JPH01229807A - High-elastic modulus polyester fiber with low shrinkage - Google Patents

High-elastic modulus polyester fiber with low shrinkage

Info

Publication number
JPH01229807A
JPH01229807A JP5088888A JP5088888A JPH01229807A JP H01229807 A JPH01229807 A JP H01229807A JP 5088888 A JP5088888 A JP 5088888A JP 5088888 A JP5088888 A JP 5088888A JP H01229807 A JPH01229807 A JP H01229807A
Authority
JP
Japan
Prior art keywords
fiber
fibers
present
polyester
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5088888A
Other languages
Japanese (ja)
Other versions
JP2551091B2 (en
Inventor
Kazuo Kurita
和夫 栗田
Katsuya Tani
谷 勝也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63050888A priority Critical patent/JP2551091B2/en
Publication of JPH01229807A publication Critical patent/JPH01229807A/en
Application granted granted Critical
Publication of JP2551091B2 publication Critical patent/JP2551091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To obtain the subject high-tenacity and elastic modulus fiber with specified physical properties, consisting of an ethylene terephthalate-based polyester, simultaneously having improved dimensional stability, resistance to fatigue and chemicals and suitable for reinforcing rubber structures. CONSTITUTION:An aimed fiber, consisting of an ethylene terephthalate-based polyester and having 0.55-1.2 intrinsic viscosity IV thereof (measured in a mixed solvent of 3/1 ratio of p-chlorphenol/tetrachlorethane at 30 deg.C), >=195X10<-3> birefringence index n, 7-11g/d breaking strength, >=150g/d initial tensile modulus, <=1.39 specific gravity SG, <=6% dry heating shrinkage percentage SHD160 at 160 deg.C, further, many fine unevenness on the side surface thereof and furthermore, a black spot at the central part recognized by observation of the cross section thereof using a light microscope.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリエステル繊維に関し、更に詳しくは、高
強力・高弾性率でかつ寸法安定性、耐疲労性、が著しく
改善されたゴム補強用に適したポリエステル繊維に関す
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to polyester fibers, and more particularly, to polyester fibers for rubber reinforcement that have high strength, high modulus, and significantly improved dimensional stability and fatigue resistance. Regarding polyester fiber suitable for.

(従来の技術) ポリエステル繊維、特にポリエチレンテレフタレート繊
維はその力学的性質及び熱的性質が優れていることから
、衣料用のみならずタイヤコード、コンベヤーベルト、
■−ベルト、シートベルト、ホース、ミシン糸等の工業
用用途にも広範に使用されている。特に昨今は衣料用に
比して工業用繊維、特にゴム構造物補強用繊維の比重が
益々高(なり、これに伴いかかる繊維としての要求特性
も一層厳しく要求されるようになってきた。
(Prior Art) Polyester fibers, especially polyethylene terephthalate fibers, have excellent mechanical and thermal properties, so they are used not only for clothing, but also for tire cords, conveyor belts, etc.
- Widely used in industrial applications such as belts, seat belts, hoses, and sewing thread. In recent years, in particular, the specific gravity of industrial fibers, especially fibers for reinforcing rubber structures, has become increasingly higher than that for clothing, and as a result, the required properties of such fibers have become more stringent.

従来、ゴム構造物補強用繊維をはじめとする工業用繊維
の製造法は切断強度の改善を指向した方向であり、例え
ば特公昭41−7892号公報に記載されている如く溶
融状態の高重合度ポリマーを口金から高速雰囲気中に吐
出してから徐冷し、低速下に引き取って得られる低配向
度の未延伸糸を多段延伸した後、高温度で熱処理する方
法、又かかる未延伸系を多段延伸するに当って、第1段
延伸時に過熱蒸気を高速で吹き付ける所謂スチームジェ
ット方式による方法等が知られている。
Conventionally, manufacturing methods for industrial fibers, including fibers for reinforcing rubber structures, have been directed toward improving cutting strength. A method in which the undrawn yarn with a low degree of orientation obtained by discharging the polymer from a nozzle into an atmosphere at high speed, cooling it slowly, and then taking it back at a low speed is drawn in multiple stages, and then heat-treating it at high temperature, or a method in which such an undrawn system is A known method for stretching is a so-called steam jet method in which superheated steam is sprayed at high speed during the first stage of stretching.

かくして得られる繊維は当初の意図通り切断強度の面に
おいては優れているが、他方耐疲労性の面からは充分と
は言えず、例えばタイヤコード用途の中でも重量車両用
タイヤには使用できないといったことからも、未だ用途
が限定されているのが現状である。
Although the fibers obtained in this way are excellent in terms of cutting strength as originally intended, they are not sufficient in terms of fatigue resistance, and for example, they cannot be used in heavy vehicle tires even among tire cord applications. However, the current situation is that its uses are still limited.

一方、このような耐疲労性を改善するために、種々検討
がなされており、その代表的な手段としては特開昭53
−53031号公報又は特開昭53−53032号公報
に記載されている如く、高重合度の溶融ポリマーを吐出
して急冷してから高速下に引き取って得られる高配向の
未延伸糸を、多段延伸・熱処理する方法が知られている
。かかる方法により得られる繊維は、熱寸法安定性や耐
疲労性の改善は達成されるものの、逆に強度は前記の低
配向糸を延伸する方法によって得られる繊維のそれより
も劣る欠点を有している。
On the other hand, in order to improve such fatigue resistance, various studies have been made, and a representative method is the Japanese Patent Application Laid-open No. 53
As described in JP-A-53031 or JP-A-53-53032, highly oriented undrawn yarn obtained by discharging a molten polymer with a high degree of polymerization, quenching it, and taking it off at high speed is multi-staged. A method of stretching and heat treatment is known. Although the fibers obtained by this method have improved thermal dimensional stability and fatigue resistance, they have the disadvantage that their strength is inferior to that of the fibers obtained by the method of drawing low-oriented yarns. ing.

