JP2571063B2 - Manufacturing method of sealed lead-acid battery - Google Patents

Manufacturing method of sealed lead-acid battery

Info

Publication number
JP2571063B2
JP2571063B2 JP62201317A JP20131787A JP2571063B2 JP 2571063 B2 JP2571063 B2 JP 2571063B2 JP 62201317 A JP62201317 A JP 62201317A JP 20131787 A JP20131787 A JP 20131787A JP 2571063 B2 JP2571063 B2 JP 2571063B2
Authority
JP
Japan
Prior art keywords
battery
sealed lead
sulfuric acid
acid battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62201317A
Other languages
Japanese (ja)
Other versions
JPS6445068A (en
Inventor
兼治 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP62201317A priority Critical patent/JP2571063B2/en
Publication of JPS6445068A publication Critical patent/JPS6445068A/en
Application granted granted Critical
Publication of JP2571063B2 publication Critical patent/JP2571063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の製造方法の改良に関するも
ので、その目的とするところは高率および低率放電性能
の優れた密閉式鉛蓄電池を提供することにある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing a sealed lead-acid battery, and an object thereof is to provide a sealed lead-acid battery excellent in high-rate and low-rate discharge performance. Is to do.

従来の技術とその問題点 密閉式鉛蓄電池は腐食性の電解液である硫酸の漏洩を
防ぐため、電解液が固定化されていることを一つの特徴
とする。この固定化のために現在二つの方法が採用され
ており、一つはシリカなどのゲル化剤を添加することに
よりゲル化して非流動化する方法であり、一般にゲル式
密閉鉛蓄電池と呼ばれる。他は多孔性の吸収材を隔離体
として使用し、正・負極および隔離体にすべての電解液
を吸収,保持させることにより流動液をなくす方法でリ
テーナ式密閉鉛蓄電池と呼ばれる。
2. Description of the Related Art Conventional technology and its problems One characteristic of sealed lead-acid batteries is that the electrolyte is fixed to prevent leakage of sulfuric acid, which is a corrosive electrolyte. Currently, two methods are used for this immobilization, one of which is a method of gelling and non-fluidizing by adding a gelling agent such as silica, and is generally called a gel-type sealed lead storage battery. Others use a porous absorbent as an isolator and absorb and retain all the electrolyte in the positive / negative electrode and the isolator, thereby eliminating the flowing liquid.

リテーナ式密閉鉛蓄電池では、一般に吸液性隔離体と
して微細ガラス繊維マットが使用されているが従来型の
鉛蓄電池用隔離体と比べかなり高価であり、また、電解
液量を極板および隔離体の全細孔容積よりも少なくする
必要があり、極板群周囲の空間に充分な電解液を配置す
ることができない。このため低率放電容量が電解液量に
より制限されてあまり大きくないなどの欠点を有する。
一方ゲル式密閉鉛蓄電池では、電解液自体がゲル化剤に
より非流動化されているので極板周囲の空間にも電解液
を配置することも可能となり低率放電性能は改善される
が、極板近傍に存在する電解液も非流動化されているた
め硫酸イオンの移動速度が遅く、リテーナ式密閉鉛蓄電
池に比べ高率放電容量が劣るという欠点を有する。この
ゲル式密閉式鉛蓄電池に照合電極を挿入し高率放電中の
単極電位を測定したところ、放電容量は正極板により制
限されていることがわかった。
Fine glass fiber mats are generally used as a liquid-absorbing separator in a sealed sealed lead-acid battery, but it is considerably more expensive than conventional separators for lead-acid batteries, and the amount of electrolyte is reduced by the electrode plate and the separator. Therefore, it is not possible to arrange a sufficient electrolyte solution in the space around the electrode plate group. For this reason, there is a disadvantage that the low rate discharge capacity is limited by the amount of the electrolyte and is not so large.
On the other hand, in a gel-type sealed lead-acid battery, since the electrolyte itself is made non-fluidized by the gelling agent, it is possible to arrange the electrolyte in the space around the electrode plate, and the low-rate discharge performance is improved. Since the electrolyte present in the vicinity of the plate is also non-fluidized, the moving speed of sulfate ions is slow, and the high-rate discharge capacity is inferior to that of the closed lead-acid battery of the retainer type. When a reference electrode was inserted into this gel-type sealed lead-acid battery and the unipolar potential during high-rate discharge was measured, it was found that the discharge capacity was limited by the positive electrode plate.

