JPH0127574B2 - - Google Patents

Info

Publication number
JPH0127574B2
JPH0127574B2 JP59132700A JP13270084A JPH0127574B2 JP H0127574 B2 JPH0127574 B2 JP H0127574B2 JP 59132700 A JP59132700 A JP 59132700A JP 13270084 A JP13270084 A JP 13270084A JP H0127574 B2 JPH0127574 B2 JP H0127574B2
Authority
JP
Japan
Prior art keywords
silicon
film
treatment liquid
silicon oxide
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59132700A
Other languages
Japanese (ja)
Other versions
JPS6112034A (en
Inventor
Hideo Kawahara
Hirotsugu Nagayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59132700A priority Critical patent/JPS6112034A/en
Publication of JPS6112034A publication Critical patent/JPS6112034A/en
Publication of JPH0127574B2 publication Critical patent/JPH0127574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明はシリコン基材に酸化珪素被膜を製造す
る方法に関し、特に任意形状の基材表面に加熱お
よび真空化等の手段を用いずに酸化珪素被膜を製
造する方法に関する。 b 従来技術 今日シリコン基材の表面を酸化珪素膜で被覆す
ることが広く行なわれている。中でもシリコンを
用いた半導体デババイスではMOS(Metal Oxide
Semiconductor)―LSI(Large Scale
Integration)に代表されるように、単結晶シリ
コンまたは多結晶シリコンのゲート電極の表面に
酸化珪素被膜(以下SiO2膜)を形成することは
極めて重要な技術となつている。その他特異な例
としては非晶質シリコン薄膜の光干渉効果を利用
した熱線反射ガラスも実用化されているが、ここ
でも上記シリコン薄膜の化学的・機械的特性の保
護のためにその表面にSiO2から成る保護膜を形
成することが試みられている。 このようなシリコン基材の表面にSiO2膜を形
成する方法としては、有機珪素の有機溶媒溶液を
用いたデイツピング法、シランガスを用いた
CVD法、または石英板をターゲツトとしたスパ
ツタ法などが知られている。しかしながらMOS
―LSIなどシリコンを用いた半導体デバイスで
は、SiO2膜の緻密性および電気的絶縁性の向上、
下地シリコンへの不純物混入防止、などの理由か
らクリーンにコントロールされた焼成炉にシリコ
ンウエハを入れて酸素を供給しつつ800゜〜1200℃
で加熱し、シリコンの表面を酸化してSiO2層と
する方法(いわゆる熱酸化法)が専ら用いられて
きた。 c 発明が解決しようとする問題点 しかしながら、近年集積度を高める必要性が
年々高まつてくるに伴つて熱酸化時に下地シリコ
ンへ混入する不純物(例えば酸素の量)が問題と
なつて来ている。そこで高圧下の酸素雰囲気中あ
るいは水蒸気雰囲気中で熱酸化するなどの低温酸
化法が上記欠点防止の目的で試みられたが熱的に
引起されるシリコンの汚染、結晶欠陥などは必ず
しも解決されなかつた。 更には近年集積度を高めるため薄い膜厚で絶縁
耐圧にすぐれたSiO2膜も求められている。すな
わちシリコン基体表面に低温で絶縁特性にすぐれ
た250Å以下のSiO2膜を形成する技術の出現が強
く望まれている。 本発明は、過度の加熱等を必要としない、絶縁
性等の特性の劣ることのないSiO2膜をシリコン
表面へ形成する方法を提供することをその目的と
する。 d 問題点を解決するための手段 本発明は上記問題点を解決するために酸化珪素
を溶解させた珪弗化水素酸水溶液にホウ酸を加え
て酸化珪素の過飽和状態とした処理液とシリコン
基材とを接触させてシリコン基材表面に酸化珪素
被膜を形成させた後、400〜800℃の温度で焼成す
る方法を用いている。 本発明において該処理液が、 (イ) シリコン基材との接触時においても連続的に
ホウ酸水溶液が添加、混合されている処理液で
あり、 (ロ) 1分間あたり処理液全量の3%以上の処理液
がフイルターで濾過され戻される処理液である
ことが均一な被膜を早く得るために好まれる。 本発明に使用される珪弗化水素酸水溶液の濃度
は1〜2モル/の範囲であるが、中でも2モ
ル/濃度以上の珪弗化水素酸水溶液に酸化珪素
を飽和した後水で稀釈して1〜2モル/の濃度
としたものが被膜形成速度が速く、効率良く被膜
形成が行なえるので好ましい。 酸化珪素を溶解させ飽和させた珪弗化水素酸水
溶液に添加するホウ酸量は珪弗化水素酸水溶液中
の珪弗化水素酸1モルに対して1×10-2〜40×
10-2モルの範囲であることが必要であり、中でも
1.2×10-2〜40×10-2モルであることが速く均質
な被膜を得るために好ましい。 又、処理液を上記循環処理液とするときには、
フイルターの孔径を1.5μm以下とすることが凹凸
のない被膜を得るために好まれる。又、循環処理
液量を毎分処理液全量の3%未満とすると循環流
れが遅いため処理液中にSiO2の沈殿を生じたり、
フイルターのめづまりを起こしやすくなるなどの
欠点を生じる。処理液循環量は毎分処理液全量の
3%以上であることが必要であるが内でも毎分処
理液全量の6〜40%を循環させることが均一な被
膜を短時間で得るために好まれる。 上記処理液とシリコン基材とを接触させる方法
としてはシリコン基材表面に処理液を流下させる
等の接触方法であつてもかまわないが、処理液を
満たした浸漬槽にシリコン基材を浸漬する方法が
簡単でしかも均一な被膜が得られるので好まし
い。又処理槽内の処理液は浸漬中の基材に対して
層流となつて流れることが均一な被膜を得るため
に好まれる。 上記処理液とシリコン基材との接触により作製
された酸化珪素被膜はそのままの状態(未焼成)
で前記半導体被覆として使用することも出来る
が、400〜800℃の温度で焼成するとより強固な
(絶縁特性等の良好な)膜となる。800℃よりも高
い温度で焼成することは半導体素子中の不純物の
拡散などが起こる原因となり、又400℃よりも低
い温度では焼成による被膜の緻密化が顕著となら
ない。 e 実施例 30mm角、厚味0.5mmのシリコンウエハを7枚準
備し、このうち1枚についてはシラノールのアル
コール溶液(東京応化(株)製商品名O.C.D.液)をス
ピンコータを用い15秒間室温で塗布し、200℃で
30分間、500℃で30分間の焼成をして、シリコン
ウエハ上に1000ÅのSiO2膜を形成させた。更に
もう1枚のシリコンウエハについてはそのままの
状態で1000℃で1時間酸素圧1気圧下で加熱し、
ウエハの表面に酸化SiO2層を形成させた。 残5枚のシリコンウエハについては第1図に示
す浸漬槽に浸漬した。 第1図において浸漬槽は外槽1と内槽2から成
り、内槽と外槽の間には水3が満してある。この
水は温度が35℃となるようヒーター4で加熱さ
れ、かつ温度分布均一化のための撹拌器5で撹拌
されている。内槽は前部6、中部7、後部8から
成り、各部には工業用シリカゲル粉末を酸化珪素
の供給源として酸化珪素を溶解・飽和させた2.0
モル/の濃度の珪弗化水素酸水溶液を水を用い
て倍に希釈した3の反能液が満たしてある。こ
こでまず循環ポンプ10を作動させ内槽後部8の
反能液を一定量づつ汲出してフイルター11で濾
過し内槽前部6へ戻す処理液循環を開始した。 その後、0.5モル/のホウ酸水溶液12を連
続的に内槽後部8に摘下し10時間保持した。この
