JPH01241392A - Composite welding method using tig and laser beam - Google Patents

Composite welding method using tig and laser beam

Info

Publication number
JPH01241392A
JPH01241392A JP63067895A JP6789588A JPH01241392A JP H01241392 A JPH01241392 A JP H01241392A JP 63067895 A JP63067895 A JP 63067895A JP 6789588 A JP6789588 A JP 6789588A JP H01241392 A JPH01241392 A JP H01241392A
Authority
JP
Japan
Prior art keywords
tig
laser
laser beam
nozzle
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63067895A
Other languages
Japanese (ja)
Other versions
JPH0451271B2 (en
Inventor
Shinsuke Nakanishi
伸介 中西
Katsuhiro Minamida
勝宏 南田
Osami Ichiko
市古 修身
Teruhiko Hayashi
照彦 林
Nobuo Mizuhashi
伸雄 水橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63067895A priority Critical patent/JPH01241392A/en
Publication of JPH01241392A publication Critical patent/JPH01241392A/en
Publication of JPH0451271B2 publication Critical patent/JPH0451271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To maximize penetration and to improve quality of a weld zone by limiting dimensions of an inside dia. and an outside dia. of a laser beam emission hole of a laser beam nozzle and the distance between the nozzle center and the TIG electrode tip. CONSTITUTION:In welding steels by using a laser beam and TIG jointly, the inside dia. D1 and the outside D0 of the laser beam emission hole of the laser beam nozzle 1 are made to 4mm-8mm and >=15mm respectively. Further, the distance (l) between the center of the laser beam nozzle 1 and the electrode tip of a TIG torch 2 is made to 2mm-5mm. Moreover, in addition to these conditions, flow rate of TIG shielding gas (fs) is made to 5l/min-20l/min to perform welding.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高エネルギービームとアークを併用した溶接方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a welding method that uses a high-energy beam and an arc in combination.

(従来の技術) TIG (Tungsten InertGas AR
C)とレーザの複合溶接法の従来技術として、例えば特
公昭56−49195号に記載の方法があげられる。こ
れにおいては、レーザ光を照射する部分をあらかじめT
IGで溶融させておくことにより吸収率を上げ、溶は込
みを深めることがその主旨となるが、これは必しもレー
ザとTIGノズルの位置関係等の諸条件を適切に定めた
ものではない。例えば複合溶接の際レーザノズルとTI
G電極の間隔を大きくしすぎると複合効果は低下する。
(Conventional technology) TIG (Tungsten InertGas AR
As a conventional technique of a combined welding method using C) and a laser, for example, there is a method described in Japanese Patent Publication No. 56-49195. In this case, the part to be irradiated with the laser beam is set in advance at T.
The main idea is to increase the absorption rate and deepen the penetration by melting with IG, but this does not necessarily mean that various conditions such as the positional relationship between the laser and the TIG nozzle are properly determined. . For example, when performing composite welding, the laser nozzle and TI
If the gap between the G electrodes is too large, the combined effect will be reduced.

またサイドから吹くガスの流量が大きすぎても同様に複
合効果が低下する等複合効果による深溶は込み溶接実現
の安定性・再現性に問題があった。
Furthermore, if the flow rate of the gas blown from the side is too large, the composite effect similarly decreases, causing problems in the stability and reproducibility of deep penetration welding due to the composite effect.

(発明が解決しようとする課題) このような問題は複合溶接時に発生するプラズマの位置
・大きさが安定しないことに帰因する。そこで、本発明
はレーザノズルとTIG電極の位置関係、ガスの流量な
どの具体的条件設定を行うことにより、最適なプラズマ
条件およびそのプラズマを安定して実現できるレーザと
TIGの複合溶接方法を提供することを目的とする。
(Problems to be Solved by the Invention) Such problems are attributable to the fact that the position and size of plasma generated during composite welding are not stable. Therefore, the present invention provides a combined laser and TIG welding method that can stably achieve optimal plasma conditions and plasma by setting specific conditions such as the positional relationship between the laser nozzle and the TIG electrode and the flow rate of gas. The purpose is to

