6水和物と塩化アンモニウムで表4に示した各種の濃度に調整したNiイオンと塩素イオン、表4に示した各種の濃度に調整した緩衝剤、ホウ酸8g/l、添加剤としてラウリル硫酸ナトリウム0.02g/lと2−ブチン1,4−ジオール0.5g/lを含み、pHを塩基性炭酸ニッケルを添加することにより4に調整した5種類のNiめっき液を使用し、実施例1と同様の電気Niめっき条件にて、第2層Niめっき被膜として膜厚が10μmの被膜を第1層Cuめっき被膜表面に形成した。
最後に、硫酸ニッケル・6水和物200g/l、塩化ニッケル・6水和物40g/l、塩化アンモニウム10g/l(Niイオン濃度の塩素イオン濃度に対する重量比は4.5)、クエン酸2アンモニウム45g/l(0.2mol/l)、添加剤としてベンゼンスルホン酸1g/lとプロパギルアルコール0.5g/lを含み、pHを塩基性炭酸ニッケルを添加することにより4に調整したNiめっき液を使用し、めっき浴の液温50℃、電流密度3A/dm、陽極としてNi板という電気Niめっき条件にて、第3層Niめっき被膜として膜厚が2μmのNiめっき被膜を第2層Niめっき被膜表面に形成した。形成されたNiめっき被膜の性能を表4に示す。なお、表4における被膜健全性の評価は実施例1と同様にして行った。耐食性の評価は実施例2と同様にして行った。
【0032】
【表4】
Figure 0004538959
【0033】
表4から明らかなように、Niめっき液におけるNiイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)を所定の重量比に調整し、ホウ酸に代わるクエン酸などの緩衝剤の含有量を調整することで、優れた特性のNiめっき被膜を形成することができることがわかった(めっき液2〜めっき液5)。
【0034】
実施例5:
実施例1と同様の方法で得られた焼結磁石を希釈硝酸で酸洗清浄化した。この磁石に対し、硫酸ニッケル・6水和物と塩化ニッケル・6水和物と塩化アンモニウムで表5に示した各種の濃度に調整したNiイオンと塩素イオン、緩衝剤としてクエン酸ナトリウム・2水和物147g/l(0.5mol/l)、ホウ酸8g/l、添加剤としてラウリル硫酸ナトリウム0.02g/lと2−ブチン1,4−ジオール0.5g/lを含み、pHを塩基性炭酸ニッケルを添加することにより5に調整した各種のNiめっき液を使用し、実施例1と同様の電気Niめっき条件のもと、各種のパルス電解条件(パルス周期TとTONとTOFF)、ピーク電流密度I=10A/dmにてパルス電解を行いながら、膜厚が3μmのNiめっき被膜を磁石表面に形成した。
次に、実施例4の第3層Niめっき被膜を形成するためのNiめっき液を使用し、実施例4と同様の電気Niめっき条件にて、第2層Niめっき被膜として膜厚が5μmの被膜を第1層Niめっき被膜表面に形成した。形成されたNiめっき被膜の性能を表5に示す。なお、表5における被膜健全性の評価は実施例1と同様にして行った。耐食性の評価は実施例2と同様にして行った。めっき密着性の評価は実施例3と同様にして行った。
【0035】
【表5】
Figure 0004538959
【0036】
表5から明らかなように、パルス電解を行いながら電気Niめっきを行うことにより、高電流密度(短時間)での電気Niめっきが可能となり、高い耐食性を有するNiめっき被膜を形成することができ、Niめっき被膜の膜厚の薄膜化、ひいては寸法精度の向上を図ることができることがわかった(めっき液1〜めっき液4)。
【0037】
【発明の効果】
本発明の電気Niめっき方法によれば、Niめっき液に含まれるNiイオン濃度と塩素イオン濃度の重量比、ホウ酸に代わる緩衝剤の使用とその含有量を調整することにより、Niめっき液中のホウ酸の含有量を低減させても、従来量のホウ酸を含有するNiめっき液を使用して形成されるNiめっき被膜が有する均一電着性や緻密性や外観などの優れた特性を維持したNiめっき被膜を形成することができる。また、Niの置換析出を抑制して均一電着性に優れたNiめっき被膜を形成することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric Ni plating method for forming a Ni plating film excellent in uniform electrodeposition, denseness, appearance and the like on the surface of a rare earth magnet by using a Ni plating solution having a novel composition.
