JPH01217866A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH01217866A
JPH01217866A JP63041684A JP4168488A JPH01217866A JP H01217866 A JPH01217866 A JP H01217866A JP 63041684 A JP63041684 A JP 63041684A JP 4168488 A JP4168488 A JP 4168488A JP H01217866 A JPH01217866 A JP H01217866A
Authority
JP
Japan
Prior art keywords
contact
plate
electrolyte
electrode plate
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63041684A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
弘 田中
Eiji Okamoto
英治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63041684A priority Critical patent/JPH01217866A/en
Publication of JPH01217866A publication Critical patent/JPH01217866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase low rate discharge capacity and high rate discharge capacity by bringing a glass fiber mat having a specified fiber diameter into contact with a positive plate and bringing a rib-installed porous plate or corrugated porous plate into contact with a negative plate. CONSTITUTION:A glass fiber mat having a mean fiber diameter of 10mum or less is brought into contact with a positive plate 1, and a corrugated porous plate or a rib installed porous plate 3 mainly comprising synthetic resin or cellulose is brought into contact with a negative plate so that ribs are locatated on the negative electrode side. When the content of a gelling agent such as silicic anhydride is reduced, the gel is decomposed by physical excitement of oxygen gas evolved from the positive plate and free solution produced is absorbed in the glass fiber mat to prevent the fluidity of an electrolyte. The content of a gelling agent is therefore reduced without producing free electrolyte. Since the porous plate is not closely brought into contact with the negative plate, oxygen gas evolved from the positive plate is transferred on the surface of the negative plate. Therefore, reaction efficiency in a sealed battery is increased and loss of electrolyte during charge-discharge cycle is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良、特に低率および高率放
電性能に優れ、かつ長寿命の密閉式鉛蓄電池に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in sealed lead-acid batteries, and particularly to sealed lead-acid batteries with excellent low-rate and high-rate discharge performance and long life.

従来の技術とその問題点 密閉式鉛蓄電池では無漏液化のために、電解液を非流動
化している。現在、電解液を非流動化する方式として、
電解液に無水ゲイ酸などを添加してゲル化する方式(ゲ
ル式電池゛〉と吸液性に優れたガラス繊維マットを隔離
体に用いて正・負極板および隔M体に電解液を保持させ
る方式(リテーナ式電池)とがある。
Conventional technology and its problems In sealed lead-acid batteries, the electrolyte is made non-fluidized to ensure no leakage. Currently, as a method to make the electrolyte non-fluid,
A method in which gelation is achieved by adding gaic acid anhydride to the electrolyte (using a gel type battery and a glass fiber mat with excellent liquid absorption as a separator to hold the electrolyte on the positive and negative electrode plates and the separator M) There is a method (retainer type battery).

リテーナ式電池では、電解液量を正・負極板および隔離
体への吸収、ffl持限度量以下とする必要があるので
電解液量によって制限される低率放電容量が小さいこと
と、隔離体として用いるガラス繊維マットが高価である
という欠点があった。
In retainer type batteries, the amount of electrolyte must be below the absorption and ffl retention limit of the positive and negative electrode plates and separators, so the low rate discharge capacity limited by the amount of electrolyte is small, and The disadvantage is that the glass fiber mat used is expensive.

一方、ゲル式電池では電解液自身がゲル化によって非流
動化されているために、正・負極板および隔離体への吸
収、保持限度量以上の電解液量とすることができるので
低率放電容量は優れているが、電解液がゲル化されてい
るため電解液中の硫酸イオンの拡散速度が遅く、硫酸イ
オンの拡散速度によって制限される高率放電容量が劣っ
ている。
On the other hand, in gel type batteries, the electrolyte itself is non-fluid due to gelation, so the amount of electrolyte can be absorbed into the positive and negative electrode plates and the separator, and the amount of electrolyte can exceed the retention limit, resulting in low rate discharge. Although the capacity is excellent, since the electrolyte is gelled, the diffusion rate of sulfate ions in the electrolyte is slow, and the high rate discharge capacity, which is limited by the diffusion rate of sulfate ions, is poor.