(課題を解決するための手段) 以上の問題点をふまえ、本発明は、レーザとTIGを併
用した鋼材の溶接に於て、レーザノズルのレーザ放出穴
の内径D1を4mm以上8mm以下にし同外径を00を
15mm以上にし、さらにレーザノズルの中心とTIG
電極電極間端間I11ρを2+++n以上5n+m以下
にすること、またはこれらの条件の他にTIGシールド
ガスの流量を51/min以上20J:l/min以下
にすることにより、与えられたレーザパワー、TIGパ
ワー、溶接速度のもとで溶込みに寄与するレーザエネル
ギーを最大にして、最大溶造みを得ることを特徴とする
ものである。
(Means for Solving the Problems) In view of the above-mentioned problems, the present invention aims to set the inner diameter D1 of the laser emission hole of the laser nozzle to 4 mm or more and 8 mm or less when welding steel materials using a combination of laser and TIG. Set the diameter of 00 to 15 mm or more, and also align the center of the laser nozzle with the TIG
The given laser power, TIG It is characterized by maximizing the laser energy contributing to penetration under the power and welding speed to obtain the maximum welding depth.

(作   用) 以下図面に基づいて本発明の詳細な説明する。(For writing) The present invention will be described in detail below based on the drawings.

第1図は本発明にもとすくノズル部分の概略図である。FIG. 1 is a schematic diagram of a nozzle portion according to the present invention.

図中、レーザノズルの内径をDI。In the figure, the inner diameter of the laser nozzle is DI.

外径をり。、レーザノズル中心とTrG’t+ffl先
端との水平距離をl、レーザガス(センターガス)流量
をfc、TIGガス(サイドガス)流量をfsとする。
Measure the outer diameter. , the horizontal distance between the center of the laser nozzle and the tip of TrG't+ffl is l, the laser gas (center gas) flow rate is fc, and the TIG gas (side gas) flow rate is fs.

さて、ここで最も重要なことは、溶は込みの大きさは溶
接時に発生するプラズマと密接な関係があるという事で
ある。即ち発生するプラズマがある程度大きければそれ
だけレーザ光の吸収も大きくなりその分だけ溶接に寄与
するエネルギーを奪うことになる。またプラズマがTI
G電極からある程度前れたとこにできるとTIGによる
溶融部がレーザエネルギーを吸収する前に凝固すること
になり、複合効果が低下する。そこでDr 、  Do
 、 Il、、  fc 。
Now, the most important thing here is that the size of the penetration is closely related to the plasma generated during welding. That is, the larger the generated plasma is to a certain extent, the greater the absorption of laser light, and the more energy that contributes to welding is taken away. Also, plasma is TI
If it is formed at a certain distance from the G electrode, the melted part caused by TIG will solidify before absorbing the laser energy, reducing the composite effect. So Dr. Do
, Il,, fc.

f、を変えることにより溶接部における種々のガス圧分
布を実現し、これによってプラズマの位置、大ぎさを制
御する事を考える。以上の考えに基づいて実験を行った
ところ以下の事が判明した。
Consider realizing various gas pressure distributions in the welding zone by changing f, and thereby controlling the position and magnitude of the plasma. Based on the above idea, we conducted an experiment and found the following.

■ レーザノズルの内径DI とプラズマ、溶は込み深
さの関係を調べたところ、D、が増加するとともにプラ
ズマの大きさは単調に減少し、かつ熔は込みも深くなる
傾向にあり、レーザノズル内径4mm以上で両者とも安
定する。
■ When we investigated the relationship between the inner diameter DI of the laser nozzle, the plasma, and the depth of penetration, we found that as D increases, the size of the plasma decreases monotonically, and the depth of the melt tends to become deeper. Both are stable when the inner diameter is 4 mm or more.

■ レーザノズルの外径り。とプラズマ、溶は込み深さ
の関係を調べたところDoが15mm未満ではプラズマ
の大きさにばらつぎがあるが、151uI11以上でそ
の大きさは単調に減少し、かつ溶は込みも深くなる傾向
にあり、Do=20mm以上で両者とも安定する。
■ Laser nozzle outer diameter. When we investigated the relationship between plasma and penetration depth, we found that when Do is less than 15 mm, the plasma size varies, but when it is 151 uI or more, the size decreases monotonically and the penetration depth tends to become deeper. Both are stable when Do=20 mm or more.

■ レーザノズル中心とTIG電極先端との水平距@I
1.とプラズマ溶は込み深さの関係を調べたところ1=
2〜5mmでプラズマはTIG電極電極引き寄せられ、
塁が5mm超ではTIG電極から離れていく傾向にある
。一方溶は込み深さはプラズマが離れてゆくとともに小
さくなる。
■ Horizontal distance between the center of the laser nozzle and the tip of the TIG electrode @I
1. When we investigated the relationship between and the depth of plasma melt penetration, we found that 1=
Plasma is attracted to the TIG electrode at 2 to 5 mm,
If the base exceeds 5 mm, it tends to move away from the TIG electrode. On the other hand, the penetration depth becomes smaller as the plasma moves away.