[0002]
[Prior art]
Rare earth permanent magnets such as R-Fe-B permanent magnets typified by Nd-Fe-B permanent magnets have high magnetic properties, but are metal species that are susceptible to oxidative corrosion in the atmosphere (particularly R ), When used without surface treatment, corrosion progresses from the surface due to the influence of slight acid, alkali, moisture, etc., and rust is generated. Will be invited. Furthermore, when rust is generated in a magnet incorporated in a device such as a magnetic circuit, the rust may be scattered and contaminate peripheral components. Therefore, in order to avoid these problems, conventionally, a Ni plating film as a corrosion resistant film is formed on the surface of the magnet by electro Ni plating so as to give the magnet the corrosion resistance required. .
In electric Ni plating of rare earth-based permanent magnets, for example, a plating solution containing boric acid is widely adopted as a plating solution described in JP-A-6-13218. The boric acid-containing Ni plating solution has an excellent buffering action, and can easily create a pH (approximately 4 to 8) environment suitable for rare earth permanent magnet plating, Ni plating film formed by using this solution is excellent in throwing power, denseness, and appearance. Therefore, it is the best plating solution for forming Ni plating film on the surface of rare earth permanent magnets. Also, it has advantages such as excellent current efficiency and operability and low chemical cost.
[0003]
[Problems to be solved by the invention]
By the way, in order to make the boric acid-containing Ni plating solution exhibit the action of boric acid, it is generally required to contain boric acid in the plating solution at about 30 g / l. Although the Ni plating solution described in the above publication has a relatively low content of boric acid, the content of the plating solution described in the examples with the lowest boric acid content is still 15 g / l. . In recent years, when dealing with environmental problems is indispensable, it is important to deal with the problem of drainage of the plating solution in order to prevent water pollution, and the boric acid-containing Ni plating solution is also favorable for the environment. It is necessary to reduce the content of boric acid that cannot be said.
On the other hand, when the Ni plating film is directly formed on the surface of the rare earth permanent magnet, particularly when barrel type electroplating is performed, Ni may be deposited by substitution until all magnets are uniformly energized. Even if electro Ni plating is performed on a magnet having Ni deposited on the surface, the formed Ni plating film is inferior in throwing power, and as a result, the corrosion resistance of the magnet is affected. Therefore, it is necessary to reduce the Ni ion concentration contained in the plating solution as much as possible while maintaining the efficiency of forming the Ni plating film.
Therefore, the present invention provides an electric Ni plating method for forming a Ni plating film excellent in uniform electrodeposition, denseness and appearance on the surface of a rare earth magnet by using a Ni plating solution having a novel composition. For the purpose.
[0004]
[Means for Solving the Problems]
As a result of various studies in view of the above points, the present inventors have adjusted the weight ratio between the Ni ion concentration and the chlorine ion concentration contained in the Ni plating solution, the use of a buffering agent instead of boric acid, and its content. Even if the content of boric acid in the Ni plating solution is reduced, the Ni plating film formed using the Ni plating solution containing the conventional amount of boric acid has uniform electrodeposition and denseness The present inventors have found that a Ni plating film having excellent properties such as the appearance and appearance can be formed, and that a Ni plating film having excellent uniform electrodeposition can be formed by suppressing substitutional deposition of Ni.
[0005]
The present invention has been made on the basis of the above knowledge, and the electric Ni plating method of the present invention is the method of claim 1, wherein the electric Ni plating method for rare earth permanent magnets is a chloride ion concentration of Ni ion concentration. Ni ion and chlorine ion in a content such that the weight ratio (Ni 2+ / Cl ) is 0.19 to 11.4 (wherein Ni ion is 15 g / l to 80 g / l, chlorine ion is 7 g / l to 80 g / l) , 0.03 mol / l to 1.0 mol / l of at least one selected from succinic acid, malonic acid, citric acid, malic acid, acetic acid and salts thereof as buffers, and 0 to 15 g of boric acid A nickel plating film is formed on the surface of the magnet using a plating solution containing / l .
Also, electrical Ni plating method of claim 2, in Ni electroplating method according to claim 1, wherein the plating solution is characterized by containing boric acid 0 to 10 g / l.
