JPS63315608A - Polyester fiber - Google Patents

Polyester fiber

Info

Publication number
JPS63315608A
JPS63315608A JP14763287A JP14763287A JPS63315608A JP S63315608 A JPS63315608 A JP S63315608A JP 14763287 A JP14763287 A JP 14763287A JP 14763287 A JP14763287 A JP 14763287A JP S63315608 A JPS63315608 A JP S63315608A
Authority
JP
Japan
Prior art keywords
tmf
pref
polyester
polyethylene terephthalate
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14763287A
Other languages
Japanese (ja)
Inventor
Toshiro Takahashi
高橋 俊郎
Kinsaku Nishikawa
西河 欣作
Hiroshi Yokoyama
博 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15434720&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS63315608(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP14763287A priority Critical patent/JPS63315608A/en
Priority to EP88305370A priority patent/EP0295147B1/en
Priority to DE19883883301 priority patent/DE3883301T2/en
Publication of JPS63315608A publication Critical patent/JPS63315608A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Abstract

PURPOSE:To provide the titled fiber of high strength, outstanding in durability, suitable, in particular for a rubber-reinforcing material, simultaneously satisfying specific physical properties such as intrinsic viscosity and strength, etc., constituted of polyethylene terephthalate. CONSTITUTION:The objective fiber constituted of polyethylene terephthalate or a polyester consisting mainly thereof, satisfying the following characteristics: 1 intrinsic viscosity >=0.91 (pref. >=1.0), 2 tenacity >=8.0g/d (pref. >=8.4g/d), 3 E2.25 (extension at a load 2.25g/d) <=4.5% (pref. <=3.5%) 4 DELTAHmf [heat of fusion at the peak determined by a differential scanning calorimeter (DSC)] >=11.5cal/g (pref. >=12.0cal/g) 5 Tmf-TmF (Tmf and TmF are melting point determined under a tension of 0.05g/d and tensionless state, respectively, using DSC) >=20 deg.C (pref. >=22 deg.C), 6 degree of amorphous orientation fa <=0.75.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度で耐久性に優れ、特にゴム補強用素材
として好適なポリエステル繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polyester fiber that has high strength and excellent durability and is particularly suitable as a rubber reinforcing material.

(従来の技術) ポリエチレンテレフタレート及びこれを主体とするポリ
エステルからなる繊維は、優れた力学的。
(Prior Art) Fibers made of polyethylene terephthalate and polyester mainly composed of polyethylene terephthalate have excellent mechanical properties.

熱的特性を有し、タイヤコード、■ベルトコンベアベル
トホース等の産業資材用素材として広く使用されている
。特にゴム補強用素材としての用途が最も大きな割合を
占めており、高強度で耐久性に優れているとともに、熱
収縮率、モジュラス等とのバランスの取れたポリエステ
ル繊維が要望されている。
It has thermal properties and is widely used as a material for industrial materials such as tire cords and belt conveyor belt hoses. In particular, polyester fibers are used most often as rubber reinforcing materials, and there is a demand for polyester fibers that have high strength and excellent durability, as well as a well-balanced thermal shrinkage rate and modulus.

従来、高強度のポリエステル繊維を得る方法として9例
えば特公昭41−7892号公報に見られるように、高
重合度のポリマーを用い、低応力で紡糸して分子配向を
抑制し、得られた未延伸糸をできるだけ高倍率で延伸す
る方法が良く知られている。
Conventionally, as a method for obtaining high-strength polyester fibers9, for example, as seen in Japanese Patent Publication No. 41-7892, a polymer with a high degree of polymerization is used and the molecular orientation is suppressed by spinning with low stress. A method of drawing drawn yarn at as high a magnification as possible is well known.

しかし、この方法では高強度の繊維は得られるものの、
非晶部が高配向化するため、熱収縮率が太き(、耐久性
が十分でない繊維しか得られない。
However, although this method yields high-strength fibers,
Because the amorphous portion is highly oriented, only fibers with a high heat shrinkage rate (and insufficient durability) can be obtained.

これに対して、比較的高重合度のポリマーを用い、高応
力で紡糸し、低倍率で延伸することにより、非晶部の配
向度を低くシ、熱収縮率が小さく。
On the other hand, by using a polymer with a relatively high degree of polymerization, spinning at high stress, and stretching at low magnification, the degree of orientation of the amorphous portion is low, and the heat shrinkage rate is low.