このゲル式電池で高率放電容量を改善するには無水ケイ
酸などのゲル化剤の添加量を少なくして電解液中の硫酸
イオンが拡散し易くすれば良いが、ゲル化剤の添加量を
少なくすると、過充電中に正極板より発生する酸素ガス
の物理的刺激によってゲルがこわれて電解液が遊離し、
この遊離した電解液が流動液となって漏液の原因となる
ので、ゲル化剤の添加量を少なくすることは困難であっ
た。
In order to improve the high rate discharge capacity of this gel type battery, it is possible to reduce the amount of gelling agent such as anhydrous silicic acid to make it easier for sulfate ions in the electrolyte to diffuse, but the amount of gelling agent added When the battery is lowered, the gel is broken due to the physical stimulation of oxygen gas generated from the positive electrode plate during overcharging, and the electrolyte is liberated.
Since this liberated electrolyte becomes a flowing liquid and causes leakage, it has been difficult to reduce the amount of gelling agent added.

間組点を解決するための手段 本発明はこの様な欠点を除去するもので、電解液を無水
ケイ酸などでゲル化させた密閉式鉛蓄電池において、平
均繊維径10μ以下の吸液性に優れたガラス繊維マット
を正極板に当接させ、別のリブ付または波形多孔体を負
極板に当接させることによって、ゲル式電池の高率放電
容量および寿命性能を改善し、低率および高率放電性能
が優れ、かつ長寿命の密閉式鉛蓄電池の製造を可能とす
るものである。
Means for Solving the Interlocking Point The present invention is intended to eliminate such drawbacks, and is intended to provide a sealed lead-acid battery in which the electrolyte is gelled with anhydrous silicic acid, etc., and has excellent liquid absorption properties with an average fiber diameter of 10μ or less. By applying a glass fiber mat against the positive plate and another ribbed or corrugated porous material against the negative plate, the high rate discharge capacity and life performance of the gel battery can be improved, and the low rate and high rate This makes it possible to manufacture sealed lead-acid batteries with excellent discharge performance and long life.

実施例 以下、本発明密閉式鉛蓄電池を実施例により詳細に説明
する。
EXAMPLES Hereinafter, the sealed lead-acid battery of the present invention will be explained in detail with reference to examples.

第1図は本発明電池に用いる極板群の各構成要素を配列
順に示す斜視図であり、1は正極板、2は負極板である
。正・負極板1,2間には合成樹脂よりなるリブ付微孔
性多孔体゛3と平均繊維径5μのガラス繊維マット4と
を重ね合わせな隔離体5が挿入されている。
FIG. 1 is a perspective view showing the constituent elements of the electrode plate group used in the battery of the present invention in the order in which they are arranged; 1 is a positive electrode plate, and 2 is a negative electrode plate. A separator 5 is inserted between the positive and negative electrode plates 1 and 2. The separator 5 is composed of a ribbed microporous body 3 made of synthetic resin and a glass fiber mat 4 having an average fiber diameter of 5 μm.

負極板に合Q2樹脂より成るリブ付多孔体(リブを負極
板に当接)またはセルロースより成る波形多孔体を、正
極板に平均繊維径がそれぞれ20μ。
A ribbed porous material made of Q2 resin (ribs in contact with the negative electrode plate) or a corrugated porous material made of cellulose was used as the negative electrode plate, and an average fiber diameter of 20 μm was used as the positive electrode plate, respectively.

10μ、5μのガラス繊維マットを当接させて極板群を
組立て、種々の8102濃度で電jIf液をゲル化させ
た密閉式鉛蓄電池を試作し、低率(20hR)および高
率(1hR)放電試験と過充電試@ (0,05Cx1
0h)とを行い、その放電容量と過充電後のセル当たり
の流動液量を求めた。その結果を第1表に示す。なお、
セル当たりの全電解液量は60 Jlとした。
By assembling electrode plates by bringing glass fiber mats of 10μ and 5μ into contact, we prototyped sealed lead-acid batteries with gelatinized JIF liquid at various 8102 concentrations, and tested them at low rate (20hR) and high rate (1hR). Discharge test and overcharge test @ (0,05Cx1
0 h) to determine the discharge capacity and the amount of flowing liquid per cell after overcharging. The results are shown in Table 1. In addition,
The total amount of electrolyte per cell was 60 Jl.