Further, Ni electroplating method according to claim 3, wherein, in the Ni electroplating method according to claim 2, wherein, for forming the Ni plating film for the second layer and subsequent in forming a multi-layer plating coat layer on the magnet surface It is an electric Ni plating.
The electric Ni plating method according to claim 4 is the electric Ni plating method according to claim 1, wherein the weight ratio of the Ni ion concentration of the plating solution to the chlorine ion concentration when the Ni plating film is directly formed on the magnet surface. Is 0.19 to 4.0.
An electric Ni plating method according to claim 5 is the electric Ni plating method according to any one of claims 1 to 4 , wherein the electric Ni plating is performed while performing pulse electrolysis.
The electric Ni plating method according to claim 6 is the electric Ni plating method according to any one of claims 1 to 5 , wherein the rare earth permanent magnet is an R-Fe-B permanent magnet. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The electric Ni plating method of the present invention is such that the weight ratio of Ni ion concentration to chlorine ion concentration (Ni 2+ / Cl ) is 0.19 to 11.4 in the electric Ni plating method for rare earth permanent magnets. And at least one selected from succinic acid, malonic acid, citric acid, malic acid, acetic acid and salts thereof as a buffering agent at 0.03 mol / l to 1.0 mol / l, boric acid A nickel plating film is formed on the magnet surface using a plating solution containing 0 to 15 g / l.
[0007]
The Ni plating solution used in the electric Ni plating method of the present invention includes Ni ions and chlorine so that the weight ratio of Ni ion concentration to chlorine ion concentration (Ni 2+ / Cl ) is 0.19 to 11.4. Include ions. If the weight ratio of the Ni ion concentration to the chlorine ion concentration is less than 0.19, there may be problems such as chlorine ions remaining on the magnet surface or the internal stress of the Ni plating film being formed becomes too high. If it is greater than 11.4, the electrical conductivity of the Ni plating solution may be affected. In order to adjust the weight ratio, for example, the plating solution may contain 15 g / l to 80 g / l of Ni ions and 7 g / l to 80 g / l of chlorine ions. Ni ion supply sources include nickel sulfate, nickel chloride, nickel sulfamate, nickel bromide, and nickel acetate. In addition to the above nickel chloride, the supply source of chloride ions includes ammonium chloride and sodium chloride.
[0008]
The buffering agent contains 0.03 mol / l to 1.0 mol / l of at least one selected from succinic acid, malonic acid, citric acid, malic acid, acetic acid and salts thereof. When the content of these buffering agents is less than 0.03 mol / l, the buffering action may not be sufficiently exerted. When the content is more than 1.0 mol / l, the long-term stability of the Ni plating solution is affected. There is a fear. When the Ni plating film is directly formed on the magnet surface, it is desirable that the buffering agent is contained in an amount of 0.2 mol / l to 1.0 mol / l from the viewpoint of suppressing Ni substitutional precipitation as much as possible. Among the buffering agents, it is desirable in terms of the denseness of the Ni plating film on which citric acid and its salt are formed. Examples of salts of succinic acid, malonic acid, citric acid, malic acid, and acetic acid include sodium salt, potassium salt, ammonium salt, and nickel salt.
[0009]
By adjusting the weight ratio between the Ni ion concentration and the chloride ion concentration contained in the Ni plating solution, the use of a buffering agent instead of boric acid and the content thereof as described above, the boric acid content in the Ni plating solution can be adjusted. A Ni plating film that maintains excellent properties such as uniform electrodeposition, denseness, and appearance of a Ni plating film formed using a plating solution containing a conventional amount of boric acid, even if it is 15 g / l or less. Can be formed.
[0010]
When forming a Ni plating film directly on the surface of a rare earth-based permanent magnet, it is important to form a Ni plating film quickly while ensuring high current efficiency. In the electric Ni plating method of the present invention, in particular, when the content of boric acid in the Ni plating solution is 10 g / l or less, that is, ultimately in the plating solution. It is very desirable to be able to form a Ni plating film with excellent characteristics even when boric acid is not included in the solution, in order to cope with the drainage problem of the plating solution, and to form a multilayer plating film layer on the magnet surface This is effective when a Ni plating film is formed on the second and subsequent layers.