耐久性の良好な繊維を得る方法が提案されている(特開
昭53−58032号等)。しかしながら、この方法で
は、ゴム補強用素材として十分な高強度の繊維を得るこ
とは困難である。
A method for obtaining fibers with good durability has been proposed (Japanese Patent Application Laid-Open No. 58032/1983, etc.). However, with this method, it is difficult to obtain fibers with sufficient strength as a rubber reinforcing material.

また、ポリエステル繊維をゴム補強用素材として使用す
る場合、撚糸工程及びディップ工程(接着剤を付与し、
熱処理する工程)を通す必要があり、原糸性能は優れて
いても、これらの工程を経たディップコードの性能にお
いて満足できないことも多かった。
In addition, when using polyester fiber as a rubber reinforcing material, twisting process and dipping process (applying adhesive,
It is necessary to undergo a heat treatment step), and even though the yarn performance is excellent, the performance of the dip cord that has gone through these steps is often unsatisfactory.

(発明が解決しようとする問題点) 本発明は、高強度で耐久性に優れているとともに、熱収
縮率、モジュラス等とのバランスの取れたポリエステル
繊維であって、ディップコードにした後も優れた性能を
示すポリエステル繊維を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention is a polyester fiber that has high strength and excellent durability, and has a well-balanced thermal shrinkage rate, modulus, etc., and has excellent properties even after being made into a dip cord. The aim is to provide polyester fibers that exhibit superior performance.

(問題点を解決するための手段) 本発明の構成は1次のとおりである。(Means for solving problems) The configuration of the present invention is as follows.

ポリエチレンテレフタレート又はこれを主体とするポリ
エステルからなる繊維であって5次の(a)〜(flの
特性を同時に満足するポリエステル繊維。
A polyester fiber which is made of polyethylene terephthalate or a polyester mainly composed of polyethylene terephthalate, and which simultaneously satisfies the characteristics of the fifth order (a) to (fl).

(al固有粘度  : 0.91以上(好ましくは1.
0以上)(b)強  度  :8.0g/d以上(好ま
しくは8.4g/d以上) (C) E z、 zs    : 4.5%以下(好
ましくは3.5%以下) +d)△Hmf    : 11.5cal/ g以上
(好ましくは12.0cal/ g以上 (e)Tmf−TmF  :20℃以上(好ましくは2
2℃以上) (fl非晶配向度fa : 0.75以下ここで、E2
.25は荷重2.25 g / d時の伸度。
(al intrinsic viscosity: 0.91 or more (preferably 1.
0 or more) (b) Strength: 8.0 g/d or more (preferably 8.4 g/d or more) (C) E z, zs: 4.5% or less (preferably 3.5% or less) +d)△ Hmf: 11.5 cal/g or more (preferably 12.0 cal/g or more (e) Tmf-TmF: 20°C or more (preferably 2
2°C or higher) (fl amorphous orientation degree fa: 0.75 or lower, where E2
.. 25 is the elongation at a load of 2.25 g/d.

ΔHmfは示差走査熱量計(DSC)における融解ピー
クの熱量。
ΔHmf is the calorific value of the melting peak in differential scanning calorimeter (DSC).

Tmfは0.05 g / dの緊張状態で、 DSC
で測定された融点。
Tmf is 0.05 g/d under tension, DSC
Melting point measured at.

TmFは無緊張状態で、DSCで測定された融点。TmF is the melting point measured by DSC under stress-free conditions.

本発明におけるポリエステルは、ポリエチレンテレフタ
レート及びこれを主体とするポリエステルであり、各種
ジカルボン酸成分及びグリコール成分が10モル%程度
まで共重合されていてもよい。
The polyester in the present invention is polyethylene terephthalate or a polyester mainly composed of polyethylene terephthalate, and may be copolymerized with various dicarboxylic acid components and glycol components up to about 10 mol %.

そして、耐熱性を向上させるため、エポキシ化合物、カ
ーボネート化合物、カルボジイミド化合物。
And epoxy compounds, carbonate compounds, and carbodiimide compounds to improve heat resistance.

イミノエーテル化合物等を反応させて末端カルボキシル
基量を低下させたものが好ましい。
Preferably, the amount of terminal carboxyl groups is reduced by reacting with an iminoether compound or the like.

次に1本発明のポリエステル繊維の特性値について説明
する。
Next, the characteristic values of the polyester fiber of the present invention will be explained.