状態で反能液は適度なSiO2過飽和度を有する処
理液となつた。 ここでフイルター11の絶対除去率を1.5μm、
および処理液循環量を240ml/分(処理液全量が
約3であるので循環量は8%/分である)と設
定した。そして前記5枚のシリコンウエハ9を内
槽中部7に垂直に浸漬し、前記条件(0.5モル/
のホウ酸水溶液を0.2ml/分で添加し、8%/
分の循環をし、1.5μmのフイルターで濾過する。)
で約4時間保持してシリコンウエハ9上に約1200
Å厚の酸化珪素被膜を作成した。 次に得られた5枚のウエハのうち4枚のウエハ
をそれぞれ800℃、600℃、400℃、200℃の熱風循
環式焼成炉で30分間焼成した。又残る1枚は未焼
成とした。 ここでエツチング液として25℃、1モル/の
弗酸を使用した場合のこれら7種類のSiO2膜の
エツチングレートを測定した。結果は第1表に示
す通りであり、本発明により得られたSiO2膜は
エツチングレートにおいて塗布法よりもはるかに
すぐれ、又400℃以上の焼成温度で熱酸化SiO2
近い値を有する。すなわち緻密な(絶縁性等の良
好な)SiO2膜となるということがわかる。 f 発明の効果 本発明によれば低い焼成温度において熱酸化法
による酸化珪素被膜と同等のエツチングレートの
被膜が得られる。ここでエツチングレートは酸化
珪素被膜の緻密さを表わすものであり、絶縁性等
を表わす尺度となりうるものである。低い焼成温
度で緻密な膜が得られることは、不純物の熱拡散
a. Field of Industrial Application The present invention relates to a method for producing a silicon oxide film on a silicon substrate, and particularly relates to a method for producing a silicon oxide film on the surface of an arbitrarily shaped substrate without using means such as heating or vacuuming. b. Prior Art Today, it is widely practiced to coat the surface of a silicon substrate with a silicon oxide film. Among semiconductor devices using silicon, MOS (Metal Oxide)
Semiconductor)―LSI(Large Scale)
Forming a silicon oxide film (hereinafter referred to as SiO 2 film) on the surface of a single-crystal silicon or polycrystalline silicon gate electrode has become an extremely important technology, as typified by the technology of integration. Another unique example is heat-reflecting glass that utilizes the optical interference effect of an amorphous silicon thin film, but here too SiO2 is added to the surface to protect the chemical and mechanical properties of the silicon thin film. Attempts have been made to form a protective film consisting of 2 . Methods for forming a SiO 2 film on the surface of such a silicon substrate include the dipping method using an organic solvent solution of organosilicon, and the dipping method using silane gas.
Known methods include the CVD method and the sputtering method using a quartz plate as a target. However, MOS
- In semiconductor devices using silicon such as LSI, improvements in the density and electrical insulation of SiO 2 films,
To prevent impurities from entering the underlying silicon, the silicon wafer is placed in a cleanly controlled firing furnace and heated to 800° to 1200°C while supplying oxygen.
The method of heating silicon to oxidize the surface of the silicon to form two layers of SiO (so-called thermal oxidation method) has been exclusively used. c Problems to be solved by the invention However, in recent years, as the need to increase the degree of integration has increased year by year, impurities (for example, the amount of oxygen) mixed into the underlying silicon during thermal oxidation have become a problem. . Therefore, low-temperature oxidation methods such as thermal oxidation in a high-pressure oxygen atmosphere or a steam atmosphere have been attempted in order to prevent the above-mentioned defects, but thermally-induced silicon contamination and crystal defects have not necessarily been resolved. . Furthermore, in recent years, SiO 2 films with a thin film thickness and excellent dielectric strength have been required to increase the degree of integration. In other words, there is a strong desire for a technology to form a SiO 2 film of 250 Å or less with excellent insulating properties at low temperatures on the surface of a silicon substrate. An object of the present invention is to provide a method for forming a SiO 2 film on a silicon surface that does not require excessive heating or the