[0011]
In addition, by adjusting the weight ratio of the Ni ion concentration of the Ni plating solution to the chlorine ion concentration in forming the Ni plating film directly on the surface of the rare earth-based permanent magnet to 0.19 to 4.0, Ni substitutional precipitation is achieved. It can suppress and can form the Ni plating film excellent in the uniform electrodeposition property.
[0012]
It is desirable to adjust the pH of the Ni plating solution to 4-8. As the pH adjuster, for example, a known one corresponding to the component of the plating solution such as nickel carbonate or sulfuric acid may be used. Further, in order to form a Ni plating film having an excellent appearance in the Ni plating solution, and to satisfy the cleanliness and adhesion required when applied to electronic components, sodium lauryl sulfate, 2-butyne 1, Various organic and inorganic additives known per se such as brighteners such as 4-diol, benzenesulfonic acid, propargyl alcohol, and coumarin may be added. Moreover, you may add sodium sulfate, ammonium chloride, etc. as a conductive support agent.
[0013]
In the present invention, it is desirable to adjust the temperature of the plating bath to 30 ° C. to 70 ° C. when performing electro Ni plating.
[0014]
In the present invention, it is desirable to perform electro Ni plating while performing pulse electrolysis. By performing electric Ni plating while performing pulse electrolysis using the Ni plating solution in the present invention, effects such as fine densification of metal crystals and improved adhesion of the formed Ni plating film can be obtained. Examples of the pulse electrolysis conditions include a pulse cycle of 2 msec to 100 msec, T ON of 1 msec to 95 msec, T OFF of 1 msec to 95 msec, and a peak current density I p of 0.2 A / dm 2 to 100 A / dm 2 .
[0015]
The film thickness of the Ni plating film formed by the electric Ni plating method of the present invention is preferably 5 to 30 μm when only this Ni plating film is formed on the surface of the rare earth permanent magnet, and a multilayer plating film layer is formed on the magnet surface. When forming the Ni plating film on the first layer, the thickness is preferably 0.2 μm to 10 μm, and when forming the Ni plating film on the second layer and thereafter, the thickness is preferably 1 μm to 30 μm. When this Ni plating film is formed after the second layer when the multilayer plating film layer is formed on the magnet surface, the first layer, in addition to the Ni plating film, the Cu plating film, the Sn plating film or the Zn plating film Different metal plating films such as may be formed by a known film forming method. Moreover, a different metal plating film may be formed on the Ni plating film formed by the electric Ni plating method of the present invention, or another type of film such as a chemical conversion treatment film may be formed.
[0016]
Among the rare earth permanent magnets applied to the present invention, the rare earth element (R) in the R—Fe—B permanent magnet is at least one of Nd, Pr, Dy, Ho, Tb, Sm, or La , Ce, Gd, Er, Eu, Tm, Yb, Lu, and Y are preferable.
Usually, one type of R is sufficient, but in practice, a mixture of two or more types (such as misch metal and didymium) may be used for reasons of convenience.
Furthermore, by adding at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, Hf, and Ga, It becomes possible to improve the squareness of the coercive force and the demagnetization curve, improve the manufacturability, and reduce the price. Further, by replacing part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet.
[0017]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following description.
[0018]
Example 1:
A sintered body having a composition of 15Nd-1Dy-7B-77Fe (atomic%) prepared by powder metallurgy is subjected to aging treatment at 600 ° C. for 2 hours in an argon atmosphere, and a flat plate having a thickness of 3 mm, a width of 12 mm, and a length of 30 mm. Then, the sintered magnet obtained by further chamfering the barrel was pickled and cleaned with diluted nitric acid.
To this magnet, Ni ions adjusted to various concentrations shown in Table 1 with nickel sulfate hexahydrate, nickel chloride hexahydrate and ammonium chloride (sodium chloride is used for the plating solution 7) Chloride ion, sodium citrate dihydrate 147 g / l (0.5 mol / l) as buffer, boric acid 8 g / l, additive sodium lauryl sulfate 0.02 g / l and 2-butyne 1,4- Seven kinds of Ni plating solutions containing 0.5 g / l of diol and adjusted to pH 5 by adding basic nickel carbonate were used, the temperature of the plating bath was 50 ° C., the current density was 2 A / dm 2 , the anode A Ni plating film having a film thickness of 10 μm was formed on the magnet surface under the electric Ni plating condition of Ni plate. Table 1 shows the performance of the formed Ni plating film.