問題点を解決するための手段 本発明は、負極に当接した太い繊維からなるマットと
正極に当接した微細繊維からなるマットの2層構造の隔
離体を使用することにより、隔離体のコスト低減を図る
と同時に、極板および微細繊維マットの細孔内に流動性
電解液を保持させ、一方太い繊維マット部分や極板群の
周囲空間に非流動性電解液を配置して、高率放電ではリ
テーナ式密閉鉛蓄電池に近い性能を、一方低率放電では
ゲル式密閉鉛蓄電池に近い性能を発揮させることにより
上記欠点を解消した密閉式鉛蓄電池を提供するものであ
る。言い換えれば、正極はリテーナ式電池に近い構造を
有し、高率放電での容量制限原因である正極がリテーナ
式電池並の性能を有することになる。
Means for Solving the Problems The present invention uses a separator having a two-layer structure of a mat made of thick fibers in contact with the negative electrode and a mat made of fine fibers in contact with the positive electrode, thereby reducing the cost of the separator. At the same time, the flowable electrolyte is held in the pores of the electrode plate and the fine fiber mat, while the non-flowable electrolyte is placed in the thick fiber mat portion and the space around the electrode group to achieve high efficiency. An object of the present invention is to provide a sealed lead-acid battery that solves the above-mentioned drawbacks by exhibiting performance similar to that of a sealed sealed lead-acid battery in discharging, while exhibiting performance similar to that of a gel-type sealed lead-acid battery in low-rate discharging. In other words, the positive electrode has a structure similar to that of a retainer battery, and the positive electrode, which is a cause of capacity limitation in high-rate discharge, has the same performance as a retainer battery.

実施例 以下、本発明密閉式鉛蓄電池の一実施例を詳述する。Embodiment Hereinafter, an embodiment of the sealed lead-acid battery of the present invention will be described in detail.

3.5mm厚の正極板と2.5mm厚の負極板を用い、極板間隔
を2.0mmとして正極3枚/負極4枚構成の電池を組立て
た。隔離板としては平均繊維直径21μ,1.0mm厚(以下間
隔体厚は30Kg/dm2荷重時の厚さで示す。)のガラス繊維
マットと平均繊維直径1.4μ,1.0mm厚のガラス繊維マッ
トを配置して2層構造としたもの、平均繊維直径21μ,
2.0mm厚の単層ガラス繊維マットおよび平均繊維直径1.0
μ,2.0mm厚の単層ガラス繊維マットをそれぞれ使用し
た。なおこれらのガラス繊維マットの下部を比重1.30の
希硫酸に浸漬し2時間放置した後の希硫酸の吸い上げ高
さは平均繊維直径1.1μ,2.0mm厚の単層ガラス繊維マッ
トでは268mmであったが、平均繊維直径21μ,2.0mm厚の
単層ガラス繊維マットでは8mmとほとんど保液性がなか
った。
Using a 3.5 mm-thick positive electrode plate and a 2.5 mm-thick negative electrode plate, a battery having three positive electrodes / four negative electrodes was assembled with the distance between the electrode plates being 2.0 mm. The average fiber diameter 21μ as separators, 1.0mm thick glass fiber mat with an average fiber diameter 1.4μ (hereinafter spacing member thickness indicated by thickness at 30 Kg / dm 2 load.), The 1.0mm thick glass fiber mat What was arranged to form a two-layer structure, average fiber diameter 21μ,
2.0mm thickness single layer glass fiber mat and average fiber diameter 1.0
Single-layer glass fiber mats of μ and 2.0 mm thickness were used, respectively. The lower part of these glass fiber mats was immersed in dilute sulfuric acid having a specific gravity of 1.30 and left for 2 hours. The suction height of dilute sulfuric acid was 268 mm for a single-layer glass fiber mat having an average fiber diameter of 1.1 μm and a thickness of 2.0 mm. However, the single-layer glass fiber mat having an average fiber diameter of 21 μm and a thickness of 2.0 mm had little liquid retention of 8 mm.

まず平均繊維直径1.1μの単層ガラス繊維マットを用
いた電池については、比重1.30の希硫酸を全細孔がほぼ
完全に飽和される52cc注液し、リテーナ式密閉鉛蓄電池
を作製した。次に平均繊維直径21μ,2.0mm厚の単層ガラ
ス繊維マットを用いた電池については、同比重の希硫酸
にSiO2を5重量パーセント混合した液を極板群が完全に
浸漬するように59cc注液し、ゲル電池を作製した。この
電解液は1時間後には完全に非流動化した。2層構造の
隔離体を用い、太い繊維マットを負極に、微細繊維マッ
トを正極に当接した電池については、比重1.30の希硫酸
を完全に吸収,保持され流動液が生じない量すなわち44
cc注液した。
First, for a battery using a single-layer glass fiber mat having an average fiber diameter of 1.1 μm, 52 cc of dilute sulfuric acid having a specific gravity of 1.30 was injected, in which all pores were almost completely saturated, to produce a closed lead storage battery of the retainer type. Next, for a battery using a single-layer glass fiber mat having an average fiber diameter of 21 μm and a thickness of 2.0 mm, a solution in which 5% by weight of SiO 2 was mixed with dilute sulfuric acid having the same specific gravity as 59 cc so that the electrode group was completely immersed. The solution was injected to produce a gel battery. This electrolyte was completely non-fluidized after one hour. For a battery using a two-layer separator with a thick fiber mat in contact with the negative electrode and a fine fiber mat with the positive electrode, the amount of dilute sulfuric acid having a specific gravity of 1.30 was completely absorbed and retained, and no fluid was generated, i.e., 44
cc was injected.