一方、これらの高配向の未延伸糸の延伸方法を改良し、
物性を向上させようという試みも特開昭57−1691
5号公報あるいは特開昭58−186607号公報に記
載されているが不十分なものである。
On the other hand, we improved the drawing method for these highly oriented undrawn yarns,
Attempts to improve physical properties were also made in JP-A-57-1691.
Although it is described in Japanese Patent Application Laid-open No. 58-186607, it is insufficient.

また、上記従来方法によって得たポリエステル繊維は微
細構造的にみた場合、繊維平均の配向性が低く、更に詳
しくは非晶部分の配向が低く、繊維全体としてリラック
スした構造が特徴的であるがために該繊維をゴム構造物
補強用として加工した場合、ゴム中での水あるいはアミ
ン類による劣化が著しく所謂耐化学安定性が悪化する傾
向を示す。
In addition, when looking at the microstructure of the polyester fibers obtained by the conventional method, the fiber average orientation is low, and more specifically, the orientation of the amorphous portion is low, and the fiber as a whole is characterized by a relaxed structure. When the fibers are processed to reinforce rubber structures, the so-called chemical stability tends to be significantly deteriorated by water or amines in the rubber.

さらに、耐化学安定性の改善を目的にポリエステル中の
カルボキシル末端基を残少させる方法も、その他の特性
改善、即ち強力、弾性率および寸法安定性、耐疲労性な
どの改善には何ら寄与するものではない。
Furthermore, the method of reducing carboxyl end groups in polyester for the purpose of improving chemical stability does not contribute to improving other properties, such as strength, elastic modulus and dimensional stability, and fatigue resistance. It's not a thing.

(発明が解決しようとする課題) ■ 前記特公昭41−7892号公報で知られる、高重
合度ポリマーから得られる低配向度の未延伸糸を多段延
伸する方法によれば得られる繊維の強度は優れるが耐疲
労性の面で充分ではないという問題を有する点、 ■ 一方、特開昭53−53031号公報又は特開昭5
3−53032号公報で知られる、高重合度の溶融ポリ
マーを吐出して急冷してから高速下に引き取って得られ
る高配向の未延伸糸を多段延伸して熱処理する方法によ
れば、得られる繊維の熱寸法安定性や耐疲労性は改善さ
れるものの強度の面で充分ではないという問題点を有す
る点、 ■ また、従来品のポリエステル繊維は非晶部分の配向
が低く、繊維全体としてリラックスした構造であるため
に、ゴム構造物補強用として加工した場合ゴム中での水
あるいはアミン鎖による劣化が著しく化学安定性が悪い
という欠点を有する点、 本発明は前記■〜■で示す従来の欠点をすべて解消し、
高強力・高弾性率でかつ寸法安定性、耐疲労性、耐化学
安定性を同時に改善したゴム構造物補強用に適したポリ
エステル繊維を提供せんとするものである。
(Problems to be Solved by the Invention) ■ According to the method of multi-stage drawing of undrawn yarn with a low degree of orientation obtained from a highly polymerized polymer, which is known from the above-mentioned Japanese Patent Publication No. 41-7892, the strength of the obtained fiber is Although it has excellent fatigue resistance, it has the problem that it is not sufficient in terms of fatigue resistance.
According to the method known in Japanese Patent No. 3-53032, in which a highly oriented undrawn yarn obtained by discharging a molten polymer with a high degree of polymerization, rapidly cooling it, and then drawing it under high speed is subjected to multi-stage stretching and heat treatment, it is possible to obtain Although the thermal dimensional stability and fatigue resistance of the fibers are improved, there is a problem that the strength is not sufficient. ■ Also, conventional polyester fibers have low orientation in the amorphous portion, making the fibers as a whole less relaxed. Because of its structure, when processed to reinforce rubber structures, it suffers from severe deterioration due to water or amine chains in the rubber, resulting in poor chemical stability. Eliminate all shortcomings,
It is an object of the present invention to provide a polyester fiber suitable for reinforcing rubber structures, which has high strength and high modulus, and has improved dimensional stability, fatigue resistance, and chemical stability at the same time.

(課題を解決するための手段) 即ち、本発明はエチレンテレフタレート系ポリエステル
よりなり、繊維の極限粘度IV(P−クロルフェノール
/テトラクロルエタン−3/l混合溶媒中30℃で測定
)が0.55〜1.20テ、且つ、下記(イ)〜(ト)
の特性を有することを特徴とする低収縮高弾性率ポリエ
ステル繊維である。
(Means for Solving the Problems) That is, the present invention is made of ethylene terephthalate polyester, and the intrinsic viscosity IV of the fiber (measured at 30°C in a P-chlorophenol/tetrachloroethane-3/l mixed solvent) is 0. 55 to 1.20, and the following (a) to (g)
It is a low shrinkage, high modulus polyester fiber characterized by having the following characteristics.