[0019]
Evaluation of film soundness in Table 1 was performed by evaluation of denseness and corrosion resistance of the plating film (coloring reaction test). The evaluation method is briefly described as follows. A plated magnet sample was immersed in a test solution adjusted to pH 2 with potassium ferricyanide 3 g / l, ethanol 100 ml / l and hydrochloric acid, and observed for 60 minutes. Blue spots occur when the magnet material is corroded or has film defects (pinholes, etc.). If there is no blue spots after immersion for 30 minutes, blue, 20-30 minutes after immersion. When the spot was generated, it was evaluated as ○, when the blue spot was generated 10 minutes to 20 minutes after immersion, Δ, and when the blue spot was generated less than 10 minutes after immersion, it was evaluated as ×.
[0020]
The evaluation of the plating coverage in Table 1 is about the variation of the coating adhesion amount (film thickness) by observing the flat part of the same plated magnet sample at 10 points. When the variation is within ± 10%, the variation is ± 10%. When 20%, the evaluation was Δ, and when the variation exceeded ± 20%, the evaluation was ×.
[0021]
[Table 1]
Figure 0004538959
[0022]
As apparent from Table 1, the boric acid content is adjusted to the conventional boric acid by adjusting the weight ratio of Ni ion concentration to the chloride ion concentration (Ni 2+ / Cl ) in the Ni plating solution to a predetermined weight ratio. It has been found that even if the content of the Ni-containing plating solution is significantly reduced, a Ni plating film having excellent characteristics can be formed (plating solution 2 to plating solution 6).
[0023]
Example 2:
The sintered magnet obtained by the same method as in Example 1 was pickled and cleaned with diluted nitric acid. For this magnet, Ni ions and chloride ions adjusted to various concentrations shown in Table 2 with nickel sulfate hexahydrate, nickel chloride hexahydrate and ammonium chloride, and various concentrations shown in Table 2 Adjusted buffer, boric acid 8g / l, additive sodium lauryl sulfate 0.02g / l, 2-butyne 1,4-diol 0.5g / l, 1,3,6 sodium naphthalene trisulfonate 2.0g 11 kinds of Ni plating solution containing pH / l and adjusted to pH 6 by adding basic nickel carbonate, the temperature of the plating bath is 50 ° C., the current density is 3 A / dm 2 , and the Ni plate is used as the anode. A Ni plating film having a thickness of 10 μm was formed on the magnet surface under the electric Ni plating conditions. The performance of the formed Ni plating film is shown in Table 2.
[0024]
Evaluation of film soundness in Table 2 was carried out in the same manner as in Example 1. The corrosion resistance was evaluated by a pressure cooker test. The evaluation method is briefly described as follows. If the plated magnet sample is left in an environment of 125 ° C, 85% RH and 2 atm for 200 hours, no red rust or blisters will occur, ○ if slight red rust or blisters have occurred, △, many red rust and blisters will occur. When it did, it evaluated as x.
[0025]
[Table 2]
Figure 0004538959
[0026]
As is clear from Table 2, the content of boric acid contained in the conventional boric acid-containing Ni plating solution was adjusted by adjusting the content of a buffer such as citric acid instead of boric acid to 0.03 mol / l or more. It was found that a Ni plating film having excellent characteristics can be formed even if the amount is significantly reduced from the amount (plating solution 2 to plating solution 11).
[0027]
Example 3:
The sintered magnet obtained by the same method as in Example 1 was pickled and cleaned with diluted nitric acid. The Ni plating solution 4 of Example 1 was used for this magnet, and a Ni plating film having a thickness of 3 μm was formed on the magnet surface under the same electrical Ni plating conditions as in Example 1.
Next, nickel sulfate hexahydrate, nickel chloride hexahydrate and ammonium chloride were adjusted to the various concentrations shown in Table 3 and adjusted to the various concentrations shown in Table 3. Five types of Ni containing 0.02 g / l sodium lauryl sulfate and 0.5 g / l 2-butyne 1,4-diol as buffers and additives, and adjusting the pH to 5 by adding basic nickel carbonate Using the plating solution, under the same electric Ni plating conditions as in Example 1, a film having a thickness of 15 μm was formed on the surface of the first Ni plating film as the second Ni plating film. The performance of the formed Ni plating film is shown in Table 3.
