JPH02263585A - Combined heat source welding equipment - Google Patents

Combined heat source welding equipment

Info

Publication number
JPH02263585A
JPH02263585A JP1085562A JP8556289A JPH02263585A JP H02263585 A JPH02263585 A JP H02263585A JP 1085562 A JP1085562 A JP 1085562A JP 8556289 A JP8556289 A JP 8556289A JP H02263585 A JPH02263585 A JP H02263585A
Authority
JP
Japan
Prior art keywords
welding
laser beam
arc
electrode
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1085562A
Other languages
Japanese (ja)
Inventor
Takayuki Hisayoshi
久芳 孝行
Hirotsugu Inaba
稲葉 洋次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1085562A priority Critical patent/JPH02263585A/en
Publication of JPH02263585A publication Critical patent/JPH02263585A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To increase the welding speed without increasing the laser beam output excessively by irradiating a melting part pushed-down by an arc with a laser beam from the central part of an electrode and subjecting material to be welded to piercing welding. CONSTITUTION:When a through hole to pierce the laser beam is provided on the central part of the plasma welding electrode or TIG welding electrode 5, it is irradiated with the laser beam in the same direction as the arc generated from the electrode 5. The material 1 to be welded is first molten by heat energy of the arc. A part of the molten part of the material 1 to be welded molten by the arc is then pressed by arc force and supplied in one direction. The thickness of the material to be welded is decreased partially by an action on the molten part of this arc force. Since this molten part whose thickness is reduced is irradiated with the laser beam in the same direction as the arc, a burden of the laser beam with respect to welding is reduced and the laser beam having high output is not used and the welding speed is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、レーザ溶接とプラズマ溶接又はTIG溶接と
を併用して溶接を行う複合熱源溶接装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite heat source welding device that performs welding using a combination of laser welding and plasma welding or TIG welding.

〔従来の技術〕[Conventional technology]

鋼材の溶接においては、TrG溶接、プラズマアーク溶
接等の非消耗電極式イナートガスアーク溶接方法が幅広
く使用されている。
In welding steel materials, non-consumable electrode type inert gas arc welding methods such as TrG welding and plasma arc welding are widely used.

TIG溶接方法はタングステン電極と被溶接材との間に
アークを発生させ、被溶接材を溶融させる方法である。
The TIG welding method is a method in which an arc is generated between a tungsten electrode and a material to be welded to melt the material to be welded.

また、プラズマアーク溶接方法は、タングステン電極と
水冷拘束ノズルとの間に高周波アークを発生、させ、こ
のアーク中に動作ガスを通流させ、アークの熱によりプ
ラズマガスを発生させる。このプラズマガスを水冷拘束
ノズル先端の小孔を通ずことによって絞り、プラズマガ
スにサーマルピンチ効果を与えることによりエネルギ密
度が高いアークを発生させ、被溶接材を溶融させる。
Further, in the plasma arc welding method, a high frequency arc is generated between a tungsten electrode and a water-cooled restraint nozzle, a working gas is passed through the arc, and plasma gas is generated by the heat of the arc. This plasma gas is squeezed by passing through a small hole at the tip of a water-cooled restraint nozzle, giving a thermal pinch effect to the plasma gas to generate an arc with high energy density and melting the material to be welded.

また、これらの非消耗電極式イナートガスアーク溶接方
法の他にレーザ溶接方法がある。レーザ溶接方法は、レ
ーザビームを集光レンズにて絞り、エネルギ密度を高く
したレーザビームを被溶接材に照射し、被溶接材を溶融
させてキャビティを形成し、深溶は込みを得るものであ
る。
In addition to these non-consumable electrode type inert gas arc welding methods, there is also a laser welding method. The laser welding method focuses the laser beam with a condensing lens, irradiates the material to be welded with the laser beam with high energy density, melts the material, forms a cavity, and obtains deep weld penetration. be.

しかし、前記TIG溶接においては、高速溶接を行う場
合、低速溶接時に比して大電流が通流す・るため強いア
ーク力が溶融池に作用してアンダカ・ント、ハンピング
等の不連続ビード等が発生し易く、良好なビードを得る
ことが困難となる。またプラズマ溶接においては、高速
溶接を行う場合、溶は込み不足により吹き流しビードが
発生し易く、安定したビードの形成が困難となる。
However, in TIG welding, when performing high-speed welding, a larger current flows than during low-speed welding, so strong arc force acts on the molten pool, resulting in discontinuous beads such as undercuts and humping. This easily occurs, making it difficult to obtain a good bead. Furthermore, in plasma welding, when high-speed welding is performed, streamflow beads are likely to occur due to insufficient penetration, making it difficult to form stable beads.