(イ)複屈折率Δnが195 X 10−’以上、(I
l+)切断強度が7〜11g/d、(ハ)初期引張弾性
率が150g/d以上、(ニ)比重SGが1.390以
下、 (ネ)160℃における乾熱収縮率5HDl&6が6.
0%以下、 (へ)繊維の側表面に多数の微細凹凸が存在する、(ト
)繊維の横断面を光学顕微鏡で観察すると中心部に黒点
が存在する、 本発明繊維を構成するポリエステルは、その反復単位の
85モル%以上がエチレンテレフタレート単位よりなる
ものであって、特にテレフタル酸またはその機能的誘導
体とエチレングリコールとから製造されるポリエチレン
テレフタレートを主たる対象とする。しかしながら、ポ
リエチレンテレフタレートを構成する酸成分であるテレ
フタル酸またはその機能的誘導体の一部を15モル%未
満の例えばイソフタル酸、アジピン酸、セバシン酸、ア
ゼライン酸、ナフタール酸、p−オキシ安息香酸、2,
5−ジメチルテレフタル酸のような2官能性酸、または
それ等の機能的誘導体のうち少なくとも一種で置き換え
るか、もしくは、グリコール成分であるエチレングリコ
ールの一部を15モル%未満の例えばジエチレングリコ
ール、1.4−ブタンジオール等の2価アルコールのう
ち少なくとも一種で置き換えた共重合体であってもよい
。また、これ等のポリエステル酸化防止剤、難燃剤、接
着性向上剤、艶消剤、着色剤等を含有させてもさしつか
えない。
(a) Birefringence Δn is 195 x 10-' or more, (I
l+) Cutting strength is 7 to 11 g/d, (c) Initial tensile modulus is 150 g/d or more, (d) Specific gravity SG is 1.390 or less, (v) Dry heat shrinkage rate at 160°C is 6.
The polyester constituting the fiber of the present invention has: More than 85 mol% of the repeating units are composed of ethylene terephthalate units, and in particular polyethylene terephthalate produced from terephthalic acid or its functional derivative and ethylene glycol is the main target. However, less than 15 mol% of terephthalic acid or its functional derivative, which is an acid component constituting polyethylene terephthalate, is contained in an amount of less than 15 mol%, such as isophthalic acid, adipic acid, sebacic acid, azelaic acid, naphthalic acid, p-oxybenzoic acid, 2 ,
Replacement with at least one difunctional acid such as 5-dimethylterephthalic acid, or a functional derivative thereof, or a portion of the glycol component ethylene glycol with less than 15 mol % of eg diethylene glycol, 1. A copolymer substituted with at least one type of dihydric alcohol such as 4-butanediol may also be used. Further, these polyester antioxidants, flame retardants, adhesion improvers, matting agents, coloring agents, etc. may be included.

本発明のポリエステル繊維の特徴を添付の写真によって
説明する。
The characteristics of the polyester fiber of the present invention will be explained with reference to the attached photographs.

第1図Aは、本発明のポリエステル繊維の横断面写真で
あり、第1図Bは比較例のポリエステル繊維の横断面写
真である。第1図Bに見られる如く通常のタイヤコード
用途に用いられている様な比較例の繊維の断面には、何
の特徴も認められず輪郭が見えるだけであるが、第1図
Aに見られる如(本発明の繊維は中心部が黒化して見え
、繊維断面内の内外層間で大きな密度差が存在している
ことを示している。特に中心部が黒化していることから
、−概にはいえないが、後に述べる諸データを総合して
考えると断面中心部の密度が外層に比べて著しく低くな
っているものと判断される。
FIG. 1A is a cross-sectional photograph of a polyester fiber of the present invention, and FIG. 1B is a cross-sectional photograph of a polyester fiber of a comparative example. As seen in Figure 1B, the cross section of the fiber of the comparative example, which is used for ordinary tire cord applications, shows no features and only outlines, but as seen in Figure 1A, (The fiber of the present invention appears to have a blackened center, indicating that there is a large density difference between the inner and outer layers within the fiber cross section. Especially since the center is blackened, - However, when considering the various data described later, it can be concluded that the density in the center of the cross section is significantly lower than that in the outer layer.

このことは、タイヤコード等のゴム補強用途に本発明の
繊維が用いられるときの耐疲労性能向上効果、高弾性率
化という有用な性能向上効果をもたらすものである。
This brings about useful performance improvement effects such as fatigue resistance performance improvement effect and high elastic modulus when the fiber of the present invention is used for rubber reinforcement applications such as tire cords.

第2図Aは、本発明のポリエステル繊維の側面を示す倍
率5000倍の拡大写真であり、第2図Bは比較例のポ
リエステル繊維の側面を示す倍率5000倍の拡大写真
である。走査型電子顕@鏡(S[!?I)で5000倍
に拡大して観察すると、第2図Aに見られる如く本発明
の繊維は無数の凹凸が存在しており、特に樅条溝が認め
られる。一方、第2図Bに見られる如〈従来のタイヤコ
ード用途に用いられているポリエステル繊維の側面には
、はとんど凹凸が認められない。本発明の繊維は、表面
に無数の凹凸を有することにより表面積が著しく増大し
、タイヤコード等に用いられる際のデイツプ液処理時の
デイツプ液の付着効率向上、ゴムとの接着性能向上効果
をもたらすものである。
FIG. 2A is an enlarged photograph at a magnification of 5,000 times showing the side surface of the polyester fiber of the present invention, and FIG. 2 B is an enlarged photograph at a magnification of 5,000 times showing the side surface of the polyester fiber of the comparative example. When observed with a scanning electron microscope (S [!? Is recognized. On the other hand, as shown in FIG. 2B, irregularities are rarely observed on the side surfaces of polyester fibers used in conventional tire cord applications. The fibers of the present invention have numerous irregularities on the surface, which significantly increases the surface area, which improves the adhesion efficiency of dip liquid during dip liquid treatment when used in tire cords, etc., and improves adhesion performance with rubber. It is something.

第3図Aは、本発明のポリエステル繊維のXI小角散乱
(SAXS)写真であり、第3図Bは比較例のポリエス
テル繊維のX線小角散乱写真である。
FIG. 3A is an XI small-angle scattering (SAXS) photograph of the polyester fiber of the present invention, and FIG. 3B is an X-ray small-angle scattering photograph of the polyester fiber of the comparative example.

本発明の繊維の場合、中心部に大きな楕円状の散乱像が
認められるに対し、従来のタイヤコード用途に用いられ
る様な比較例のポリエステル繊維の中心部には、通常の
全反射にもとづくストリーク状散乱が認められるだけで
ある。このことば、本発明のポリエステル繊維の微細組
織が従来のポリエステル繊維と全く異なり、均一なボイ
ド状の構造単位が存在していることを示すものである。
In the case of the fiber of the present invention, a large elliptical scattering image is observed in the center, whereas in the center of the polyester fiber of the comparative example, which is used for conventional tire cord applications, a streak due to normal total reflection is observed in the center. Only some scattering is observed. These words indicate that the microstructure of the polyester fiber of the present invention is completely different from that of conventional polyester fibers, and that uniform void-like structural units are present.