■ 丁IGガス流量fSが20 It / min超に
なるとTIG’を極からプラズマが離れる事によって溶
は込み深さの減少が起こる。
■ When the TIG gas flow rate fS exceeds 20 It/min, the plasma separates from the TIG' pole, causing a decrease in the penetration depth.

なお、本結果はレーザパワー8kW(一定)、TIG’
を流100 A (一定)、溶接速度8m/m1n(一
定)ノズル先端からワークまでの距離10mm等の条件
で行い、得られたものであるが他の条件においても同様
の結果が得られることが確かめられている。なお、溶込
みの評価は厚さ3mmの5US304の平板で行い、加
工ガスはレーザガス、TIGガスともにヘリウムガスを
使用した。
Note that this result is based on a laser power of 8 kW (constant) and TIG'
The results were obtained under conditions such as a flow rate of 100 A (constant), a welding speed of 8 m/m1 n (constant), and a distance of 10 mm from the nozzle tip to the workpiece, but similar results can be obtained under other conditions. It has been confirmed. The evaluation of penetration was performed using a 5US304 flat plate with a thickness of 3 mm, and helium gas was used as the processing gas for both laser gas and TIG gas.

以上の知見に基づいてレーザノズルの内径を4mm以上
に設定した。またノズル内径を大きくしすぎることによ
るガスの損失を考えて上限を8ml11以下とした。ま
た上記■の事実に基づいてレーザノズルの外径り。15
mm以上に設定した。上限は他の装置との接触かない限
り、特に制限はない。上記■の事実に基づいてレーザノ
ズルの中心とTIG を極光端間の距ff1lt uを
2mm以上5mm以下に設定した。さらに上記■の事実
に基づいてTIGシールドガス流量を20j2/min
以下に設定した。またガス流量を小さくしすぎることに
よるTlGg極の消耗を考えて下限を5l/minにし
た。
Based on the above knowledge, the inner diameter of the laser nozzle was set to 4 mm or more. Further, in consideration of gas loss caused by making the nozzle inner diameter too large, the upper limit was set to 8 ml or less. Also, the outer diameter of the laser nozzle is determined based on the above fact. 15
mm or more. There is no particular upper limit as long as there is no contact with other devices. Based on the fact (2) above, the distance ff1ltu between the center of the laser nozzle and the extreme light end of the TIG was set to 2 mm or more and 5 mm or less. Furthermore, based on the above fact, the TIG shielding gas flow rate is set to 20j2/min.
It was set as below. In addition, in consideration of consumption of the TlGg electrode due to a too small gas flow rate, the lower limit was set to 5 l/min.

(実 施 例) 以下に、本発明を用いて造管を行った例を示す。(Example) An example of pipe making using the present invention will be shown below.

第2図は造管ラインの概略図である。レーザ発振器3か
ら出たレーザビームは、ミラー8−、、l114により
その方向を変えた後レンズ6によって集光されレーザノ
ズル1から溶接部へと照射される。
FIG. 2 is a schematic diagram of the pipe production line. The laser beam emitted from the laser oscillator 3 changes its direction by mirrors 8-, 114, is focused by a lens 6, and is irradiated from the laser nozzle 1 to the welding area.

第3図はレーザノズル部分の拡大図である。FIG. 3 is an enlarged view of the laser nozzle portion.

レーザノズル部分はTIG トーチ2の先端部と一体化
されており、両者の位置関係およびレーザノズルの内径
、外径は本発明に基づいて設定しであるノズルから出た
レーザビーム11はTIGアーク12により溶融された
部分に照射されるようになっている。一方、第2図にお
いて被溶接バイブ9は造管方向にスリット10が入って
いる。
The laser nozzle part is integrated with the tip of the TIG torch 2, and the positional relationship between the two and the inner and outer diameters of the laser nozzle are set based on the present invention. The molten part is irradiated by the irradiation. On the other hand, in FIG. 2, the to-be-welded vibrator 9 has a slit 10 in the pipe-making direction.

溶接時はスクイズロール5−1+  5−2により左右
から押しつける事によってスリットの両サイドを密着さ
せ、密着部に真上からレーザビームおよびTIGアーク
を照射し溶接を行った。
During welding, both sides of the slit were brought into close contact by pressing from the left and right sides with squeeze rolls 5-1 + 5-2, and welding was performed by irradiating the adhered portion with a laser beam and a TIG arc from directly above.