第1表から明らかなように、ゲル式電池でSiO□添加
量を少なくすると低率放電容量、高率放電容量のいずれ
も改善され、特に高率放電容量が大きく改善されること
がわかる。
As is clear from Table 1, when the amount of SiO□ added in a gel type battery is reduced, both the low rate discharge capacity and the high rate discharge capacity are improved, and in particular, the high rate discharge capacity is greatly improved.

しかし、SiO□添加量を少なくすると過充電時に正極
板より発生する酸素ガスの物理的刺激によってゲルがこ
われて遊離電解液が生じ、従来品(NO,1〜3)の様
に吸液性の乏しいガラス繊維マット(平均wJ維径20
μ)を使用している場合にはこの遊M電解液が流動液と
してセル内に残り、漏液の原因となるのでSin、添加
量を少なくすることができない。
However, if the amount of SiO Poor glass fiber mat (average wJ fiber diameter 20
When using .mu.), the free M electrolyte remains in the cell as a fluid and causes leakage, so the amount of Sin added cannot be reduced.

第1表 ところが、本発明品< No、 5〜7)の様に平均繊
維径10μ以下の吸液性の優れたガラス繊維マットを正
極板に当接させた場合には酸素ガスの物理的刺激によっ
てゲルがこわれて生じた遊離電解液をガラス繊維マット
が直ちに吸収して非流動化するために、漏液の原因とな
る流動液を生じさせることなしに5in2添加量を少な
くでき、高率放電容量を大幅に改善することが可能とな
る。
However, when a glass fiber mat with excellent liquid absorption properties and an average fiber diameter of 10μ or less is brought into contact with the positive electrode plate, as in the products of the present invention <No. 5 to 7), physical stimulation of oxygen gas occurs. Since the glass fiber mat immediately absorbs the free electrolyte generated by the gel being broken and makes it non-fluid, the amount of 5 in 2 added can be reduced without creating a fluid liquid that can cause leakage, resulting in high rate discharge. It becomes possible to significantly improve capacity.

なお。密閉式鉛蓄電池の場合、通常の使用状態では負極
板から水素ガスが全く発生しないか、発生してもごく微
量であるので、水素ガスの物理的刺激によってゲルがこ
われて遊M電解液を生じることはほとんどない。したが
って負極板に高価な吸液性に優れたガラス繊維マットを
当接させる必要はなく、安価な合成樹脂やセルロースよ
り成る微孔性多孔体を当接させれば充分である。
In addition. In the case of a sealed lead-acid battery, under normal usage conditions, no hydrogen gas is generated from the negative electrode plate, or even if it is generated, it is only a very small amount, so the physical stimulation of hydrogen gas breaks the gel and creates a free M electrolyte. Very rarely. Therefore, it is not necessary to bring an expensive glass fiber mat with excellent liquid absorption into contact with the negative electrode plate, and it is sufficient to bring an inexpensive microporous material made of synthetic resin or cellulose into contact with the negative electrode plate.

次に、正極板に平均繊維径が5μのガラス繊維マットを
当接させて、負極板には合成樹脂より成るリブ付または
平板多孔体あるいはセルロースより成る波形または平板
多孔体を当接させて極板群を組み立て、Si0□3%で
電解液をゲル化させた電池を試作し、充放電サイクル寿
命試験を行った。
Next, a glass fiber mat with an average fiber diameter of 5μ is brought into contact with the positive electrode plate, and a ribbed or flat porous body made of synthetic resin or a corrugated or flat porous body made of cellulose is brought into contact with the negative electrode plate. A battery was assembled by assembling the plates, and the electrolyte was gelled with 0□3% Si to make a prototype battery, and a charge/discharge cycle life test was conducted.

その結果を第2表に示す。The results are shown in Table 2.