まず9本発明のポリエステル繊維は、フェノールとテト
ラクロルエタンとの等重量混合溶媒を使用し、温度20
℃で測定した固有粘度が0.91以上の高分子量のもの
でなければならなず、特に固有粘度1.0以上のものが
好ましい。これは繊維が高強度を示すとともに、耐久性
向上に関与するタイ分子(tie molecule)
の形成を増大させるために必要な要件である。
First, the polyester fiber of the present invention is produced using a mixed solvent of equal weight of phenol and tetrachloroethane at a temperature of 20°C.
It must have a high molecular weight and have an intrinsic viscosity of 0.91 or more when measured at °C, and those with an intrinsic viscosity of 1.0 or more are particularly preferred. This is because the fiber exhibits high strength and also contains tie molecules that are involved in improving durability.
This is a necessary requirement to increase the formation of

強度は、JIS L−1017の方法に準じて測定した
値。
The strength is a value measured according to the method of JIS L-1017.

すなわち、荷重−伸長試験における切断時の荷重を、測
定前の実測繊度で除した値であり、8.0g/d以上、
好ましくは8.4g/d以上であることが必要である。
In other words, it is the value obtained by dividing the load at the time of cutting in the load-elongation test by the actual fineness before measurement, which is 8.0 g / d or more,
Preferably, it needs to be 8.4 g/d or more.

またl E2.25は1強度測定時の荷重−伸長曲線に
おいて、荷重2.25 g / dの時点での伸度を示
し。
In addition, lE2.25 indicates the elongation at a load of 2.25 g/d in the load-elongation curve during 1 strength measurement.

コンピュータ処理により求められ、4.5%以下。Determined by computer processing, 4.5% or less.

好ましくは3.5%以下であることが必要である。It is preferably 3.5% or less.

この値が小さいことは、中間モジュラスが高いことを意
味し、ディップ処理工程におけるディップ伸び現象を小
さくシ、高強力、高ヤング率を発現させるのに必須の要
件である。
A small value means a high intermediate modulus, which is an essential requirement for minimizing the dip elongation phenomenon in the dip treatment process and achieving high strength and Young's modulus.

ΔHmfは、パーキンエルマー社製示差走査熱量計DS
C−2C型を使用し、試料(原糸)重量3mgr 昇温
速度20℃/分1窒素雰囲気下で測定したもので。
ΔHmf is a PerkinElmer differential scanning calorimeter DS
Measurements were made using C-2C type under a nitrogen atmosphere at a sample (original yarn) weight of 3 mgr and a heating rate of 20°C/min.

11.5cal/ g以上、好ましくは12.0cal
/ g以上であることが必要である。この値は、繊維の
結晶化の程度に依存し、結晶部を主とした繊維の微細構
造の完成度を示すものであって、この値が大きいことは
繊維が高強力、高モジュラス及び高耐久性を有すること
を示すものである。
11.5 cal/g or more, preferably 12.0 cal
/ g or more. This value depends on the degree of crystallization of the fiber and indicates the completeness of the fiber's microstructure, which is mainly composed of crystalline parts. A large value indicates that the fiber has high strength, high modulus, and high durability. This indicates that the person has a sexual nature.

繊維の融点(Tmf及びT mF)は、原糸のモノフィ
ラメント3mgを、長さ10mm、幅31醜、厚さ0.
51の銅板に、0.05g/dの荷重下又は無荷重下で
The melting points (Tmf and TmF) of the fibers are as follows: 3 mg of raw monofilament is 10 mm long, 31 mm wide, and 0.0 mm thick.
51 copper plate under a load of 0.05 g/d or under no load.

511幅に巻き付け、試料の先端を結び、余剰の銅板を
切り落とした後、ΔHmfの測定と同一条件で測定した
値である。なお、 DSCのレファレンス側のセルには
同形状の銅板を挿入しておく。
This is a value measured under the same conditions as the measurement of ΔHmf after winding the sample to a width of 511 mm, tying the tip of the sample, and cutting off the excess copper plate. Note that a copper plate of the same shape is inserted into the reference side cell of the DSC.

TmFは通常の融点であるが、Tmfはタイ分子に起因
するスーパーヒーティング性を示す値であり。
TmF is a normal melting point, but Tmf is a value indicating superheating property due to tie molecules.

本発明の繊維はTmf−TmF (=ΔT)の値が20
℃以上、好ましくは22°C以上であることを特徴とす
るものである。ΔTの値はタイ分子形成量の重要な指標
をなすものであり、この値が大きい繊維はタイ分子が繊
維の結晶部と非晶部との連結を強固にすることから1特
に結晶と非晶との境界で起こる破断現象の防止に有効に
寄与し、結果として高強力、高耐久性を示すことになる
The fiber of the present invention has a Tmf-TmF (=ΔT) value of 20
℃ or higher, preferably 22°C or higher. The value of ΔT is an important indicator of the amount of tie molecules formed, and fibers with a large value have a strong connection between the crystalline and amorphous parts of the fiber. This effectively contributes to the prevention of the rupture phenomenon that occurs at the boundary with the steel, and as a result, it exhibits high strength and high durability.