溶接条件は次の通りである、 厚さ3mm ■レーザ発振器:リングモード(M=1.5)パワー8
kW ■レーザノズル:内径4mm、外径20mm、レーザガ
ス)Ie 40 Il/ Tnin■造管速度:8m/
min ■ノズル先端からバイブ表面までの距離10+nm 以上の条件により欠陥のない溶接ビードが高速かつ安定
に得られた。
Welding conditions are as follows, thickness 3mm ■Laser oscillator: ring mode (M=1.5) power 8
kW ■Laser nozzle: inner diameter 4mm, outer diameter 20mm, laser gas) Ie 40 Il/Tnin ■Pipe-making speed: 8m/
min ■Distance from the nozzle tip to the vibrator surface is 10+nm or more A defect-free weld bead was obtained quickly and stably.

(発明の効果) 以上から、本発明を用いると、プラズマの位置、大きさ
を、レーザエネルギーが溶接部に対して最も大きく寄与
するように、かつ複合効果が最も大きくなるように設定
出来る。
(Effects of the Invention) As described above, by using the present invention, the position and size of the plasma can be set so that the laser energy makes the largest contribution to the welded part and the combined effect becomes the largest.

そして、このような最適複合条件のもとで溶接を行うと
、溶込みが最大になり溶接部の品質が飛躍的に向上する
等の顕著な効果がある。
When welding is performed under such optimal combined conditions, there are remarkable effects such as maximum penetration and a dramatic improvement in the quality of the welded part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザノズル先端部およびTIGI−−チ先瑞
部を示した側面図、 又、第2図は本発明の実施態様例を示した概略図、第3
図は同じく本発明を実施した際のノズル部分の概略図で
ある。 1・・・レーザノズル  2・・・TIG トーチ3・
・・レーザ発振器  4・・・TIG溶接機5・・・ス
クイズロール 6・・・レンズ。 7・・・光路ダクト   8・・・伝送ミラー9・・・
溶接バイブ10・・・スリット11・・・レーザビーム
 12・・・TIGアーク13・・・ワーク 14・・・被溶接材の移動方向 第1図 1:レーザノズル 2:TIGl−−チ 14:被溶接材の移動方向 第2図 5、スクイズロール 6 レンズ 7 光路ダクト 8、伝送ミラー 9 /8接パイプ IQ・スリット 11  レーザビーム 14  肢fd接材の移動方向
FIG. 1 is a side view showing the tip of the laser nozzle and the TIGI tip part, FIG. 2 is a schematic diagram showing an embodiment of the present invention, and FIG.
The figure is also a schematic diagram of the nozzle portion when the present invention is implemented. 1... Laser nozzle 2... TIG torch 3.
...Laser oscillator 4...TIG welding machine 5...Squeeze roll 6...Lens. 7... Optical path duct 8... Transmission mirror 9...
Welding vibrator 10...Slit 11...Laser beam 12...TIG arc 13...Workpiece 14...Movement direction of welded material Direction of movement of welding material Fig. 2 5, Squeeze roll 6 Lens 7 Optical path duct 8, Transmission mirror 9 /8 contact pipe IQ/slit 11 Laser beam 14 Direction of movement of limb FD welding material

Claims (1)

【特許請求の範囲】 1 レーザとTIGを併用した鋼材の溶接に於て、レー
ザノズルのレーザ放出穴の内径D_1を4mm以上8m
m以下にし同外径D_0を15mm以上にし、さらにレ
ーザノズルの中心とTIG電極先端間の距離lを2mm
以上5mm以下にして溶接することを特徴とするレーザ
とTIGの複合溶接方法。 2 TIGシールドガスの流量を5l/min以上20
l/min以下にすることを特徴とする請求項1記載の
レーザとTIGの複合溶接方法。
[Claims] 1. In welding steel materials using a combination of laser and TIG, the inner diameter D_1 of the laser emission hole of the laser nozzle is 4 mm or more and 8 m.
m or less, and the outer diameter D_0 is 15 mm or more, and the distance l between the center of the laser nozzle and the tip of the TIG electrode is 2 mm.
A composite welding method using laser and TIG, characterized in that the welding is performed with a thickness of 5 mm or less. 2 Increase the flow rate of TIG shielding gas to 5l/min or more20
2. The combined laser and TIG welding method according to claim 1, wherein the welding rate is 1/min or less.
JP63067895A 1988-03-22 1988-03-22 Composite welding method using tig and laser beam Granted JPH01241392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067895A JPH01241392A (en) 1988-03-22 1988-03-22 Composite welding method using tig and laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067895A JPH01241392A (en) 1988-03-22 1988-03-22 Composite welding method using tig and laser beam