そしてレーザ溶接においては、レーザ出力により被溶接
材の溶接限界速度が制限されており、高速溶接を行う場
合は大出力レーザを用いれば良いが、経済的な面で制約
される。
In laser welding, the welding limit speed of the welded material is limited by the laser output, and although high-output lasers may be used for high-speed welding, this is economically constrained.

このようにTrG溶接、プラズマ溶接、レーザ溶接の夫
々の溶接装置では溶接速度に限界があり、また被溶接材
の肉厚にも限界があるという問題がある。
As described above, each of the welding apparatuses for TrG welding, plasma welding, and laser welding has a problem in that there is a limit to the welding speed, and there is also a limit to the thickness of the material to be welded.

これらの問題を解消するためにTIG溶接装置とプラズ
マ溶接装置とを組合せた装置、多電極を有するTIG溶
接装置が用いられている。またTIG溶接装置とレーザ
溶接装置とを一体化し、TIGにより溶融した溶融池に
レーザビームを照射して溶は込みを深めて溶接する溶接
装置が提室されている(特開昭54−54932号公報
)。
In order to solve these problems, a device that is a combination of a TIG welding device and a plasma welding device, and a TIG welding device that has multiple electrodes is used. Furthermore, there is a welding device that integrates a TIG welding device and a laser welding device and irradiates the molten pool melted by TIG with a laser beam to deepen the weld penetration and weld (Japanese Patent Application Laid-Open No. 54-54932). Public bulletin).

[発明が解決しようとする課題] しかしながら前述した如き74G溶接装置とプラズマ溶
接装置とを組合せた溶接装置及び多電極TIG溶接装置
においては、溶接入熱量が過大であることにより材料品
質へ悪影客を与えるため高品質材の溶接には使用できな
いという問題がある。また、前述のTIG溶接装置とレ
ーザ溶接装置とを一体化した溶接装置においては、TI
G溶接装置の加熱源とレーザ溶接装置の加熱源との間隔
が大きくなる程2つの溶接装置を一体化した効果が小さ
くなる。
[Problems to be Solved by the Invention] However, in the above-mentioned welding device that combines a 74G welding device and a plasma welding device, and in a multi-electrode TIG welding device, the excessive welding heat input adversely affects material quality. There is a problem that it cannot be used for welding high-quality materials because it gives a In addition, in the welding device that integrates the TIG welding device and laser welding device described above, the TIG welding device and the laser welding device are integrated.
As the distance between the heat source of the G welding device and the heat source of the laser welding device increases, the effect of integrating the two welding devices becomes smaller.

また、TIG溶接及びレーザ溶接における被溶接材に対
する加熱角度を斜角とした場合、TAG熔接装置により
発生するアーク力が弱化すると共にレーザの貫通溶接を
行う長さが増加し、2つの)容接装置を一体化した効果
が小さくなるという問題がある。
In addition, if the heating angle for the welded material in TIG welding and laser welding is oblique, the arc force generated by the TAG welding device will weaken and the length for laser penetration welding will increase, resulting in two There is a problem that the effect of integrating the devices is reduced.