[0028]
Evaluation of film soundness in Table 3 was carried out in the same manner as in Example 1. Corrosion resistance was evaluated in the same manner as in Example 2. The plating adhesion was evaluated by applying an epoxy resin (SW2214: thermosetting epoxy adhesive manufactured by Sumitomo 3M and then heating and curing at 120 ° C. for 60 minutes) to the plated magnet sample and bonding to the steel jig. after breaking strength at 180 ° shear compression test (plating peel strength) was measured, in the case of the adhesive strength is 400 kg / cm 2 or more ○, if the adhesion strength is 300kg / cm 2 ~400kg / cm 2 △ When the adhesive strength was less than 300 kg / cm 2 , the evaluation was made as x.
[0029]
[Table 3]
Figure 0004538959
[0030]
As is clear from Table 3, even if the Ni plating solution does not contain boric acid, the weight ratio of Ni ion concentration to the chlorine ion concentration (Ni 2+ / Cl ) in the Ni plating solution is adjusted to a predetermined weight ratio. It was found that a Ni plating film with excellent characteristics can be formed by adjusting the content of a buffering agent such as citric acid instead of boric acid (plating solution 1 to plating solution 4).
[0031]
Example 4:
The sintered magnet obtained by the same method as in Example 1 was pickled and cleaned with diluted nitric acid. This magnet was subjected to per se known alkaline bath Cu plating to form a Cu plating film having a thickness of 3 μm on the magnet surface.
Next, nickel sulfate hexahydrate, nickel chloride hexahydrate and ammonium chloride were adjusted to the various concentrations shown in Table 4 and adjusted to the various concentrations shown in Table 4. Contains buffer, boric acid 8g / l, additive sodium lauryl sulfate 0.02g / l and 2-butyne 1,4-diol 0.5g / l, pH adjusted to 4 by adding basic nickel carbonate Using the adjusted five types of Ni plating solutions, a coating having a thickness of 10 μm was formed on the surface of the first layer Cu plating coating as the second layer Ni plating coating under the same electrical Ni plating conditions as in Example 1.
Finally, nickel sulfate hexahydrate 200 g / l, nickel chloride hexahydrate 40 g / l, ammonium chloride 10 g / l (weight ratio of Ni ion concentration to chloride ion concentration is 4.5), citric acid 2 Ni plating containing 45 g / l of ammonium (0.2 mol / l), 1 g / l of benzenesulfonic acid and 0.5 g / l of propargyl alcohol as additives, and adjusting the pH to 4 by adding basic nickel carbonate A second plating layer having a film thickness of 2 μm as a third layer Ni plating film under an electric Ni plating condition of a plating bath temperature of 50 ° C., a current density of 3 A / dm 2 , and a Ni plate as an anode. A layer Ni plating film was formed on the surface. Table 4 shows the performance of the formed Ni plating film. In addition, evaluation of the film soundness in Table 4 was performed in the same manner as in Example 1. Corrosion resistance was evaluated in the same manner as in Example 2.
[0032]
[Table 4]
Figure 0004538959
[0033]
As is apparent from Table 4, the weight ratio of Ni ion concentration to the chloride ion concentration (Ni 2+ / Cl ) in the Ni plating solution is adjusted to a predetermined weight ratio, and contains a buffering agent such as citric acid instead of boric acid. It was found that a Ni plating film having excellent characteristics can be formed by adjusting the amount (plating solution 2 to plating solution 5).
[0034]
Example 5:
The sintered magnet obtained by the same method as in Example 1 was pickled and cleaned with diluted nitric acid. For this magnet, nickel sulfate hexahydrate, nickel chloride hexahydrate, and ammonium chloride adjusted to various concentrations shown in Table 5 with ammonium chloride, sodium citrate 2 water as a buffering agent Contains 147 g / l (0.5 mol / l) of Japanese product, 8 g / l of boric acid, 0.02 g / l of sodium lauryl sulfate and 0.5 g / l of 2-butyne 1,4-diol as additives Various nickel plating solutions adjusted to 5 by adding basic nickel carbonate were used, and under the same electric Ni plating conditions as in Example 1, various pulse electrolysis conditions (pulse periods T, T ON, and T OFF ), A nickel plating film having a film thickness of 3 μm was formed on the magnet surface while performing pulse electrolysis at a peak current density I p = 10 A / dm 2 .