なお、これらの極板群の吸液速度は約5分間でほぼ0
となり、電解液は正・負極板および微細繊維マット部分
に吸収,保持され流動液は消失した。一部の電池につい
てはこの状態で試験に供し、他の電池についてはさらに
同比重の希硫酸にSiO2を5.0重量パーセント混合した液
を極板群が完全に浸漬するまで15cc追加注液した。この
追加注液した電解液は30分後にはほぼゲル化し、1時間
後では少々の振動を加えても全く流動しなかった。この
ゲル化した極板周囲の電解液を取り出し分析したところ
4.9重量パーセントのSiO2濃度であった。このことから
最初に吸収,保持された希硫酸と追加注液したゲル電解
液とはほとんど混合していないと考えられる。
It should be noted that the liquid absorbing speed of these electrode plates was approximately 0 in about 5 minutes.
The electrolyte was absorbed and retained in the positive and negative electrode plates and the fine fiber mat portion, and the fluid disappeared. Some batteries were subjected to the test in this state, and other batteries were further injected with 15 cc of a solution obtained by mixing 5.0 wt% of SiO 2 with dilute sulfuric acid of the same specific gravity until the electrode assembly was completely immersed. The additional injected electrolyte almost gelled after 30 minutes and did not flow at all after 1 hour even if a little vibration was applied. The electrolyte around the gelled electrode was taken out and analyzed.
The SiO 2 concentration was 4.9 weight percent. This suggests that the initially absorbed and retained dilute sulfuric acid and the additionally injected gel electrolyte are hardly mixed.

なお、2層構造の隔離体を用いた電池に直接SiO2を5
重量パーセント混合した液を59cc注液したゲル電池につ
いても作製した。
It should be noted that 5% of SiO 2 was directly
A gel battery in which 59 cc of the liquid mixed by weight percent was injected was also prepared.

上記5種類の電池を安全弁を用いて封口し、補充電を
した後30日間放置してから30時間率および1時間率電流
で放電した場合の性能を調べた。この結果を第1表に示
す。
The above five types of batteries were sealed using a safety valve, and after supplementary charging, the batteries were allowed to stand for 30 days and then discharged at a 30-hour rate and a 1-hour rate current. Table 1 shows the results.

第1表から明らかなように2層構造の隔離体を使用
し、正極に当接した保液性微細繊維マット部分および正
・負極板内に希硫酸を吸収,保持させ、一方保液性のな
い太い繊維マット部分や極板周囲には希硫酸にSiO2を添
加し非流動化させた電解液を有する本発明による密閉式
鉛蓄電池では低率放電性能がゲル式密閉鉛蓄電池と同等
であり、かつ高率放電性能がリテーナ式密閉鉛蓄電池と
同等の性能を有しており、両者の優れた特徴を兼ね備え
ている。
As is apparent from Table 1, dilute sulfuric acid was absorbed and retained in the liquid-retaining fine fiber mat portion in contact with the positive electrode and in the positive and negative electrode plates using the separator having a two-layer structure. There is no thick fiber mat part or around the electrode plate.The sealed lead-acid battery according to the present invention, which has an electrolyte made by adding SiO 2 to diluted sulfuric acid and made non-fluidized, has a low rate discharge performance equivalent to that of the gel-type sealed lead-acid battery. In addition, the high-rate discharge performance is equal to that of the closed lead storage battery of the retainer type, and has both excellent characteristics.

一方2層構造の隔離体を使用した電池に極板周囲の電
解液を完全に非流動化するのに必要な5重量パーセント
のSiO2を加えた液を直接59cc加えた場合には、微細繊維
マットや正・負極板の細孔内のSiO2濃度も高くなるため
高率放電性能を改善することはできなかった。
On the other hand, when 59 cc of a solution containing 5% by weight of SiO 2 necessary for completely defluidizing the electrolyte around the electrode plate was directly added to a battery using a two-layered separator using a fine fiber, The high rate discharge performance could not be improved because the SiO 2 concentration in the pores of the mat and the positive and negative electrode plates also increased.