like and does not deteriorate in properties such as insulation. d Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a treatment solution that is made into a supersaturated state of silicon oxide by adding boric acid to an aqueous solution of hydrosilicofluoric acid in which silicon oxide is dissolved, and a silicon group. A method is used in which a silicon oxide film is formed on the surface of a silicon base material by contacting the silicon base material, and then fired at a temperature of 400 to 800 degrees Celsius. In the present invention, the treatment liquid is (a) a treatment liquid in which an aqueous boric acid solution is continuously added and mixed even during contact with the silicon substrate, and (b) 3% of the total amount of the treatment liquid per minute. It is preferable that the above treatment liquid be filtered and returned through a filter in order to quickly obtain a uniform coating. The concentration of the hydrosilicofluoric acid aqueous solution used in the present invention is in the range of 1 to 2 mol/mole, and in particular, silicon oxide is saturated in the silicofluoric acid aqueous solution with a concentration of 2 mol/or more, and then diluted with water. A concentration of 1 to 2 mol/mole/mole/mole is preferable because the film formation rate is fast and the film can be formed efficiently. The amount of boric acid added to a saturated aqueous solution of hydrosilicofluoric acid in which silicon oxide is dissolved is 1×10 -2 to 40× per mole of hydrofluoric acid in the aqueous solution of hydrosilicofluoric acid
10 -2 mole range, among which
The amount is preferably 1.2×10 −2 to 40×10 −2 mol in order to quickly obtain a homogeneous coating. Moreover, when the treatment liquid is the above-mentioned circulating treatment liquid,
It is preferred that the pore diameter of the filter be 1.5 μm or less in order to obtain a coating without unevenness. Furthermore, if the amount of circulating treatment liquid is less than 3% of the total amount of treatment liquid per minute, the circulation flow will be slow and SiO 2 will precipitate in the treatment liquid.
This results in drawbacks such as the filter becoming more likely to become clogged. The circulation rate of the processing liquid must be at least 3% of the total amount of processing liquid per minute, but it is preferable to circulate 6 to 40% of the total amount of processing liquid per minute in order to obtain a uniform coating in a short time. It will be done. The method of bringing the above-mentioned treatment liquid into contact with the silicon base material may be any contact method such as flowing the treatment liquid down onto the surface of the silicon base material, but the silicon base material may be immersed in an immersion tank filled with the treatment liquid. This is preferred because the method is simple and a uniform coating can be obtained. Further, in order to obtain a uniform coating, it is preferable that the treatment liquid in the treatment tank flow as a laminar flow toward the substrate being immersed. The silicon oxide film created by contacting the above treatment solution with the silicon substrate remains as it is (unfired)
It can also be used as the semiconductor coating, but when fired at a temperature of 400 to 800°C, it becomes a stronger film (with better insulation properties, etc.). Firing at a temperature higher than 800°C causes diffusion of impurities in the semiconductor element, and at a temperature lower than 400°C, the densification of the film due to firing does not become significant. e Example Seven silicon wafers of 30 mm square and 0.5 mm thick were prepared, and one of them was coated with an alcohol solution of silanol (trade name: OCD liquid manufactured by Tokyo Ohka Co., Ltd.) for 15 seconds at room temperature using a spin coater. and at 200℃