また、非晶配向度faは、複屈折Δn、結晶結晶化度X
高結晶有複屈折Δn c(=0.220) 、非晶の固
有複屈折Δna(=0.275)及び結晶配列関数fc
から次式で求められる。
In addition, the amorphous orientation fa is the birefringence Δn, the crystallinity X
Highly crystalline birefringence Δn c (=0.220), amorphous intrinsic birefringence Δna (=0.275) and crystal orientation function fc
It can be obtained from the following formula.

ここで、Δnは1通常の偏光顕微鏡を使用するベレンク
コンペンセーター法で求められ、fcは。
Here, Δn is determined by the Berenck compensator method using a normal polarizing microscope, and fc is.

広角X線回折で測定された平均配向角、すなわち回折パ
ターンの平均角度中について解析して得られる平均配向
角θを用い2次式で求められる。
It is determined by a quadratic equation using the average orientation angle measured by wide-angle X-ray diffraction, that is, the average orientation angle θ obtained by analyzing the average angle of the diffraction pattern.

fc = 1/ 2 (acos2θ−1)Xは、リグ
ロインと四塩化炭素とからなる密度勾配管法で、25℃
で測定された試料の密度ρ、結晶密度ρc(= 1.4
55g/ cnり及び非晶密度ρa(=1.335g/
crAから次式で求められる。
fc = 1/2 (acos2θ-1)X is a density gradient tube method consisting of ligroin and carbon tetrachloride at 25°C.
The density ρ of the sample measured at ρ, the crystal density ρc (= 1.4
55g/cn and amorphous density ρa (=1.335g/
It is determined from crA using the following formula.

faは、ポリエステル繊維をゴム補強材とじて用いたと
き1繰り返される伸長圧縮疲労に対する耐久性に関与す
るもので1本発明のポリエステル繊維は、faが0.7
5以下でなければならない。
fa is involved in the durability against elongation and compression fatigue that is repeated once when polyester fibers are used as a rubber reinforcing material.The polyester fiber of the present invention has an fa of 0.7.
Must be 5 or less.

なお5本発明のポリエステル繊維のfcは、特に限定さ
れるものではないが、 0.94程度の値を示す。また
、Xの値は、 0.40〜0.45程度である。
Note that the fc of the polyester fiber of the present invention is not particularly limited, but exhibits a value of about 0.94. Moreover, the value of X is about 0.40 to 0.45.

上記の各特性を同時に満足する本発明のポリエステル繊
維は、高強度で耐久性に優れているとともに、熱収縮率
、モジュラス等とのバランスの取れたポリエステル繊維
であって、ディップコードにした後も優れた性能を示す
ポリエステル繊維である。
The polyester fiber of the present invention, which satisfies each of the above characteristics at the same time, is a polyester fiber that has high strength and excellent durability, and has a well-balanced thermal shrinkage rate, modulus, etc., and even after being made into a dip cord. It is a polyester fiber that exhibits excellent performance.

次に5本発明のポリエステル繊維の製造法について説明
する。
Next, the method for manufacturing polyester fiber of the present invention will be explained.

まず1重縮合装置からの高粘度の溶融ポリエステルを直
接紡糸機に導くか1あるいは一旦チツブ化した高粘度の
ポリエステルをエクストルーダー等により溶融して紡糸
機に導き、常法により紡出し、700〜5000m/m
in程度の速度で引き取る。この際3通常、紡糸時の粘
度低下を見込んで、目的とする繊維の固有粘度よりも若
干高い粘度のポリエステルを使用する。
First, the high viscosity molten polyester from the single polycondensation device is directly introduced into the spinning machine, or the high viscosity polyester that has been made into a single layer is melted using an extruder, etc. and introduced into the spinning machine, and then spun using a conventional method. 5000m/m
Pick it up at a speed of about 100 mph. In this case, 3 usually a polyester with a viscosity slightly higher than the intrinsic viscosity of the target fiber is used in anticipation of a decrease in viscosity during spinning.