なお、隔離体材質は使用繊維直径が小さくなるほど高
価になるので、2層構造の負極に面した側では保液性を
必要としないため現在自動車用電池などに広く使用され
ている10μ以上の平均繊維直径のもので充分である。一
方正極に面した側では、現在市販されている小型密閉式
鉛蓄電池の極板群高さ約50mmに対して充分な吸液性を維
持させるためには最低8μ以下の平均繊維直径を有する
マットを使用することが必要である。
Since the separator material becomes more expensive as the diameter of the used fiber becomes smaller, liquid retention is not required on the side facing the negative electrode having a two-layer structure. Fiber diameter suffices. On the other hand, on the side facing the positive electrode, a mat having an average fiber diameter of at least 8μ or less in order to maintain sufficient liquid absorption for the electrode plate group height of about 50mm of the currently marketed small sealed lead-acid battery It is necessary to use

発明の効果 以上述べたように本発明による密閉式鉛蓄電池の製造
方法では隔離体のコスト低減を図れると同時に低率およ
び高率放電のいずれの性能も優れているという利点を有
する。
Effect of the Invention As described above, the method for manufacturing a sealed lead-acid battery according to the present invention has an advantage that the cost of the separator can be reduced and at the same time, both low-rate and high-rate discharge performances are excellent.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極に面する平均繊維直径が10μ以上の繊
維マットと正極に面する平均繊維直径が8μ以下のマッ
トを重ね合せた2層構造の隔離体を配置した電池におい
て、まず極板細孔容積および8μ以下のマット層の細孔
容積よりも少ない量の希硫酸または注液後完全に非流動
化しない程度のゲル化剤を含む希硫酸を注液し上記細孔
中に吸収,保持させた後、注液後非流動化しうる量のゲ
ル化剤を含む希硫酸を注液し、総注液量が極板および隔
離体の総細孔容積よりも多くしたことを特徴とする密閉
式鉛蓄電池の製造方法。
1. A battery in which a separator having a two-layer structure in which a fiber mat facing the negative electrode and having an average fiber diameter of 10 μm or more and a mat facing the positive electrode and having an average fiber diameter of 8 μm or less is disposed, Dilute sulfuric acid in an amount smaller than the pore volume and the pore volume of the mat layer having a size of 8 μ or less or dilute sulfuric acid containing a gelling agent to such an extent that it is not completely non-fluidized after the injection, is injected into the pores. After holding, dilute sulfuric acid containing an amount of gelling agent that can be made non-fluid after injection is injected, and the total injection amount is larger than the total pore volume of the electrode plate and the separator. Manufacturing method of sealed lead-acid battery.
JP62201317A 1987-08-12 1987-08-12 Manufacturing method of sealed lead-acid battery Expired - Lifetime JP2571063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62201317A JP2571063B2 (en) 1987-08-12 1987-08-12 Manufacturing method of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62201317A JP2571063B2 (en) 1987-08-12 1987-08-12 Manufacturing method of sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPS6445068A JPS6445068A (en) 1989-02-17
JP2571063B2 true JP2571063B2 (en) 1997-01-16

Family

ID=16439004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62201317A Expired - Lifetime JP2571063B2 (en) 1987-08-12 1987-08-12 Manufacturing method of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2571063B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205416B2 (en) * 2010-05-12 2013-06-05 京楽産業.株式会社 Game machine
JP5667909B2 (en) * 2011-02-28 2015-02-12 京楽産業.株式会社 Pachinko machine

Also Published As

Publication number Publication date
JPS6445068A (en) 1989-02-17

Similar Documents

Publication Publication Date Title
JP2571063B2 (en) Manufacturing method of sealed lead-acid battery
JP2571064B2 (en) Sealed lead-acid battery
JP2855669B2 (en) Sealed lead-acid battery
JPS6327826B2 (en)
JPS6237882A (en) Closed type lead storage battery
JPH069144B2 (en) Sealed lead acid battery
JPS6319772A (en) Lead-acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPS6211466B2 (en)
JPH0195465A (en) Closed type lead battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JP2958791B2 (en) Sealed lead-acid battery
JPS6217946A (en) Enclosed lead storage battery
JPS58201270A (en) Lead-acid battery
JPS60205963A (en) Sealed lead storage battery
JPH01175175A (en) Sealed type lead-acid battery
JPS60131773A (en) Sealed lead acid battery
JPS61198573A (en) Enclosed lead storage battery
JPH04308666A (en) Gel type sealed lead-acid battery
JPH01248457A (en) Sealed lead-acid battery
JPH04118854A (en) Gel type lead storage battery
JPH0465496B2 (en)
JPS6050858A (en) Injection method of sealed type lead storage battery
JPH0562704A (en) Sealed lead-acid battery
JPS5923457A (en) Enclosed lead storage battery