本発明は斯かる事情に鑑みてなされたものであり、TI
G溶接又はプラズマ溶接により発生するアーク力にて被
溶接材を溶融せしめ、溶融により押圧された溶融部に対
してTIG溶接用電極又はプラズマ溶接用電極の中心部
を通じてレーザビームを照射し、被溶接材を貫通溶接す
ることによりレーザ出力を過大とすることなく溶接速度
が早い複合熱源溶接装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and T.I.
The material to be welded is melted by the arc force generated by G welding or plasma welding, and the molten part pressed by the melting is irradiated with a laser beam through the center of the TIG welding electrode or plasma welding electrode, and the material to be welded is welded. It is an object of the present invention to provide a composite heat source welding device that can achieve a high welding speed without increasing the laser output by performing penetration welding on materials.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に斯かる複合熱源溶接装置においては、プラズマ
溶接用電極又はTIG溶接用電極から発生するアークに
よって被溶接材を溶融せしめ、この溶融した部分にレー
ザビームを照射することにより被溶接材の溶接を行う複
合熱源溶接装置において、前記レーザビームを通ず貫通
孔を中心部に備えた溶接用電極と、該溶接用電極の貫通
孔を通じて前記アークの発生方向と同一の方向ヘレーザ
ビームを照射する手段とを具備する。
In such a composite heat source welding apparatus according to the present invention, the workpiece is melted by an arc generated from a plasma welding electrode or a TIG welding electrode, and the melted part is irradiated with a laser beam to weld the workpiece. In a composite heat source welding device for performing the above, the welding electrode has a through hole in the center through which the laser beam does not pass, and a means for irradiating the laser beam in the same direction as the arc generation direction through the through hole of the welding electrode. Equipped with.

〔作用〕[Effect]

プラズマ溶接用電極又はTAG溶接用電極の中心部にレ
ーザビームを貫通させる貫通孔を設けると、レーザビー
ムが前記電極か′ら発生するアークと同じ方向に照射さ
れる。まず被溶接材はアークの熱エネルギにより溶融す
る。そしてアークにより溶融した被溶接材の溶融部分の
一部は、アーク力により押圧され一方向へ排除される。
When a through hole through which a laser beam passes is provided in the center of a plasma welding electrode or a TAG welding electrode, the laser beam is irradiated in the same direction as the arc generated from the electrode. First, the material to be welded is melted by the thermal energy of the arc. A part of the molten part of the welded material melted by the arc is pushed by the arc force and removed in one direction.

このアーク力の熔融部分への作用により被溶接材の厚さ
が部分的に減少する。この厚さが減少した溶融部分に対
してレーザビームがアークと同じ方向に照射されるため
、レーザビームの溶接に対する負担が少なく、大出力の
レーザビームを使用することなく溶接を行うことができ
る。
The thickness of the welded material is partially reduced due to the action of this arc force on the molten part. Since the laser beam is irradiated in the same direction as the arc to the molten part where the thickness has been reduced, there is less burden on the welding by the laser beam, and welding can be performed without using a high-output laser beam.

〔実施例〕〔Example〕

以下本発明に係る複合熱源溶接装置をその一実施例を示
す図面に基づき具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The composite heat source welding apparatus according to the present invention will be specifically described below with reference to drawings showing one embodiment thereof.

第1図は本発明に係る複合熱源溶接装置の模式的断面図
である。2は断面円形のトーチであり、該トーチ2の先
端内部にはTIG電源5及び高周波発生器6により高周
波電流を供給するTIG電極3が断面円形の支持部材2
1を介してトーチ2の内壁に取付けられる。TIG電極
3の中心部にはレーザビームを通過させる断面円形のレ
ーザ光路31を貫通させである。前記TAG電極3の電
極内部は中空になっており、TrG電極3には冷却水供
給管32a及び冷却水排水管32bが夫々前記電極内の
中空の部分に冷却水を通流させるべく接続されている。
FIG. 1 is a schematic cross-sectional view of a composite heat source welding apparatus according to the present invention. Reference numeral 2 denotes a torch with a circular cross section, and inside the tip of the torch 2 there is a support member 2 with a circular cross section.
1 to the inner wall of the torch 2. A laser beam path 31 having a circular cross section through which a laser beam passes passes through the center of the TIG electrode 3. The inside of the TAG electrode 3 is hollow, and a cooling water supply pipe 32a and a cooling water drain pipe 32b are respectively connected to the TrG electrode 3 to allow cooling water to flow through the hollow part inside the electrode. There is.

そしてトーチ2の内部のTTG電極3の反対側には、図
示しないレーザ発生装置より発振されるレーザビームを
トーチ2の内部及びTTG電極3のレーザ光路31を通
り、TIG電極3のレーザ光路31の出側近傍に集光す
る集光レンズ4が配設されている。
Then, on the opposite side of the TTG electrode 3 inside the torch 2, a laser beam oscillated from a laser generator (not shown) is passed through the inside of the torch 2 and the laser optical path 31 of the TTG electrode 3, and the laser beam is passed through the laser optical path 31 of the TIG electrode 3. A condensing lens 4 that condenses light is disposed near the exit side.