Next, the Ni plating solution for forming the third layer Ni plating film of Example 4 was used, and the film thickness was 5 μm as the second layer Ni plating film under the same electric Ni plating conditions as in Example 4. A coating was formed on the surface of the first layer Ni plating coating. Table 5 shows the performance of the formed Ni plating film. In addition, evaluation of the film soundness in Table 5 was performed in the same manner as in Example 1. Corrosion resistance was evaluated in the same manner as in Example 2. Evaluation of plating adhesion was performed in the same manner as in Example 3.
[0035]
[Table 5]
Figure 0004538959
[0036]
As is apparent from Table 5, by performing electro Ni plating while performing pulse electrolysis, it is possible to perform electro Ni plating at a high current density (short time) and to form a Ni plating film having high corrosion resistance. It was found that the thickness of the Ni plating film can be reduced, and as a result, the dimensional accuracy can be improved (plating solution 1 to plating solution 4).
[0037]
【The invention's effect】
According to the electric Ni plating method of the present invention, by adjusting the weight ratio between the Ni ion concentration and the chloride ion concentration contained in the Ni plating solution, the use of a buffering agent instead of boric acid, and its content, Even if the content of boric acid is reduced, the Ni plating film formed using the Ni plating solution containing the conventional amount of boric acid has excellent characteristics such as uniform electrodeposition, denseness and appearance. A maintained Ni plating film can be formed. Further, it is possible to form a Ni plating film excellent in uniform electrodeposition by suppressing substitution deposition of Ni.

Claims (6)

希土類系永久磁石の電気Niめっき方法において、Niイオン濃度の塩素イオン濃度に対する重量比(Ni2+/Cl)が0.19〜11.4になるような含量でのNiイオンと塩素イオン(但しNiイオンは15g/l〜80g/l、塩素イオンは7g/l〜80g/l)、緩衝剤としてコハク酸、マロン酸、クエン酸、リンゴ酸、酢酸およびこれらの塩から選ばれる少なくとも1種を0.03mol/l〜1.0mol/l、ホウ酸を0〜15g/l、含むめっき液を使用して磁石表面にNiめっき被膜を形成することを特徴とする電気Niめっき方法 In an electric Ni plating method for a rare earth permanent magnet, Ni ions and chloride ions (Ni + / Cl ) in a content such that the weight ratio of Ni ion concentration to chlorine ion concentration (Ni 2+ / Cl ) is 0.19 to 11.4 (however, Ni ions are 15 g / l to 80 g / l, chloride ions are 7 g / l to 80 g / l) , and at least one selected from succinic acid, malonic acid, citric acid, malic acid, acetic acid and salts thereof as a buffering agent An electric Ni plating method comprising forming a Ni plating film on a magnet surface using a plating solution containing 0.03 mol / l to 1.0 mol / l and boric acid in an amount of 0 to 15 g / l . 前記めっき液がホウ酸を0〜10g/l含むことを特徴とする請求項記載の電気Niめっき方法。Ni electroplating method according to claim 1, wherein the plating solution is characterized by containing boric acid 0 to 10 g / l. 磁石表面に多層めっき被膜層を形成するに際しての第2層目以降にNiめっき被膜を形成するための電気Niめっきであることを特徴とする請求項記載の電気Niめっき方法。 3. The electric Ni plating method according to claim 2, wherein the method is electric Ni plating for forming a Ni plating film on the second and subsequent layers when the multilayer plating film layer is formed on the magnet surface. 磁石表面に直接Niめっき被膜を形成するに際しての前記めっき液のNiイオン濃度の塩素イオン濃度に対する重量比が0.19〜4.0であることを特徴とする請求項1記載の電気Niめっき方法。  2. The electric Ni plating method according to claim 1, wherein the weight ratio of the Ni ion concentration of the plating solution to the chlorine ion concentration in forming the Ni plating film directly on the magnet surface is 0.19 to 4.0. . パルス電解を行いながら電気Niめっきを行うことを特徴とする請求項1乃至のいずれかに記載の電気Niめっき方法。Ni electroplating method according to any one of claims 1 to 4, characterized in that the Ni electroplating while pulse electrolysis. 希土類系永久磁石がR−Fe−B系永久磁石であることを特徴とする請求項1乃至のいずれかに記載の電気Niめっき方法。The electric Ni plating method according to any one of claims 1 to 5 , wherein the rare earth permanent magnet is an R-Fe-B permanent magnet.