Baking was performed at 500° C. for 30 minutes to form a 1000 Å SiO 2 film on the silicon wafer. Furthermore, the other silicon wafer was heated as it was at 1000℃ for 1 hour under an oxygen pressure of 1 atm.
An oxidized SiO2 layer was formed on the surface of the wafer. The remaining five silicon wafers were immersed in the immersion bath shown in FIG. In FIG. 1, the dipping tank consists of an outer tank 1 and an inner tank 2, and water 3 is filled between the inner tank and the outer tank. This water is heated with a heater 4 to a temperature of 35° C., and is stirred with a stirrer 5 to make the temperature distribution uniform. The inner tank consists of a front part 6, a middle part 7, and a rear part 8, and each part has 2.0 ml of silicon oxide dissolved and saturated with industrial silica gel powder as a source of silicon oxide.
It is filled with the reaction solution No. 3, which is obtained by diluting an aqueous solution of hydrosilicofluoric acid with water at a concentration of mol/molar. First, the circulation pump 10 was activated to pump out a certain amount of the reaction liquid from the rear part 8 of the inner tank, filter it with the filter 11, and start circulating the processing liquid back to the front part 6 of the inner tank. Thereafter, a 0.5 mol/aqueous boric acid solution 12 was continuously added to the rear part 8 of the inner tank and maintained for 10 hours. In this state, the reaction solution became a processing solution with an appropriate degree of SiO 2 supersaturation. Here, the absolute removal rate of filter 11 is 1.5μm,
The processing liquid circulation rate was set at 240 ml/min (since the total processing liquid volume was approximately 3, the circulation rate was 8%/min). Then, the five silicon wafers 9 were vertically immersed in the inner tank middle part 7, and the conditions (0.5 mol/
of boric acid aqueous solution was added at a rate of 0.2 ml/min.
Circulate for 1 minute and filter through a 1.5 μm filter. )
Hold it for about 4 hours and place it on the silicon wafer 9 for about 1200
A silicon oxide film with a thickness of Å was created. Next, four of the five wafers obtained were fired for 30 minutes in a hot air circulation firing furnace at 800°C, 600°C, 400°C, and 200°C, respectively. The remaining one was left unfired. Here, the etching rates of these seven types of SiO 2 films were measured using 1 mol/mol of hydrofluoric acid at 25° C. as an etching solution. The results are shown in Table 1, and the etching rate of the SiO 2 film obtained according to the present invention is far superior to that of the coating method, and also has a value close to that of thermally oxidized SiO 2 at a firing temperature of 400° C. or higher. In other words, it can be seen that a dense (good insulation, etc.) SiO 2 film is obtained. f Effects of the Invention According to the present invention, a film having an etching rate equivalent to that of a silicon oxide film formed by a thermal oxidation method can be obtained at a low firing temperature. Here, the etching rate represents the density of the silicon oxide film, and can be used as a measure of insulation properties, etc. The fact that a dense film can be obtained at low firing temperatures is due to the thermal diffusion of impurities.