Publications (2)

Publication Number Publication Date
JPH01241392A true JPH01241392A (en) 1989-09-26
JPH0451271B2 JPH0451271B2 (en) 1992-08-18

Family

ID=13358088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067895A Granted JPH01241392A (en) 1988-03-22 1988-03-22 Composite welding method using tig and laser beam

Country Status (1)

Country Link
JP (1) JPH01241392A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010386A1 (en) * 1993-10-11 1995-04-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for the laser-beam machining of workpieces
WO2001076806A1 (en) * 2000-04-10 2001-10-18 Mitsubishi Heavy Industries, Ltd. Welding system
WO2003024658A1 (en) * 2001-09-17 2003-03-27 Honda Giken Kogyo Kabushiki Kaisha Work welding method
US6683268B2 (en) * 2000-05-31 2004-01-27 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Application of a hybrid arc/laser process to the welding of pipe
CN104191092A (en) * 2014-08-06 2014-12-10 沈阳富创精密设备有限公司 Laser-TIG composite wire filling seal welding method for L-shaped aluminum alloy structure
US9061374B2 (en) 2010-03-08 2015-06-23 Kobe Steel, Ltd. Laser/arc hybrid welding method and method for producing welded member using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106688A (en) * 1983-11-16 1985-06-12 Hitachi Ltd Laser working device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106688A (en) * 1983-11-16 1985-06-12 Hitachi Ltd Laser working device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010386A1 (en) * 1993-10-11 1995-04-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and device for the laser-beam machining of workpieces
WO2001076806A1 (en) * 2000-04-10 2001-10-18 Mitsubishi Heavy Industries, Ltd. Welding system
US6600133B2 (en) 2000-04-10 2003-07-29 Mitsubishi Heavy Industries, Ltd. Welding system
US6683268B2 (en) * 2000-05-31 2004-01-27 L'air Liquide-Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Application of a hybrid arc/laser process to the welding of pipe
WO2003024658A1 (en) * 2001-09-17 2003-03-27 Honda Giken Kogyo Kabushiki Kaisha Work welding method
GB2384455A (en) * 2001-09-17 2003-07-30 Honda Motor Co Ltd Work welding method
GB2384455B (en) * 2001-09-17 2005-08-24 Honda Motor Co Ltd Work welding process
US7015417B2 (en) 2001-09-17 2006-03-21 Honda Giken Kogyo Kabushiki Kaisha Workpiece welding process
US9061374B2 (en) 2010-03-08 2015-06-23 Kobe Steel, Ltd. Laser/arc hybrid welding method and method for producing welded member using same
CN104191092A (en) * 2014-08-06 2014-12-10 沈阳富创精密设备有限公司 Laser-TIG composite wire filling seal welding method for L-shaped aluminum alloy structure

Also Published As

Publication number Publication date
JPH0451271B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
JP2003088968A (en) Welding method for workpiece
WO2018145544A1 (en) Welding torch used for laser beam-plasma arc hybrid welding
US20150014284A1 (en) Hybrid mig-tig or mag-tig welding device
JPH01241392A (en) Composite welding method using tig and laser beam
CN110695532A (en) Small-power large-light-spot laser-MAG arc composite surfacing welding method
WO1994022630A1 (en) Plasma arc welding method and apparatus for practising the same
JP2004330299A (en) Laser welding method excellent in weld strength
JP2009166080A (en) Laser beam welding method
JPS5987996A (en) Laser and gas cutter
JPS60106688A (en) Laser working device
JPS62263869A (en) Arc welding method
JP2002144064A (en) Method and equipment for welding metallic member
US4161645A (en) Arc welding apparatus and method
JPH02263585A (en) Combined heat source welding equipment
Kah et al. The influence of parameters on penetration, speed and bridging in laser hybrid welding
JPS59110474A (en) Arc welding method
JP2003181663A (en) Method and head for composite welding
JPH10225782A (en) Combined welding method by laser and arc
JP2001246485A (en) Laser/arc composite welding equipment
JPH10323791A (en) Butt welding of hot rolling steel piece and laser welding nozzle
KR20050065212A (en) Laser-arc complex welding apparatus and method of welding
JP4394808B2 (en) Melt processing equipment using laser beam and arc
JPH01278983A (en) Laser welding method
SU1579682A1 (en) Method of welding by means of concentrated source of heating
JPH06285657A (en) Laser welding process