JP2001013288A 2001-01-22 2001-01-22 Electric Ni plating method for rare earth permanent magnet Expired - Lifetime JP4538959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013288A JP4538959B2 (en) 2001-01-22 2001-01-22 Electric Ni plating method for rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013288A JP4538959B2 (en) 2001-01-22 2001-01-22 Electric Ni plating method for rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2002212775A JP2002212775A (en) 2002-07-31
JP4538959B2 true JP4538959B2 (en) 2010-09-08

Family

ID=18880165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013288A Expired - Lifetime JP4538959B2 (en) 2001-01-22 2001-01-22 Electric Ni plating method for rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP4538959B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI229150B (en) * 2003-03-05 2005-03-11 Tdk Corp Rare earth metal magnet and plating bath
WO2005100641A1 (en) * 2004-04-15 2005-10-27 Neomax Co., Ltd. Method for imparting excellent resistance to hydrogen to article and article exhibiting excellent resistance to hydrogen
JP4666134B2 (en) * 2004-09-13 2011-04-06 株式会社村田製作所 Nickel plating bath and electronic parts
JP5263932B2 (en) * 2008-02-28 2013-08-14 学校法人神奈川大学 Plating solution and method for manufacturing cutting blade using the plating solution
JP4978665B2 (en) * 2009-06-29 2012-07-18 Tdk株式会社 Metal magnet and motor using the same
JP2013221188A (en) * 2012-04-17 2013-10-28 Yul Sup Sung Phosphorus-free electroless nickel plating liquid, and electroless plating method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613218A (en) * 1992-06-24 1994-01-21 Sumitomo Special Metals Co Ltd Surface processing method of fe-b-r base sintered magnet
JPH09111491A (en) * 1995-10-20 1997-04-28 Nkk Corp Nickel electroplating method
JPH11507991A (en) * 1995-06-21 1999-07-13 ペーター トーベン タン Electroplating method for forming nickel, cobalt, nickel alloy or cobalt alloy plating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613218A (en) * 1992-06-24 1994-01-21 Sumitomo Special Metals Co Ltd Surface processing method of fe-b-r base sintered magnet
JPH11507991A (en) * 1995-06-21 1999-07-13 ペーター トーベン タン Electroplating method for forming nickel, cobalt, nickel alloy or cobalt alloy plating
JPH09111491A (en) * 1995-10-20 1997-04-28 Nkk Corp Nickel electroplating method

Also Published As

Publication number Publication date
JP2002212775A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JPH0283905A (en) Corrosion-resistant permanent magnet and manufacture thereof
WO2002004714A1 (en) Electrolytic copper-plated r-t-b magnet and plating method thereof
WO2009139055A1 (en) Rare-earth-based permanent magnet
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
WO2007091602A1 (en) Process for production of rare earth permanent magnets having copper plating films on the surfaces
JP2002327278A (en) Copper plating liquid and copper plating method
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
JP3994847B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JP4983619B2 (en) permanent magnet
JP4696347B2 (en) R-Fe-B permanent magnet electroplating method
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP4572468B2 (en) Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
JP2968605B2 (en) Manufacturing method of permanent magnet
JP3650141B2 (en) permanent magnet
JP3796567B2 (en) R-Fe-B permanent magnet and manufacturing method thereof
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JP2001210504A (en) R-t-b permanent magnet
JPH06318512A (en) Permanent magnet and manufactured thereof
JPH0712005B2 (en) High corrosion resistance rare earth permanent magnet
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JP4591729B2 (en) Surface treatment method for RTB permanent magnet
JPH06290935A (en) Rare earth magnet
JP3868380B2 (en) Plating bath, plating film manufacturing method, and rare earth magnet manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4538959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

EXPY Cancellation because of completion of term