【表】 の点で非常に有利となるものである。又本発明は
種々の形状の(大面積、曲面等の)シリコン表面
に均一な被膜を製造することができる熱酸化法と
同様の利点を有す。
This is very advantageous in terms of [Table]. The present invention also has the same advantage as the thermal oxidation method in that it can produce uniform coatings on silicon surfaces of various shapes (large area, curved surface, etc.).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に使用した循環式処理
装置の系統説明図である。 1……外槽、2……内槽、3……水、4……ヒ
ーター、5……撹拌器、6……内槽前部、7……
内槽中部、8……内槽後部、9……シリコンウエ
ハ、10……循環ポンプ、11……フイルター、
12……ホウ酸水溶液。
FIG. 1 is a system explanatory diagram of a circulation type processing apparatus used in an embodiment of the present invention. 1... Outer tank, 2... Inner tank, 3... Water, 4... Heater, 5... Stirrer, 6... Inner tank front, 7...
Middle part of the inner tank, 8... Rear part of the inner tank, 9... Silicon wafer, 10... Circulation pump, 11... Filter,
12...boric acid aqueous solution.

Claims (1)

【特許請求の範囲】 1 酸化珪素を溶解させた珪弗化水素酸水溶液に
ホウ酸を加えて酸化珪素の過飽和状態とした処理
液とシリコン基材とを接触させてシリコン基材表
面に酸化珪素被膜を形成させた後、400〜800℃の
温度で焼成することを特徴とするシリコン基材表
面に酸化珪素被膜を形成させる方法。 2 該処理液が (イ) シリコン基材との接触時においても連続的に
ホウ酸水溶液が添加、混合されている処理液で
あり、 (ロ) 1分間あたり処理液全量の3%以上の処理液
がフイルターで濾過され戻される処理液である
特許請求の範囲第1項記載のシリコン基材表面
に酸化珪素被膜を形成させる方法。
[Scope of Claims] 1. Silicon oxide is formed on the surface of a silicon substrate by contacting a silicon substrate with a treatment solution made by adding boric acid to a hydrosilicofluoric acid aqueous solution in which silicon oxide is dissolved to make it supersaturated with silicon oxide. A method for forming a silicon oxide film on the surface of a silicon substrate, which comprises baking the film at a temperature of 400 to 800°C after forming the film. 2. The treatment liquid is (a) a treatment liquid in which an aqueous boric acid solution is continuously added and mixed even during contact with the silicon substrate, and (b) the treatment liquid is treated at a rate of 3% or more of the total amount of the treatment liquid per minute. The method for forming a silicon oxide film on the surface of a silicon substrate according to claim 1, wherein the liquid is a treatment liquid that is filtered and returned through a filter.
JP59132700A 1984-06-27 1984-06-27 Formation of silicon oxide film on silicon substrate surface Granted JPS6112034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59132700A JPS6112034A (en) 1984-06-27 1984-06-27 Formation of silicon oxide film on silicon substrate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59132700A JPS6112034A (en) 1984-06-27 1984-06-27 Formation of silicon oxide film on silicon substrate surface