このことは、第1図Aに見られた風維断面中心部の黒化
した部分の構造と対応するものと考えられ、このことが
、耐疲労性向上効果を生み出す原動力となっているもの
と考えられる。
This is thought to correspond to the structure of the blackened part at the center of the wind fiber cross section seen in Figure 1A, and this is thought to be the driving force behind the effect of improving fatigue resistance. Conceivable.

このような第1図から第3図に示す繊維のモルフォロジ
ー的な特徴がタイヤコード等のゴム補強用途に従来のポ
リエステルに比べて優れた後加工性能を有するだけでな
く、更に下記に示す特性を満足することから、従来のポ
リエステル繊維が有している基本性能を損なうことなく
、更に低収縮で寸法安定性に優れ、かつ高弾性率化され
タイヤに用いられる際、乗りごこち、操縦安定性の向上
をもたらすのである。
The morphological characteristics of the fibers shown in Figures 1 to 3 not only have superior post-processing performance compared to conventional polyester for rubber reinforcement applications such as tire cords, but they also have the following properties: Because of this, it has low shrinkage, excellent dimensional stability, and high elastic modulus without sacrificing the basic performance of conventional polyester fibers, and when used in tires, it improves riding comfort and handling stability. It brings improvement.

本発明の繊維の極限粘度IVは、0.55〜1.20の
範囲にある。IVが0.55未満であると強度が低下す
るだけでなく、ゴム補強用に用いる際、高温での物性低
下が大きく、実用的でない。
The intrinsic viscosity IV of the fibers of the present invention is in the range of 0.55 to 1.20. If the IV is less than 0.55, not only will the strength decrease, but when used for rubber reinforcement, the physical properties will deteriorate significantly at high temperatures, making it impractical.

IVが1.20よりも大きいと寸法安定性能が低下して
くる。
When IV is larger than 1.20, dimensional stability performance decreases.

本発明の繊維の複屈折率Δnは195 X 10− ’
以上のものである。複屈折率Δnが195 X 10−
’未満であると十分な強度と弾性率を満足させることが
できない6本発明の繊維の八〇としては、200 X 
10−’以上であると更に好ましい。本発明の繊維の場
合、Δnは高ければ高い程性能的に優れているが、23
゜Xl0−’のΔnが現状の到達上限値である。
The birefringence Δn of the fiber of the present invention is 195 x 10-'
That's all. Birefringence Δn is 195 x 10-
If the fiber of the present invention is less than 200X, sufficient strength and elastic modulus cannot be satisfied.
More preferably, it is 10-' or more. In the case of the fiber of the present invention, the higher the Δn, the better the performance, but 23
Δn of °Xl0-' is the current upper limit value.

本発明の繊維の切断強度DTは7〜11g/dである。The cutting strength DT of the fiber of the present invention is 7 to 11 g/d.

7 g/d未満であると、従来用いられるタイヤコード
用途に用いられるポリエステル繊維よりも強度が低くな
るため好ましくない。一方、強度の上限は高ければ高い
程望ましいが、11g/d以上のものを製造するに当っ
ては、高強度化のために特殊な製造条件、製造装置が必
要となり、製造上の困難性の面と、11g/dであれば
タイヤコードとしての要求性能に必要かつ充分であるの
で11g/dを上限とすることが好ましい。
If it is less than 7 g/d, the strength will be lower than that of polyester fibers conventionally used for tire cord applications, which is not preferable. On the other hand, the higher the upper limit of strength is, the more desirable it is, but when manufacturing something over 11 g/d, special manufacturing conditions and manufacturing equipment are required to achieve high strength, which can lead to manufacturing difficulties. Since 11 g/d is both necessary and sufficient for the required performance as a tire cord, it is preferable to set the upper limit to 11 g/d.

本発明の繊維の初期引張弾性率は150g/d以上であ
る。150g/d未満であると、タイヤとして従来のタ
イヤコード用ポリエステル繊維を用いた場合と、乗りご
こち、操縦安定性において、顕著な差が認められなくな
る。
The initial tensile modulus of the fiber of the present invention is 150 g/d or more. If it is less than 150 g/d, there will be no noticeable difference in riding comfort and handling stability compared to when conventional polyester fibers for tire cords are used as tires.

タイヤ用途に用いる際、初期引張弾性率が高い程性能的
に優れているが、300g/dを越える初期弾性率を達
成すると、耐疲労性能の低下をもたらすので好ましくな
い。
When used in tire applications, the higher the initial tensile modulus, the better the performance, but achieving an initial modulus of more than 300 g/d is not preferable because it results in a decrease in fatigue resistance.

本発明の繊維の比重は、1.390以下であり、比重が
1.390を越えると強度の低下をもたらすためよくな
い。
The specific gravity of the fiber of the present invention is 1.390 or less, and if the specific gravity exceeds 1.390, it is not good because it causes a decrease in strength.

本発明の繊維の160℃における乾熱収縮率51101
6゜は6.0%以下であり、従来のタイヤコード用ポリ
エステル繊維に比べ低収縮化しており、寸法安定性に優
れている。
Dry heat shrinkage rate of the fiber of the present invention at 160°C: 51101
6° is 6.0% or less, which means it has less shrinkage than conventional polyester fibers for tire cords and has excellent dimensional stability.

511016゜が6.0%を越えると、寸法安定性向上
効果が顕著でなくなるので好ましくない。
If 511016° exceeds 6.0%, the effect of improving dimensional stability will not be significant, which is not preferable.

以上に詳述したように本発明の繊維は、低収縮でかつ、
高弾性率高強力というタイヤコード用繊維として最も適
した特性を有するものであり、物性的にも従来のポリエ
ステル繊維では実現されなかったものである。
As detailed above, the fiber of the present invention has low shrinkage and
It has the most suitable properties as a fiber for tire cords, such as high elastic modulus and high strength, and has physical properties that have not been achieved with conventional polyester fibers.