また前記集光レンズ4の近傍のトーチ2の側壁には溶接
部の酸化防止及び集光レンズ4を保護するための計等の
不活性ガスをトーチ2内へ流入させるガス導入口22が
設けられている。そして前記支持部材21の内部には、
前記ガス導入口22より流入した不活性ガスをトーチ2
先端部のTIG電極3とトーチ2との間隙によって形成
されるガスノズル23に送給するガス導管210,21
0が導通している。
Further, a gas inlet 22 is provided on the side wall of the torch 2 in the vicinity of the condenser lens 4 to allow an inert gas such as a gas to flow into the torch 2 to prevent oxidation of the welding part and to protect the condenser lens 4. ing. And inside the support member 21,
The inert gas flowing in from the gas inlet 22 is transferred to the torch 2.
Gas conduits 210 and 21 supply gas to the gas nozzle 23 formed by the gap between the TIG electrode 3 at the tip and the torch 2
0 is conducting.

以上の如く構成された複合熱源溶接装置により被溶接材
1の突合わせ溶接を行う場合、複合熱源溶接装置は、前
記レーザビームが被溶接材1の溶接部表面に対して垂直
に入射するようにTIG電極3を被溶接材1に微小間隔
をとって対向配置させる。また被溶接材1をTrG電源
5及び高周波発生器6の正の端子に接続し、負の端子を
TTG電極3に接続する。
When butt welding the welded material 1 using the composite heat source welding device configured as described above, the composite heat source welding device is configured such that the laser beam is incident perpendicularly to the surface of the welded portion of the welded material 1. A TIG electrode 3 is placed facing the workpiece 1 with a small distance therebetween. Further, the material to be welded 1 is connected to the positive terminal of the TrG power source 5 and the high frequency generator 6, and the negative terminal is connected to the TTG electrode 3.

そして、TIG電源5及び高周波発生器6よりTIG電
極3と、被溶接材lに裔周波電流を通流させてTrG電
極3と被溶接材lとの間にアークを発生させると共に図
示しないレーザ発生装置より発生ずるレーザビームを集
光レンズ4によりトーチ2内部及びTIG電極3のレー
ザ光路31を通して被溶接材1の溶接部に集光させて溶
接を行う。溶接時には、前記ガス導入口22より流入し
た計等の不活性ガスをガス導管210.210を通じて
ガスノズル23より被溶接材1に噴射し、不活性雰囲気
下で前記溶接部の酸化を防止しつつ溶接を行う。また、
TTG電極3内には常に冷却水供給管32aより供給さ
れる冷却水が通流され、TiG電極3の過熱を防止する
Then, the TIG power supply 5 and the high frequency generator 6 cause a descendant frequency current to flow through the TIG electrode 3 and the material to be welded 1 to generate an arc between the TrG electrode 3 and the material to be welded 1, and also generate a laser (not shown). Welding is performed by focusing a laser beam generated by the device on the welding part of the welded material 1 through the inside of the torch 2 and the laser beam path 31 of the TIG electrode 3 using a condensing lens 4. During welding, an inert gas such as gas introduced from the gas inlet 22 is injected into the workpiece 1 from the gas nozzle 23 through the gas conduit 210, 210, and welding is performed in an inert atmosphere while preventing oxidation of the welded part. I do. Also,
Cooling water supplied from the cooling water supply pipe 32a always flows through the TTG electrode 3 to prevent the TiG electrode 3 from overheating.

第2図は被溶接材1の溶接部近傍の部分拡大図である。FIG. 2 is a partially enlarged view of the welded portion of the material 1 to be welded.

前述した如き複合熱源溶接装置の動作により被溶接材1
が溶接される場合、溶接部はアーク力により下方へ押下
げられるためレーザの貫通溶接長さAは短くなり、溶接
効率が良い。被溶接材lはまずアークの熱エネルギによ
り溶融され、さらにレーザビームを照射されて貫迎溶接
される。
By the operation of the composite heat source welding device as described above, the workpiece 1 is
When welding, the welded part is pushed down by the arc force, so the laser penetration welding length A becomes short, resulting in good welding efficiency. The material to be welded 1 is first melted by the thermal energy of the arc, and is then irradiated with a laser beam for penetration welding.