第2表 第2表から明らかなように、本発明品(NO,11〜1
2)の様にセルロースより成る波形多孔体や合成樹脂よ
り成るリブ付多孔体のリブ側を負極板に当接させると、
平板多孔体を負極板に当接させた電池(NO,8,9)
より充放電サイクル寿命性能が大きく改善されることが
わかる。
As is clear from Table 2, the products of the present invention (NO, 11 to 1
When the rib side of a corrugated porous body made of cellulose or a ribbed porous body made of synthetic resin is brought into contact with the negative electrode plate as in 2),
Batteries with a flat porous body in contact with the negative electrode plate (NO, 8, 9)
It can be seen that the charge/discharge cycle life performance is greatly improved.

これは平板多孔体を負極板表面に当接させると、過充電
中に正極で発生した酸素ガスの負極板表面への移動が阻
害され、負極板表面での酸素と負極活物質の反応が起こ
り難くなって密閉反応効率が低下し、その結果、充放電
サイクル中の電解液の損失が大きくなって短寿命となる
が、本発明品では多孔性隔M木がリブや波形の山の部分
で負極板と接するだけで密着していないために、負極板
表面への酸素の移動を阻害することがないので、密閉反
応効率が向上し、充放電サイクル中の電解液の損失が小
さくなるために充放電サイクル寿命性能が改善されると
考えられる。
This is because when a flat porous body is brought into contact with the surface of the negative electrode plate, the movement of oxygen gas generated at the positive electrode during overcharging to the surface of the negative electrode plate is inhibited, and a reaction between oxygen and the negative electrode active material occurs on the surface of the negative electrode plate. As a result, the sealing reaction efficiency decreases, and as a result, the loss of electrolyte during charge/discharge cycles increases, resulting in a shortened lifespan. Because it only contacts the negative electrode plate and does not make close contact with it, it does not inhibit the movement of oxygen to the negative electrode plate surface, improving sealing reaction efficiency and reducing electrolyte loss during charge/discharge cycles. It is believed that the charge/discharge cycle life performance is improved.

上述したように、電解液を無水ケイ酸などでゲル化させ
、正極板に平均繊維径10μ以下のカラス繊維マットを
当接させ、負極板に主として合成樹脂あるいはセルロー
スより成る波形多孔体またはツブ付多孔体のリブ側を当
接させた本発明品は無水ケイ酸などのゲル化剤の添加量
を少なくしたときに、正極板より発生する酸素ガスの物
理的刺激によってゲルがこわれて生じる遊離液を正極板
に当接されたガラスI維マットが直ちに吸収・保持して
非流動化することにより、漏液の原因となる流!lJ液
を生じさせることなくゲル化剤の添加量を少なくするこ
とができ、かつ負極板に当接した多孔体が負極板と密着
しないので正極板より発生ずる酸素ガスの負極板表面へ
の移動を阻害しないために、密閉反応効率が向上して、
充放電サイクル中の電解液の損失を小さくすることがで
き、その結果、低率および高率放電容量共に1量れかつ
長寿命の密閉式鉛蓄電池の製造が可能となった。
As mentioned above, the electrolytic solution is gelled with silicic anhydride, etc., a glass fiber mat with an average fiber diameter of 10 μm or less is brought into contact with the positive electrode plate, and a corrugated porous body or a knob mainly made of synthetic resin or cellulose is attached to the negative electrode plate. The product of the present invention, in which the rib side of the porous body is brought into contact with the rib side, is a free liquid that is generated when the gel is broken by the physical stimulation of oxygen gas generated from the positive electrode plate when the amount of gelling agent such as silicic anhydride is reduced. The glass I-fiber mat in contact with the positive electrode plate immediately absorbs and retains the liquid, making it non-fluid, causing a flow that causes leakage! The amount of gelling agent added can be reduced without producing lJ liquid, and since the porous body in contact with the negative electrode plate does not come into close contact with the negative electrode plate, oxygen gas generated from the positive electrode plate is transferred to the negative electrode plate surface. In order not to inhibit the reaction, the sealing reaction efficiency is improved,
Loss of electrolyte during charge/discharge cycles can be reduced, and as a result, it has become possible to manufacture a sealed lead-acid battery that has both low rate and high rate discharge capacities and has a long life.