(作用) 本発明はエチレンテレフタレート系ポリエステルの繊維
の物性を損なうことなく、低収縮化高弾性率化すると共
に、表面及び内部形態を変化せしめて、タイヤコード等
のゴム補強用に用いられるときの接着性、耐疲労性を改
善したものである。
(Function) The present invention reduces the shrinkage and increases the elastic modulus of ethylene terephthalate polyester fibers without impairing their physical properties, and also changes the surface and internal morphology, making them suitable for use in rubber reinforcement for tire cords, etc. It has improved adhesion and fatigue resistance.

特に疲労時の発熱抑制効果が上記、作用に大きく寄与し
ていると考えられる。
In particular, the effect of suppressing heat generation during fatigue is thought to greatly contribute to the above-mentioned effects.

(実施例) 以下本発明を具体例によって説明する。なお、本発明の
評価に用いた特性の定義ならびに測定方法を以下に示す
(Example) The present invention will be explained below using specific examples. The definitions and measurement methods of the characteristics used in the evaluation of the present invention are shown below.

〈極限粘度■の測定法〉 本発明において、エチレンテレフタレート系ポリエステ
ルの極限粘度■は、P−クロルフェノール/テトラクロ
ルエタン−3/l混合溶媒を用い、30℃で測定した極
限粘度〔η〕を次式によりフェノール/テトラクロルエ
タン=60/40の極限粘度■に換算したものである。
<Method for measuring intrinsic viscosity (■)> In the present invention, the intrinsic viscosity (■) of ethylene terephthalate polyester is determined by the intrinsic viscosity [η] measured at 30°C using a P-chlorophenol/tetrachloroethane-3/l mixed solvent. It is converted into an intrinsic viscosity (■) of phenol/tetrachloroethane=60/40 using the following formula.

IV = 0.8325 X (η) +O,oos〈
繊維の繊度の測定法〉 標準状B(温度20±2℃2相対湿度65±2%の状態
)の試験室で、サーチ■製のオートバイブロ式繊度測定
器DENIERCOMPUTERDC−11B型を使用
して、単繊維の繊度(デニール、d)を測定した。
IV = 0.8325 X (η) +O,oos〈
Measuring method of fiber fineness〉 In a test room under standard condition B (temperature 20 ± 2°C, relative humidity 65 ± 2%), using an autobibro type fineness measuring instrument DENIER COMPUTER DC-11B manufactured by Saatchi ■, The fineness (denier, d) of the single fibers was measured.

但し繊維の測定試料長は、50In11とした。However, the fiber measurement sample length was 50In11.

く繊維およびコードの強伸度特性の測定法〉JIS −
L1017の定義による。試料をカセ状にとり、20℃
165%R11の14i湿度調節された部屋で24時間
放置後、“テンシロン”UTM−れ型引張試験機〔東洋
ボールドウィン■製〕を 用い、長20c+g、引張速
度20cm/分で測定した。
Measuring method of strength and elongation properties of fibers and cords〉JIS-
According to the definition of L1017. Take the sample in a skein and heat it at 20°C.
After being left in a 14i humidity-controlled room of 165% R11 for 24 hours, it was measured using a "Tensilon" UTM-type tensile tester (manufactured by Toyo Baldwin) at a length of 20 c+g and a tensile speed of 20 cm/min.

〈複屈折率(△n)の測定法〉 ニコン偏光顕微鏡P011型ライッ社ベレンクコンペン
セーターを用い、光源としてはスペクトル光源用起動装
置(東芝5LS−3−B型)を用いた(Na光源)。5
〜6m長の繊維軸に対し45″の角度に切断した試料を
、切断面を上にして、スライドグラス上に載せる。試料
スライドグラスを回転載物台にのせ、試料が偏光子に対
して45°になる様、回転載物台を回転させて調節し、
アナライザーを挿入し暗視界とした後、コンペンセータ
ーを30にして縞数を数える(n個)、コンペンセータ
ーを右ネジ方向にまわして試料が最初に暗くなる点のコ
ンペンセーターの目盛a1コンペンセーターを左ネジ方
向にまわして試料が最初に一番暗くなる点のコンペンセ
ーターの目盛すを測定した後(いずれも1/10目盛ま
で読む)、コンペンセーターを30にもどしてアナラザ
ーをはずし、試料の直径dを測定し、下記の式にもとづ
き複屈折率(八〇)を算出する(測定数20個の平均値
)。
<Measurement method of birefringence (△n)> A Nikon polarizing microscope P011 type Reich Berenck compensator was used, and a spectral light source activation device (Toshiba 5LS-3-B type) was used as the light source (Na light source). . 5
A sample cut at an angle of 45" to the fiber axis with a length of ~6 m is placed on a glass slide with the cut side facing up. Place the sample slide glass on a rotating stage, and the sample is cut at an angle of 45" to the polarizer. Rotate and adjust the rotating stage so that
After inserting the analyzer and making it a dark field, set the compensator to 30 and count the number of stripes (n).Turn the compensator clockwise and set the compensator scale A1 to the point where the sample first becomes dark. After turning the compensator counterclockwise and measuring the scale of the compensator at the point where the sample first becomes darkest (read up to 1/10 scale), return the compensator to 30, remove the analyzer, and measure the diameter of the sample. d is measured, and the birefringence index (80) is calculated based on the following formula (average value of 20 measurements).

△n=r”/d(「;レターデーション、−nλ0+ε
) λo −589,3mμ 68547社のコンペンセーターの説明書のC/100
00とiより求める 1=(a−b)(:コンペンセーターの読みの差) く乾熱収縮率の測定法〉 JIS−L −1017(1987)の5・7に準して
測定を行った。
△n=r"/d("; retardation, -nλ0+ε
) λo -589,3mμ C/100 of compensator manual of 68547 company
1 determined from 00 and i = (a-b) (: difference in compensator reading) Measuring method of dry heat shrinkage rate> Measurement was performed according to 5.7 of JIS-L-1017 (1987). .