紡糸に際しては、冷却を均一にし、糸条の均斉度を高め
るため、糸条のフィラメント数、単糸デニール、紡糸口
金の吐出孔の孔径及び配列、紡糸温度、加熱フードの長
さ、冷却ゾーンの長さ、冷却風の温度、速度、吹きつけ
方法(円周吹きつけ又は横吹きつけ)等を、ポリエステ
ルの固有粘度や紡糸速度との関連において、最適な組み
合わせとすることが必要である。
During spinning, in order to uniformly cool the yarn and improve the uniformity of the yarn, the number of filaments in the yarn, the single yarn denier, the diameter and arrangement of the spinneret discharge holes, the spinning temperature, the length of the heating hood, and the size of the cooling zone are controlled. It is necessary to optimally combine the length, cooling air temperature, speed, blowing method (circumferential blowing or horizontal blowing), etc. in relation to the intrinsic viscosity of the polyester and the spinning speed.

本発明のポリエステル繊維を得るには、高応力紡糸法を
採用することが必要で、紡出糸の応力が0゜05〜1.
0g/dとなるようにすることが望ましい。紡出糸のの
応力を高める方法としては、紡糸速度(引取速度)を太
き(する方法や紡出糸の冷却を速める方法等が採用され
る。そして、未延伸糸の複屈折が15 X 10−3以
上、好ましくは25X10−’〜70 X 10− ’
となるようにする。
In order to obtain the polyester fiber of the present invention, it is necessary to employ a high stress spinning method, and the stress of the spun yarn is 0°05 to 1.0°.
It is desirable to set it to 0 g/d. As a method for increasing the stress of the spun yarn, methods such as increasing the spinning speed (take-up speed) or speeding up the cooling of the spun yarn are adopted. 10-3 or more, preferably 25X10-' to 70X10-'
Make it so that

次いで、この未延伸糸を加熱ローラ、加熱プレート、ス
チームジェット等により加熱しながら。
Next, this undrawn yarn is heated using a heating roller, a heating plate, a steam jet, etc.

1段又は多段で延伸する。延伸は、紡糸に連続して行う
スピンドロー法でも、一旦未延伸糸を巻き取った後延伸
する二工程法のいずれの方法によってもよい。延伸倍率
は、紡糸時の紡糸応力と延伸温度及び時間の組み合わせ
により最適な条件が選ばれる。
Stretch in one stage or in multiple stages. Stretching may be carried out by either a spin-draw method performed continuously after spinning, or a two-step method in which the undrawn yarn is once wound up and then stretched. The optimum stretching ratio is selected depending on the combination of spinning stress during spinning, stretching temperature and time.

(実施例) 次に1本発明を実施例により具体的に説明する。(Example) Next, one embodiment of the present invention will be specifically explained using examples.

実施例 第1表に示した固有粘度のポリエチレンテレフタレート
チップにN−グリシジルフタルイミドを第1表に示した
量で添加し/エクストルーダー型溶融紡糸機に供給し、
紡糸温度300〜310℃(この範囲で最適温度に設定
)で、直径0 、6 xxの吐出孔を252個有する紡
糸口金を用いて紡出し、雰囲気温度周方向から吹きつけ
て冷却し、オイリングローラで紡糸油剤を付与した後1
85℃に加熱された引取ローラで、 2000m / 
m i nの速度で引き取り、第1表に示す複屈折の未
延伸糸を得た。 (この際の紡糸応力は、 0.08〜
0.20g/dの範囲であった。)なお、未延伸糸の複
屈折は、引取ローラを非加熱にして、これに未延伸糸を
巻きつけて試料を採取して測定したものである。
Example N-glycidyl phthalimide was added in the amount shown in Table 1 to polyethylene terephthalate chips having an intrinsic viscosity shown in Table 1, and the chips were fed to an extruder type melt spinning machine.
Spinning is performed at a spinning temperature of 300 to 310°C (set to the optimum temperature within this range) using a spinneret having 252 discharge holes with diameters of 0 and 6 xx, cooled by blowing from the circumferential direction at the ambient temperature, and After applying the spinning oil in 1
2000m/2000m with a take-off roller heated to 85℃
The yarn was taken off at a speed of min to obtain an undrawn yarn with birefringence shown in Table 1. (The spinning stress at this time is 0.08~
It was in the range of 0.20 g/d. ) The birefringence of the undrawn yarn was measured by taking a sample by winding the undrawn yarn around the take-up roller without heating it.