Publications (2)

Publication Number Publication Date
JPS6112034A JPS6112034A (en) 1986-01-20
JPH0127574B2 true JPH0127574B2 (en) 1989-05-30

Family

ID=15087506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59132700A Granted JPS6112034A (en) 1984-06-27 1984-06-27 Formation of silicon oxide film on silicon substrate surface

Country Status (1)

Country Link
JP (1) JPS6112034A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278104A (en) * 1989-07-25 1994-01-11 Kabushiki Kaisha Toshiba Semiconductor wafer carrier having a dust cover
JP2515042B2 (en) * 1990-07-05 1996-07-10 株式会社東芝 E Top 2 PROM device
JPH05259154A (en) * 1992-03-04 1993-10-08 Nec Corp Manufacture of semiconductor device
JP2600600B2 (en) * 1993-12-21 1997-04-16 日本電気株式会社 Abrasive, method for manufacturing the same, and method for manufacturing semiconductor device using the same
JP4753080B2 (en) * 2005-12-21 2011-08-17 独立行政法人産業技術総合研究所 Silica glass for laser processing
CN113321216B (en) * 2021-06-22 2023-09-22 中国地质科学院郑州矿产综合利用研究所 Method for preparing high-purity quartz by using quartz vein type tungsten waste stone

Also Published As

Publication number Publication date
JPS6112034A (en) 1986-01-20

Similar Documents

Publication Publication Date Title
Thim et al. Sol–gel silica film preparation from aqueous solutions for corrosion protection
US4708884A (en) Low temperature deposition of silicon oxides for device fabrication
KR100532239B1 (en) Process for producing nanoporous dielectric films at high ph
US3798081A (en) Method for diffusing as into silicon from a solid phase
JPH0127574B2 (en)
US4109030A (en) Method for thermally oxidizing silicon
JPS58117A (en) Manufacture of semiconductor device
JPH11145130A (en) Electronic coat of low permittivity
Horowitz et al. Towards better control of sol-gel film processing for optical device applications
US3183131A (en) Semiconductor diffusion method
JPH04280812A (en) Formation of porous coating film of silica on substrate
JP3079535B2 (en) Manufacturing method of semiconductor thin film
US4379006A (en) B2 O3 Diffusion processes
JP2001053224A (en) Thin-film capacitor and manufacture thereof
JPS62122133A (en) Forming method for thin-film through solution coating
KR100304338B1 (en) Quartz glass jig for heat-treating semiconductor, and process for producing the same
KOZUKA et al. Effect of the amount of water for hydrolysis on cracking and stress evolution in alkoxide-derived sol-gel silica coating films
JP2505809B2 (en) Method for producing silicon dioxide film
JPH03179740A (en) Semiconductor device and manufacture thereof
JP2752968B2 (en) Method of forming silica-based coating
JPS59227128A (en) Oxidation method for semiconductor substrate
JPH05152236A (en) Manufacture of semiconductor device
JPH09249673A (en) Aqueous solution for forming silica coating membrane and formation of silica coating membrane
Schutte et al. Diffusion of cesium ion in silicon dioxide films derived from sol-gel precursors
JPH05171465A (en) Formation of silicon dioxide film