〈比重の測定法〉 n−へブタンと四塩化炭素よりなる密度勾配管を作成し
、30’C+0.1 ’Cに調温された密度勾配管中に
十分に脱泡した試料を入れ、5時間放置後の密度勾配管
中の試料位置を、密度勾配管の目盛りで読みとった値を
、標準ガラスフロートによる密度勾配管目盛〜比重キャ
リブレーショングラフから比重値に換算し、n=4で測
定。比重値は原則として小数点以下4桁まで読む。
<Method for measuring specific gravity> Create a density gradient tube made of n-hebutane and carbon tetrachloride, place a sufficiently degassed sample into the density gradient tube whose temperature is adjusted to 30'C + 0.1'C, and The sample position in the density gradient tube after standing for a period of time was read on the scale of the density gradient tube, and the value was converted into a specific gravity value from the density gradient tube scale to specific gravity calibration graph using a standard glass float, and measured at n=4. As a general rule, read specific gravity values to four decimal places.

〈繊維の断面観察法〉 試料を樹脂に包埋しミクロトームにより数十ミクロンの
厚みにカットした後、光学顕微鏡を用い200〜600
倍の倍率下に観察するか、あるいは、黒色のタフセル綿
を充填した貫通孔中に試料を差し込み、カミソリ刃でカ
ットしたものを光学顕微鏡を用い200〜600倍の倍
率下に観察する。
<Fiber cross-sectional observation method> After embedding the sample in resin and cutting it to a thickness of several tens of microns using a microtome, use an optical microscope to
Observe under a magnification of 2x, or insert a sample into a through hole filled with black Toughcell cotton, cut with a razor blade, and observe under a magnification of 200 to 600x using an optical microscope.

〈走査型電子顕微鏡(Sl!M)による観察法〉試料を
試料台上に固定し、EIKO製IB−5型イオンコータ
ーで白金又は金蒸着した後、日立製5510型SEMを
用いて観察し、5000倍の倍率で写真をとる。
<Observation method using a scanning electron microscope (Sl!M)> The sample was fixed on a sample stage, platinum or gold was deposited using an EIKO model IB-5 ion coater, and then observed using a Hitachi model 5510 SEM. Take a photo at 5000x magnification.

〈小角X線回折による回折像及び繊維長周期の測定法〉 小角X線敗乱パターンの測定は、例えば理学電機社製X
線発生装置1 (RU−3)!型)を用いて行なう。
<Measurement method of diffraction image and fiber long period by small-angle X-ray diffraction> Measurement of small-angle X-ray destruction pattern can be carried out using, for example,
Ray generator 1 (RU-3)! This is done using a mold.

測定には管電圧45KV、管電流70mA、ニッケルフ
ィルターで単色化したCuKα(λx=1.5418人
)を使用する。サンプルホルダーに繊維試料を単糸どう
しが互いに平行になるように取り付ける。試料の厚さは
0.5〜1.0m位になるようにするのが適当である。
For the measurement, a tube voltage of 45 KV, a tube current of 70 mA, and a monochromatic CuKα (λx=1.5418 persons) with a nickel filter are used. Attach the fiber sample to the sample holder so that the single threads are parallel to each other. It is appropriate that the thickness of the sample is approximately 0.5 to 1.0 m.

この平行に配列した繊維の繊維軸に垂直にX線を入射さ
せフィルム(乾板)を試料から距離iの位置に設置し、
回折像の撮影を行う。
X-rays are incident perpendicularly to the fiber axes of the fibers arranged in parallel, and a film (dry plate) is placed at a distance i from the sample.
Photograph the diffraction image.

繊維長周期は、回折像において、赤道線を対称軸とする
上下の散乱光の最大幅を2a、tan2d  =  □ ! としたとき、長周期=λ)(/2sindで著す表わさ
れる。
The fiber length period is 2a, tan2d = □!, which is the maximum width of the upper and lower scattered light with the equator line as the axis of symmetry in the diffraction image. When, long period = λ) (/2sind) is expressed.

〔実施例1〕 極限粘度1.0のポリエチレンテレフタレートを紡糸温
度300℃にて紡糸口金孔径0.2[1111、口金孔
数120孔を有する紡糸口金より単孔吐出量0.2g/
分で押出し、20 ’C,0,3m / secのクエ
ンチエヤーで冷却固化させた後、約1%の油剤(有効成
分)を付与し、紡速250m/分で巻き取った。該未延
伸糸のΔnは0.004であった。該未延伸糸を100
%のアセトン浴に500秒間浸漬した後、引き続いてフ
ィード速度15.0m/分で80″Cの非接触ヒーター
で3.65倍延伸した後、160℃の非接触ヒーターで
1.81倍延伸し、更に245℃の非接触ヒーターで1
.14倍の延伸を行った。
[Example 1] Polyethylene terephthalate with an intrinsic viscosity of 1.0 was spun at a temperature of 300°C, with a spinneret diameter of 0.2 [1111] and a single-hole discharge rate of 0.2 g/drill from a spinneret having 120 holes.
After cooling and solidifying with a quencher at 20'C and 0.3 m/sec, approximately 1% oil agent (active ingredient) was added and the product was wound up at a spinning speed of 250 m/min. The undrawn yarn had a Δn of 0.004. The undrawn yarn is 100
% acetone bath for 500 seconds, followed by stretching 3.65 times with a non-contact heater at 80"C at a feed rate of 15.0 m/min, and then stretching 1.81 times with a non-contact heater at 160 °C. , further 1 with a non-contact heater at 245℃
.. It was stretched 14 times.

該延伸糸の断面写真を第1図(A)に、側面写真を第2
図(A)に、小角X線回折写真を第3図(A)に示す、
該延伸糸の糸物性は切断強度8.14g/d、切断伸度
5.1%、初期引張弾性率196.3g/d、比重1.
3837、乾熱収縮率4.7%、複屈折率201.9 
xlo−3、長周期151.7人であった。
A cross-sectional photograph of the drawn yarn is shown in Figure 1 (A), and a side view photograph is shown in Figure 2.
Figure (A) shows a small-angle X-ray diffraction photograph in Figure 3 (A).
The physical properties of the drawn yarn are: strength at break 8.14 g/d, elongation at break 5.1%, initial tensile modulus 196.3 g/d, specific gravity 1.
3837, dry heat shrinkage rate 4.7%, birefringence index 201.9
xlo-3, long cycle was 151.7 people.