そして、未延伸糸を巻き取ることなく、前記加熱引取ロ
ーラと非加熱の第1ネルソンローラとの間で延伸倍率1
.45で第1段延伸し5次いで第1ネルソンローラと2
40℃に加熱された第2不ルソンローラとの間で、40
0℃のスチームジェット装置を通して1第2段延伸し、
第2ネルソンローラと100℃に加熱された弛緩ローラ
との間で、第1表に示す弛緩率で弛緩しながら巻き取っ
た。なお、第2段延伸倍率は、弛緩率を考慮して第1表
に示した全延伸倍率となる倍率とした。
Then, without winding up the undrawn yarn, the drawing ratio is 1 between the heated take-off roller and the unheated first Nelson roller.
.. First stage stretching with 45, then first nelson roller and 2
40°C between the second Furson roller heated to 40°C.
1 second stage stretching through a steam jet device at 0°C;
The film was wound up between a second Nelson roller and a relaxation roller heated to 100° C. while being relaxed at the relaxation rate shown in Table 1. Note that the second stage stretching ratio was set to the total stretching ratio shown in Table 1 in consideration of the relaxation rate.

得られた1000d/252 fの延伸糸(原糸)の物
性を第1表に示す。
Table 1 shows the physical properties of the obtained 1000 d/252 f drawn yarn (original yarn).

なお、延伸糸の弛緩率を変えることによって生じるデニ
ール変化は1吐出量を調整することにより調整した。得
られた延伸糸の末端カルボキシル基量は、すべて9.5
〜10.8 g e q /10’ gポリマーの範囲
であった。
Note that the denier change caused by changing the relaxation rate of the drawn yarn was adjusted by adjusting the discharge amount. The terminal carboxyl group content of the drawn yarns obtained was all 9.5.
~10.8 g eq /10'g polymer.

また、この原糸に1 リング撚糸機によりZ方向に49
回/10c+oの下撚をかけ1次いで2本を合糸しなか
らS方向に49回/10印の上撚をかけて生コードを製
造し1次いで、リッッラー社製シングルディソビングマ
シンを使用してディップ処理し、ディップコードとした
In addition, this yarn is twisted by 49 in the Z direction using a 1-ring twisting machine.
After twisting 10 times/10 c+o, first, then doubling the two strands, then twisting 49 times/10 marks in the S direction to produce a raw cord, and then using a single dissolving machine made by Riller. It was then subjected to dip treatment and made into a dip cord.

なお、ディップ処理の条件及びディップコードの性能の
評価法は1次のとおりである。
Note that the conditions for dipping treatment and the method for evaluating the performance of the dip code are as follows.

ディップ几 の条 ■ディップ液 レゾルシンーホルマリンーゼンタンクラテソクス液(レ
ゾルシンとホルムアルデヒドとのモル比1:1.2の反
応物1重量部に対して、固形分として4.3重量部のラ
テックスを混合した濃度20重量%の液で、Na0I−
1でpH9,5に調整したもの)83重量部とバルカボ
ンドE 17重量部とからなる混合液。
Dip solution ■ Dip liquid Resorcinol-Formalin-Zentan Crateox solution (4.3 parts by weight of latex as a solid content for 1 part by weight of the reactant with a molar ratio of resorcin and formaldehyde of 1:1.2) The mixed solution with a concentration of 20% by weight is Na0I-
A mixed solution consisting of 83 parts by weight of Vulkabond E (adjusted to pH 9.5 in Example 1) and 17 parts by weight of VALKABOND E.

ここで、ゼンタソクラテックスは、ゼネラルタイヤ社の
商品名で、ブタジェン−スチレン−ビニルビリジン系ラ
テックスでり、バルカボンドEは。
Here, Zentasocratex is a trade name of General Tire Co., Ltd., and is a butadiene-styrene-vinylpyridine-based latex, and Vulkabond E is a product name of General Tire Company.

バルナックス社の商品名で、2,6−ビス(2’、4’
−ジヒドロキシフェニル−4−クロロフェノールの固形
分濃度20重量%のアンモニア水溶液である。
It is a product name of Barnax Co., Ltd., and is a 2,6-bis (2', 4'
This is an ammonia aqueous solution of -dihydroxyphenyl-4-chlorophenol with a solid content concentration of 20% by weight.

■ディップ処理の乾燥、熱処理条件 乾燥ゾーン     80℃×30秒 キユアリングゾーン 240℃×80秒×2回ディップ
張力    0.5kg/コード(4、5kg中間伸度
4.0%に設定)ディップコードの 箭 ■引張特性 JIS L 1017法に準じて測定した。ただし、熱
収縮率は、180℃×30分の条件で測定した。
■Drying and heat treatment conditions for dip treatment Drying zone: 80℃ x 30 seconds Curing zone: 240℃ x 80 seconds x 2 times Dip tension: 0.5kg/cord (4, 5kg intermediate elongation set at 4.0%) Dip cord - Tensile properties Measured according to JIS L 1017 method. However, the heat shrinkage rate was measured under the conditions of 180°C x 30 minutes.