即ちアークによりTIG電極3に近い溶接材上部1aが
溶接され、レーザビームにより溶接材下部1bが溶接さ
れることとなる。
That is, the upper part 1a of the welding material near the TIG electrode 3 is welded by the arc, and the lower part 1b of the welding material is welded by the laser beam.

本発明に係る複合熱源溶接装置及び従来の溶接装置を用
い下記第1表に示す条件により実際に溶接を行った。
Welding was actually performed using the composite heat source welding device according to the present invention and a conventional welding device under the conditions shown in Table 1 below.

なお、第1表中の比較例3は前述した特開昭54549
32号公報に開示される装置による場合である。
Note that Comparative Example 3 in Table 1 is based on the above-mentioned Japanese Patent Application Laid-open No. 54549.
This is the case using the device disclosed in Publication No. 32.

その結果を第3図に示す。The results are shown in FIG.

(以下余白) 第1表 溶接条件 第3図は前記溶接の結果を示すグラフであって、縦軸に
は溶接速度(m/m1n) 、横軸には各溶接方法名を
とり、これらの関係を示す。このグラフより明らかな如
く本発明に係る複合熱源溶接装置は従来の溶接装置に比
して溶接速度が速く、高速溶接に適しているといえる。
(Leaving space below) Table 1 Welding conditions Figure 3 is a graph showing the results of the above-mentioned welding, where the vertical axis shows the welding speed (m/m1n), the horizontal axis shows the name of each welding method, and the relationship between these is shown. shows. As is clear from this graph, the composite heat source welding device according to the present invention has a faster welding speed than the conventional welding device, and can be said to be suitable for high-speed welding.

なお、本実施例においては、TTG電極3をアーり発生
用に使用したが、これに限らずプラズマ電極を用いても
良い。
In this embodiment, the TTG electrode 3 is used for arc generation, but the present invention is not limited to this, and a plasma electrode may also be used.

〔効果〕〔effect〕

以上詳述した如く本発明に係る複合熱源溶接装置におい
ては、TTG溶接又はプラズマ溶接により発生するアー
クにて被溶接材を溶融せしめ、アークにより押し下げら
れた溶融部に対してTTG溶接部又はプラズマ溶接部の
電極の中心部よりレーザビームを照射し、被溶接材を貫
通溶接することによりレーザ出力を過大にすることなく
溶接速度が早い等本発明は優れた効果を奏する。
As detailed above, in the composite heat source welding apparatus according to the present invention, the welded material is melted by the arc generated by TTG welding or plasma welding, and the molten part pushed down by the arc is welded by TTG welding or plasma welding. By irradiating the laser beam from the center of the electrode in the welding area to perform penetration welding of the material to be welded, the present invention has excellent effects such as high welding speed without increasing the laser output.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すものであり、第1図は本
発明に係る複合熱源溶接装置の模式的断面図、第2図は
被溶接材の溶接部近傍の部分拡大図、第3図は本発明装
置及び従来装置により実際に溶接を行った結果を示すグ
ラフである。 ■・・・被溶接材 3・・・TIG電極 31・・・レ
ーザ光路4・・・集光レンズ 5・・・TIG電源 6
・・・高周波発生器 ]つ 弔 図
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic cross-sectional view of a composite heat source welding apparatus according to the present invention, FIG. The figure is a graph showing the results of actual welding using the device of the present invention and the conventional device. ■... Material to be welded 3... TIG electrode 31... Laser optical path 4... Condensing lens 5... TIG power supply 6
...High frequency generator] Funeral map

Claims (1)

【特許請求の範囲】 1、プラズマ溶接用電極又はTIG溶接用電極から発生
するアークによって被溶接材を溶融せしめ、この溶融し
た部分にレーザビームを照射することにより被溶接材の
溶接を行う複合熱源溶接装置において、 前記レーザビームを通す貫通孔を中心部に 備えた溶接用電極と、 該溶接用電極の貫通孔を通じて前記アーク の発生方向と同一の方向へレーザビームを照射する手段
とを具備することを特徴とする複合熱源溶接装置。
[Claims] 1. A composite heat source that melts the welded material by an arc generated from a plasma welding electrode or a TIG welding electrode, and welds the welded material by irradiating the melted portion with a laser beam. The welding device includes: a welding electrode having a through hole in the center thereof through which the laser beam passes; and means for irradiating a laser beam in the same direction as the arc generation direction through the through hole of the welding electrode. A composite heat source welding device characterized by:
JP1085562A 1989-04-03 1989-04-03 Combined heat source welding equipment Pending JPH02263585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1085562A JPH02263585A (en) 1989-04-03 1989-04-03 Combined heat source welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1085562A JPH02263585A (en) 1989-04-03 1989-04-03 Combined heat source welding equipment