〔比較例1] 実施例1と全く同様の紡糸条件で未延伸糸を作成し、該
未延伸糸をアセトン浴で処理することな(、フィード速
度15.0m 7分で80’Cの非接触ヒーターで3.
29倍延伸した後、160’Cの非接触ヒーターで1.
68倍延伸し、更に245℃の非接触ヒーターで1.0
9倍の延伸を行った。
[Comparative Example 1] An undrawn yarn was created under exactly the same spinning conditions as in Example 1, and the undrawn yarn was not treated with an acetone bath (contactless spinning at 80'C for 7 minutes at a feed rate of 15.0 m). 3. With a heater.
After stretching 29 times, 1.
Stretched 68 times and further stretched to 1.0 with a non-contact heater at 245°C.
It was stretched 9 times.

該延伸糸の断面写真を第1図(B)に、側面写真を第2
図(B)に、小角X線回折写真を第3図(B)に示す。
A cross-sectional photograph of the drawn yarn is shown in Figure 1 (B), and a side view photograph is shown in Figure 2.
FIG. 3(B) shows a small-angle X-ray diffraction photograph.

該延伸糸の糸物性は切断強度11.74g/d、切断伸
度7.3%、初期引張弾性率184.8g/d、比重1
.4000、乾熱収縮率7,9%、複屈折率199.3
 X 10−”、長周期190.0人であった。
The physical properties of the drawn yarn are: strength at break 11.74 g/d, elongation at break 7.3%, initial tensile modulus 184.8 g/d, specific gravity 1.
.. 4000, dry heat shrinkage rate 7.9%, birefringence index 199.3
X 10-'', long period 190.0 people.

〔実施例2及び比較例2〕 実施例1及び比較例1で得られた延伸糸をそれぞれ合糸
して約1000デニールとした後、39丁/10c+e
の上撚及び下撚を施して双糸コードとし、該双糸コード
に通常のポリエステル用RFL処理液にてDip処理を
施し、これらのゴムとの接着力、チューブ疲労性能を比
較評価した。その結果を第1表に示す。
[Example 2 and Comparative Example 2] After doubling the drawn yarns obtained in Example 1 and Comparative Example 1 to approximately 1000 denier, 39 yarns/10c+e
A double-thread cord was obtained by first twisting and first twisting, and the double-thread cord was subjected to a Dip treatment using a normal RFL treatment liquid for polyester, and the adhesion strength with these rubbers and tube fatigue performance were comparatively evaluated. The results are shown in Table 1.

〈 第1表 〉 尚、デイツプコードの評価法を下記に示す。< Table 1〉 The method for evaluating dip cords is shown below.

く中間伸度〉 延伸糸の場合は4.5g/d応力時の伸度で、また処理
コードの場合は4.5kg応力時の伸度で示した。
Intermediate elongation> In the case of drawn yarn, the elongation is expressed as the elongation at a stress of 4.5 g/d, and in the case of the treated cord, the elongation is expressed as the elongation at a stress of 4.5 kg.

くチューブ寿命〉 JISL1017−1978 (13ZIA法)に準拠
し、チューブ破断までの時間を示した。
Tube life> The time until tube breakage is shown in accordance with JISL1017-1978 (13ZIA method).

〈接着力〉 試料を下記ゴム配合物と共に170’CX60分の加硫
接着してH接着力を測定した。
<Adhesive Strength> A sample was vulcanized and bonded with the following rubber compound for 170'CX60 minutes, and the H adhesive strength was measured.