■疲労性 JIS L 1017. グツドイヤー法マロリーチュ
ーブテスト法に準じて、チューブテスターの角度60度
及び90度1回転速度35Qrpm、 30分反転下に
測定した。
■Fatigue JIS L 1017. According to the Goodyear method and Mallory tube test method, the measurement was carried out using a tube tester at angles of 60 degrees and 90 degrees, at a rotational speed of 35 Qrpm, and with inversion for 30 minutes.

角度が60度のときは、3時間疲労させた後、ゴムから
注意深くコードを取り出し、引張強力を測定して1強力
保持率を求めた。
When the angle was 60 degrees, after 3 hours of fatigue, the cord was carefully removed from the rubber, the tensile strength was measured, and the 1 strength retention rate was determined.

また、角度が90度のときは、疲労によりチューブが破
裂するまでの時間(分)を測定した。
Further, when the angle was 90 degrees, the time (minutes) until the tube burst due to fatigue was measured.

ディップコードの性能を第1表に示す。The performance of the dip cord is shown in Table 1.

第1表の結果から分かるように1本発明で規定する各特
性を同時に満足するポリエステル繊維は。
As can be seen from the results in Table 1, there is one polyester fiber that simultaneously satisfies each of the characteristics specified in the present invention.

ゴム補強用素材としての性能を直接表すディップコード
性能において1強度、熱収縮率、モジュラスと耐疲労性
で代表される耐久性等とのトークルハランスに優れた。
In terms of dip cord performance, which directly indicates the performance as a rubber reinforcing material, it has excellent torque resistance in terms of strength, heat shrinkage rate, modulus, and durability represented by fatigue resistance.

ゴム補強用素材として好ましいものであり、特に11m
5〜8のものは著しく性能の優れたものである。
It is preferable as a material for rubber reinforcement, especially 11m
Those with scores 5 to 8 have extremely excellent performance.

第1表 本コード取り出し不可能 庄 +1lN−グリZ尋フ外イ:Fmt量の単位は重量
%である。
Table 1: Main code cannot be removed.

t2Hbl〜8力慣施例で、1m9〜11は比較例、 
1m12は市販の高強力タイプポリエステル繊維の列を
示す参考例である。
t2Hbl~8 force conventional example, 1m9~11 is a comparative example,
1 m12 is a reference example showing a row of commercially available high-strength type polyester fibers.

(発明の効果) 本発明によれば、高強度で耐久性に優れているとともに
、熱収縮率、モジュラス等とのバランスの取れたポリエ
ステル繊維であって、ディップコードにした後も優れた
性能を示すゴム補強用素材として好適なポリエステル繊
維が提供される。
(Effects of the Invention) According to the present invention, the polyester fiber has high strength and excellent durability, and has a well-balanced thermal shrinkage rate, modulus, etc., and has excellent performance even after being made into a dip cord. Polyester fibers suitable as rubber reinforcing materials are provided.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリエチレンテレフタレート又はこれを主体とす
るポリエステルからなる繊維であって、次の(a)〜(
f)の特性を同時に満足するポリエステル繊維。 (a)固有粘度:0.91以上 (b)強度:8.0g/d以上 (c)E_2_._2_5:4.5%以下 (d)△Hmf:11.5cal/g以上 (e)Tmf−TmF:20℃以上 (f)非晶配向度fa:0.75以下 ここで、E_2_._2_5は荷重2.25g/d時の
伸度、△Hmfは示差走査熱量計(DSC)における融
解ピークの熱量、 Tmfは0.05g/dの緊張状態で、DSCで測定さ
れた融点、 TmFは無緊張状態で、DSCで測定された融点。
(1) A fiber made of polyethylene terephthalate or a polyester mainly composed of polyethylene terephthalate, which has the following properties (a) to (
A polyester fiber that simultaneously satisfies the characteristics f). (a) Intrinsic viscosity: 0.91 or more (b) Strength: 8.0 g/d or more (c) E_2_. _2_5: 4.5% or less (d) ΔHmf: 11.5 cal/g or more (e) Tmf-TmF: 20°C or more (f) Amorphous orientation fa: 0.75 or less, where E_2_. _2_5 is the elongation at a load of 2.25 g/d, ΔHmf is the heat value of the melting peak in a differential scanning calorimeter (DSC), Tmf is the melting point measured by DSC under tension of 0.05 g/d, TmF is Melting point measured by DSC under tension.
JP14763287A 1987-06-12 1987-06-12 Polyester fiber Pending JPS63315608A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14763287A JPS63315608A (en) 1987-06-12 1987-06-12 Polyester fiber
EP88305370A EP0295147B1 (en) 1987-06-12 1988-06-13 High strength polyester yarn
DE19883883301 DE3883301T2 (en) 1987-06-12 1988-06-13 Polyester yarn with high strength.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14763287A JPS63315608A (en) 1987-06-12 1987-06-12 Polyester fiber