発明の効果 本発明は、低率および高率放電容量に優れ、かつ長寿命
で無漏液の密閉式鉛蓄電池の製造に有効であり、その工
業的価値が非常に大である。
Effects of the Invention The present invention is effective in manufacturing sealed lead-acid batteries that have excellent low-rate and high-rate discharge capacities, have a long life, and are leak-free, and have great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池に用いる極板群の各種構成要素を配
列順に示す斜視図である。 1・・・正極板、2・・・負極板、3・・・リブ付微孔
性多孔体、4・・・ガラス繊維マット、5・・・隔離体
NrgJ
FIG. 1 is a perspective view showing the various constituent elements of the electrode plate group used in the battery of the present invention in the order in which they are arranged. DESCRIPTION OF SYMBOLS 1... Positive electrode plate, 2... Negative electrode plate, 3... Microporous porous body with ribs, 4... Glass fiber mat, 5... Separator NrgJ

Claims (1)

【特許請求の範囲】[Claims] 1、電解液を無水ケイ酸などでゲル化させた密閉式鉛蓄
電池において、正極板に平均繊維径10μ以下のガラス
繊維マットを当接させ、負極板にリブ付または波形多孔
体を当接させることを特徴とする密閉式鉛蓄電池。
1. In a sealed lead-acid battery in which the electrolyte is gelled with anhydrous silicic acid, a glass fiber mat with an average fiber diameter of 10μ or less is brought into contact with the positive electrode plate, and a ribbed or corrugated porous material is brought into contact with the negative electrode plate. A sealed lead-acid battery characterized by:
JP63041684A 1988-02-24 1988-02-24 Sealed lead-acid battery Pending JPH01217866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041684A JPH01217866A (en) 1988-02-24 1988-02-24 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041684A JPH01217866A (en) 1988-02-24 1988-02-24 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01217866A true JPH01217866A (en) 1989-08-31

Family

ID=12615251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041684A Pending JPH01217866A (en) 1988-02-24 1988-02-24 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01217866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178913A (en) * 1984-09-25 1986-04-22 Shigeru Ueki Cleaner for dust in harbor
JPS61179061A (en) * 1985-01-31 1986-08-11 Shin Kobe Electric Mach Co Ltd Enclosed type lead storage battery
JPS61277154A (en) * 1985-05-31 1986-12-08 Yuasa Battery Co Ltd Lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178913A (en) * 1984-09-25 1986-04-22 Shigeru Ueki Cleaner for dust in harbor
JPS61179061A (en) * 1985-01-31 1986-08-11 Shin Kobe Electric Mach Co Ltd Enclosed type lead storage battery
JPS61277154A (en) * 1985-05-31 1986-12-08 Yuasa Battery Co Ltd Lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Similar Documents

Publication Publication Date Title
EP0821422B1 (en) Sealed lead-acid battery
JPH06196165A (en) Sealed lead-acid battery
JPS5835877A (en) Closed type lead battery and its production method
JPH01217866A (en) Sealed lead-acid battery
JPS6237882A (en) Closed type lead storage battery
JPH06251759A (en) Separator for lead-acid battery
JPH0195465A (en) Closed type lead battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPH07320771A (en) Sealed lead-acid battery
JPS63221565A (en) Sealed lead-acid battery
JP3042027B2 (en) Sealed lead-acid battery
JPH01124958A (en) Sealed lead-acid battery
JPS63146348A (en) Separator for enclosed lead storage battery
JPH04149968A (en) Sealed-type lead secondary battery
JP2571064B2 (en) Sealed lead-acid battery
JPH04118854A (en) Gel type lead storage battery
JPH0624139B2 (en) Manufacturing method of sealed lead battery
JP2571063B2 (en) Manufacturing method of sealed lead-acid battery
JPS61198573A (en) Enclosed lead storage battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH01248459A (en) Sealed lead-acid battery
JPH0530291Y2 (en)
JPS63146350A (en) Separator for enclosed lead storage battery
JPH05326011A (en) Sealed lead-acid battery
JP2003086236A (en) Sealed-type lead-acid battery