スモークドシート患3        7部部SBR−
171242部 Zn0              5部S     
             2.5部ステアリン酸  
          265部N−シクロへキシル−2
− ベンゾチアゾール スルフェンアミド 1部パインター
ル             5部N−フェニル−N′
−イソプロピル −P−フ エコレンジアミン    1.5部FEFカ
ーボンブラック         5部(発明の効果) 本発明によればポリエチレンテレフタレートの物性をt
員うことなしに高強度、高弾性率を有し、かつ寸法安定
性、接着性に優れたポリエステル繊維が提供でき、ラジ
アルタイヤのカーカスコードに適し、ゴム製品とした時
のゴムとの接着性、耐疲労性が優れ且つ、タイヤ等にし
た場合の発熱抑制効果、低騒音効果、操縦安定性効果の
優れたものが提供できる。
Smoked seat patient 3 7th part SBR-
171242 parts Zn0 5 parts S
2.5 parts stearic acid
265 parts N-cyclohexyl-2
- Benzothiazole Sulfenamide 1 part Pine tar 5 parts N-phenyl-N'
-Isopropyl-P-phecolene diamine 1.5 parts FEF carbon black 5 parts (effects of the invention) According to the present invention, the physical properties of polyethylene terephthalate are improved by t.
We can provide polyester fibers that have high strength, high modulus of elasticity, and excellent dimensional stability and adhesive properties without using any material.They are suitable for carcass cords of radial tires, and have excellent adhesion to rubber when made into rubber products. , it is possible to provide tires with excellent fatigue resistance and excellent heat generation suppressing effects, low noise effects, and steering stability effects when used in tires and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは、本発明繊維の横断面を示 す517倍での顕微鏡写真であり、第1図Bは比較例1
で得られた延伸繊維の横断面を示す263倍での顕微鏡
写真である。 第2図Aは、本発明繊維の側表面を示す5000倍での
走査型電子顕微鏡写真であり、第2図Bは比較例1で得
られた延伸繊維の側表面を示す5000倍での走査型電
子顕微鏡写真である。 第3図Aは、本発明繊維のX線小角散乱写真であり第3
図Bは比較例1で得られた延伸繊維のX線小角散乱写真
である。 特許出願人  東洋紡績株式会社 羊 、l 図 第2 図
FIG. 1A is a micrograph showing the cross section of the fiber of the present invention at a magnification of 517 times, and FIG. 1B is a photomicrograph of Comparative Example 1.
This is a micrograph at a magnification of 263 times showing a cross section of the drawn fiber obtained in . FIG. 2A is a scanning electron micrograph showing the side surface of the fiber of the present invention at a magnification of 5000 times, and FIG. 2B is a scanning electron micrograph taken at a magnification of 5000 times showing the side surface of the drawn fiber obtained in Comparative Example 1. This is an electron micrograph. Figure 3A is a small-angle X-ray scattering photograph of the fiber of the present invention;
Figure B is a small-angle X-ray scattering photograph of the drawn fiber obtained in Comparative Example 1. Patent applicant Toyobo Co., Ltd. Hitsuji, l Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)エチレンテレフタレート系ポリエステルよりなり
、繊維の極限粘度IV(P−クロルフェノール/テトラ
クロルエタン=3/1混合溶媒中30℃で測定)が0.
55〜1.20で、且つ、下記(イ)〜(ト)の特性を
有することを特徴とする低収縮高弾性率ポリエステル繊
維。 (イ)複屈折率Δnが195×10^−^3以上、 (ロ)切断強度が7〜11g/d、 (ハ)初期引張弾性率が150g/d以上、 (ニ)比重SGが1.390以下、 (ホ)160℃における乾熱収縮率SHD_1_6_0
が6.0%以下、 (ヘ)繊維の側表面に多数の微細凹凸が存在する、[尚
、微細凸凹の確認は走査型電子顕微鏡で5000倍の倍
率での写真を観察する。] (ト)繊維の横断面を光学顕微鏡で観察すると中心部に
黒点が存在する、
(1) Made of ethylene terephthalate polyester, the fiber has an intrinsic viscosity IV (measured at 30°C in a P-chlorophenol/tetrachloroethane=3/1 mixed solvent) of 0.
55 to 1.20 and having the following properties (a) to (g). (a) Birefringence Δn is 195×10^-^3 or more, (b) Cutting strength is 7 to 11 g/d, (c) Initial tensile modulus is 150 g/d or more, (d) Specific gravity SG is 1. 390 or less, (e) Dry heat shrinkage rate at 160°C SHD_1_6_0
6.0% or less; (f) A large number of fine irregularities are present on the side surface of the fiber. [The fine irregularities can be confirmed by observing a photograph at 5000x magnification with a scanning electron microscope. ] (g) When the cross section of the fiber is observed with an optical microscope, there is a black spot in the center.
JP63050888A 1988-03-03 1988-03-03 Low shrinkage high modulus polyester fiber Expired - Lifetime JP2551091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050888A JP2551091B2 (en) 1988-03-03 1988-03-03 Low shrinkage high modulus polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050888A JP2551091B2 (en) 1988-03-03 1988-03-03 Low shrinkage high modulus polyester fiber

Publications (2)

Publication Number Publication Date
JPH01229807A true JPH01229807A (en) 1989-09-13
JP2551091B2 JP2551091B2 (en) 1996-11-06

Family

ID=12871276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050888A Expired - Lifetime JP2551091B2 (en) 1988-03-03 1988-03-03 Low shrinkage high modulus polyester fiber

Country Status (1)

Country Link
JP (1) JP2551091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456495A2 (en) * 1990-05-11 1991-11-13 Hoechst Celanese Corporation A drawn polyester yarn having a high tenacity, a high initial modulus and a low shrinkage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588119A (en) * 1981-07-03 1983-01-18 Asahi Chem Ind Co Ltd Polyester fiber suitable for reinforcing rubber
JPS6094619A (en) * 1983-10-21 1985-05-27 Toyobo Co Ltd Polyester fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588119A (en) * 1981-07-03 1983-01-18 Asahi Chem Ind Co Ltd Polyester fiber suitable for reinforcing rubber
JPS6094619A (en) * 1983-10-21 1985-05-27 Toyobo Co Ltd Polyester fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456495A2 (en) * 1990-05-11 1991-11-13 Hoechst Celanese Corporation A drawn polyester yarn having a high tenacity, a high initial modulus and a low shrinkage

Also Published As

Publication number Publication date
JP2551091B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
EP0546859B2 (en) Polyester filamentary yarn, polyester tire cord and production thereof
EP0311386B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JP2569720B2 (en) Industrial polyester fiber, method for producing the same, and processing cord for tire cord
EP2257664B1 (en) Undrawn polyethylene terephthalate (pet) fiber, drawn pet fiber, and tire-cord comprising the same
AU638680B2 (en) High strength polyester yarn for improved fatigue resistance
JP2687333B2 (en) Polyvinyl alcohol tire cord
EP2171140B1 (en) Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
US5547627A (en) Method of making polyester fiber
JP2013531143A (en) Polyester fiber and method for producing the same
JPH0210243B2 (en)
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JPH01229807A (en) High-elastic modulus polyester fiber with low shrinkage
JPS5812804A (en) Pneumatic tire
JP2882697B2 (en) Polyester fiber and method for producing the same
JPH0261109A (en) Polyester fiber
CN114174575B (en) Yarn for tire cord and tire cord
JPH02221412A (en) Polyester fiber for rubber-reinforcement having improved heat-resistant adhesivity and production thereof
JPS6335844A (en) Tire cord composed of polyvinyl alcohol fiber improved in flexural hardness
JPS63159518A (en) Polyester fiber
JPS60162830A (en) Polyester dip code and its production
JPH0232161B2 (en)
JPS63315608A (en) Polyester fiber
JPS6328931A (en) Tire cord composed of polyvinyl alcohol fiber improved in fatique resistance
JPS60197408A (en) Radial-ply tire
JPH0274612A (en) Conjugate fiber having high tenacity