Publications (1)

Publication Number Publication Date
JPS63315608A true JPS63315608A (en) 1988-12-23

Family

ID=15434720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14763287A Pending JPS63315608A (en) 1987-06-12 1987-06-12 Polyester fiber

Country Status (3)

Country Link
EP (1) EP0295147B1 (en)
JP (1) JPS63315608A (en)
DE (1) DE3883301T2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569720B2 (en) * 1988-05-09 1997-01-08 東レ株式会社 Industrial polyester fiber, method for producing the same, and processing cord for tire cord
US5067538A (en) * 1988-10-28 1991-11-26 Allied-Signal Inc. Dimensionally stable polyester yarn for highly dimensionally stable treated cords and composite materials such as tires made therefrom
DE69031949T2 (en) * 1989-08-04 1998-08-06 Kao Corp POLYESTER FIBER
ID846B (en) * 1991-12-13 1996-08-01 Kolon Inc FIBER YARN, POLYESTER TIRE THREAD AND HOW TO PRODUCE IT
JP6539329B2 (en) * 2017-11-15 2019-07-03 旭化成株式会社 Ultra-high molecular weight polyethylene fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116414A (en) * 1982-12-24 1984-07-05 Unitika Ltd Polyester yarn for reinforcing rubber
JPS6088120A (en) * 1983-10-20 1985-05-17 Asahi Chem Ind Co Ltd Polyester yarn

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966867A (en) * 1968-08-31 1976-06-29 Akzona Incorporated Manufacture of unique polyethylene terephthalate fiber
US4070432A (en) * 1975-02-13 1978-01-24 Allied Chemical Corporation Production of low shrink polyester fiber
JPS57154410A (en) * 1981-03-13 1982-09-24 Toray Ind Inc Polyethylene terephthalate fiber and its production
US4690866A (en) * 1984-07-09 1987-09-01 Teijin Limited Polyester fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116414A (en) * 1982-12-24 1984-07-05 Unitika Ltd Polyester yarn for reinforcing rubber
JPS6088120A (en) * 1983-10-20 1985-05-17 Asahi Chem Ind Co Ltd Polyester yarn

Also Published As

Publication number Publication date
EP0295147B1 (en) 1993-08-18
DE3883301T2 (en) 1993-12-09
DE3883301D1 (en) 1993-09-23
EP0295147A2 (en) 1988-12-14
EP0295147A3 (en) 1989-10-11

Similar Documents

Publication Publication Date Title
JP2914385B2 (en) Dimensionally stable polyester yarn for high tenacity treatment cord
US4690866A (en) Polyester fiber
EP0546859B1 (en) Polyester filamentary yarn, polyester tire cord and production thereof
JPS63528B2 (en)
EP0812370B1 (en) Polyester filamentary yarn, polyester tire cord and production thereof
KR930003222B1 (en) Polyester fiber and method of manufacturing same
JP3886360B2 (en) Method for producing polyester multifilament yarn
JPH0210243B2 (en)
US6878326B2 (en) Process for preparing industrial polyester multifilament yarn
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
JPH0246689B2 (en)
JPS6141320A (en) Polyester fiber
US4956446A (en) Polyester fiber with low heat shrinkage
JPS63315608A (en) Polyester fiber
US20050161854A1 (en) Dimensionally stable yarns
JP2882697B2 (en) Polyester fiber and method for producing the same
JPS59116414A (en) Polyester yarn for reinforcing rubber
JPH0450407B2 (en)
JPH11350249A (en) Polyester fiber for v-belt reinforcement and its production and cord for v-belt reinforcement
EP4190953A1 (en) Polyethylene yarn having improved post-processability, and fabric comprising same
JPS63243319A (en) Polyamide fiber
KR100233305B1 (en) Polyester filament of tire cord
JPS60246811A (en) Industrial polyester fiber
JPH036247B2 (en)
JPS6134216A (en) Nylon 66 fiber having high strength and high fatigue resistance, and its manufacture