Publications (1)

Publication Number Publication Date
JPH02263585A true JPH02263585A (en) 1990-10-26

Family

ID=13862254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1085562A Pending JPH02263585A (en) 1989-04-03 1989-04-03 Combined heat source welding equipment

Country Status (1)

Country Link
JP (1) JPH02263585A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584589A (en) * 1991-09-27 1993-04-06 Mitsubishi Electric Corp Machining head for laser beam machine
US5609781A (en) * 1992-10-23 1997-03-11 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
JPH09296280A (en) * 1996-04-30 1997-11-18 Agency Of Ind Science & Technol Treatment of metallic surface
US6118097A (en) * 1992-10-23 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
WO2002074771A1 (en) * 2001-03-19 2002-09-26 Takeda Chemical Industries, Ltd. Tricyclic heterocyclic compound, process for producing the same, and use
JP2007019091A (en) * 2005-07-05 2007-01-25 Toshiba Corp Manufacturing method for superconducting coil and superconducting coil
WO2019127905A1 (en) * 2017-12-30 2019-07-04 沈阳富创精密设备有限公司 Laser-tig hybrid welding head

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584589A (en) * 1991-09-27 1993-04-06 Mitsubishi Electric Corp Machining head for laser beam machine
US5609781A (en) * 1992-10-23 1997-03-11 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
US6118097A (en) * 1992-10-23 2000-09-12 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
US6288363B1 (en) 1992-10-23 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Machining head and laser machining apparatus
JPH09296280A (en) * 1996-04-30 1997-11-18 Agency Of Ind Science & Technol Treatment of metallic surface
WO2002074771A1 (en) * 2001-03-19 2002-09-26 Takeda Chemical Industries, Ltd. Tricyclic heterocyclic compound, process for producing the same, and use
JP2007019091A (en) * 2005-07-05 2007-01-25 Toshiba Corp Manufacturing method for superconducting coil and superconducting coil
WO2019127905A1 (en) * 2017-12-30 2019-07-04 沈阳富创精密设备有限公司 Laser-tig hybrid welding head

Similar Documents

Publication Publication Date Title
US7154065B2 (en) Laser-hybrid welding with beam oscillation
JP3762676B2 (en) Work welding method
US6740845B2 (en) Laser welding with beam oscillation
JP3753656B2 (en) YAG laser and arc combined welding method and apparatus
JP2008126315A (en) Laser welding process with improved penetration
JP2004223543A (en) Compound welding method of laser beam and arc, and groove shape of welded joint used for the same
Wang et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper
JP4876260B2 (en) Welding method and welding apparatus
JP5413218B2 (en) Hollow electrode arc / laser coaxial welding method
JP5812527B2 (en) Hot wire laser welding method and apparatus
JP2005021912A (en) Laser beam welding method for shape steel
JP2003164983A (en) Welding method for metallic member
JPH02263585A (en) Combined heat source welding equipment
JP2002346777A (en) Method for combined welding with laser beam and arc
JP2014079783A (en) Laser and arc hybrid welding method, hybrid welding head and hybrid welding apparatus
JP2004090069A (en) Laser-and-arc composite welding method, and groove shape of weld joint used therefor
JPS5987996A (en) Laser and gas cutter
JP3631936B2 (en) Welding method and welding apparatus
JPH10225782A (en) Combined welding method by laser and arc
JP4394808B2 (en) Melt processing equipment using laser beam and arc
JP3591630B2 (en) Laser-arc combined welding method and welding apparatus
JPH06198472A (en) High-speed laser beam welding method
JP2000233287A (en) Melting working device using laser beam and arc
JP4032815B2 (en) Laser induction arc welding method
Jokinen Novel ways of using Nd: YAG laser for welding thick section austenitic stainless steel