JPH01215636A - Acceleration slip controller for vehicle - Google Patents

Acceleration slip controller for vehicle

Info

Publication number
JPH01215636A
JPH01215636A JP63042950A JP4295088A JPH01215636A JP H01215636 A JPH01215636 A JP H01215636A JP 63042950 A JP63042950 A JP 63042950A JP 4295088 A JP4295088 A JP 4295088A JP H01215636 A JPH01215636 A JP H01215636A
Authority
JP
Japan
Prior art keywords
speed
control
driving wheel
slip
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63042950A
Other languages
Japanese (ja)
Other versions
JP2638891B2 (en
Inventor
Shinichi Matsumoto
真一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63042950A priority Critical patent/JP2638891B2/en
Priority to US07/313,454 priority patent/US4974694A/en
Priority to DE3905629A priority patent/DE3905629A1/en
Publication of JPH01215636A publication Critical patent/JPH01215636A/en
Application granted granted Critical
Publication of JP2638891B2 publication Critical patent/JP2638891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To improve both the control responsibility and the acceleration performance of a vehicle by compensating the quantity of revolution control of a driving wheel to the greater value according to the error of the slip state of the driving wheel from the target slip state if any at the starting time of the control for the acceleration slip. CONSTITUTION:The target revolution speed of a driving wheel M1 is calculated by a means M4 according to the car speed detected by a means M3. The driving wheel M1 is driven by a means M5 according to the car revolution speed of the driving wheel M1 detected by a means M2 to remove the acceleration slip. The control variable for revolution of the driving wheel M1 is calculated by means M6 according to the error between revolution speed of the driving wheel M1 and the target revolution speed. In such equipment a means M7 detects the slip state of the driving wheel M1 according to both the revolution speed thereof and the vehicle running speed. Based on the error of the detected slip state from the target slip state, a means M8 compensate the control variable for revolution of the driving wheel M1 to increase.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車両加速時に駆動輪に発生する加速スリップ
を抑制する車両の加速スリップ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an acceleration slip control device for a vehicle that suppresses acceleration slip occurring in drive wheels when the vehicle accelerates.

[従来の技術] 従来より、駆動輪の回転加速度、又は駆動輪の回転速度
と車体速度とに基づき、駆動輪の加速スリップを検出し
、その後加速スリップが発生しなくなるまでの間、ブレ
ーキ制御或は内燃機関のスロットルバルブの開閉制f!
j等によって駆動輪の回転を抑制し、車両の加速性を向
上する加速スリップ制御装置が知られている(例えば特
開昭61−286542号、特開昭62−7954号等
)。
[Prior Art] Conventionally, acceleration slip of the drive wheels is detected based on the rotational acceleration of the drive wheels, or the rotation speed of the drive wheels and the vehicle body speed, and then the brake control or the like is performed until the acceleration slip no longer occurs. is the throttle valve opening/closing control f! of an internal combustion engine.
Acceleration slip control devices are known that improve the acceleration performance of a vehicle by suppressing the rotation of the drive wheels by using the following methods (for example, JP-A-61-286542, JP-A-62-7954, etc.).

またこうした加速スリップ制fl H置には、制御aj
開始後、駆動輪の回転速度が車体速度に基づき設定され
る目標回転速度に速やかに収束するよう、制fa!1f
fiX(即ちブレーキ油圧の増減速度やスロットルバル
ブの開閉速度等)を、駆動輪の回転速度と目標回転速度
との偏差△Vに応じて設定するよう構成されたものがあ
る。例えば次式(1)により比例・微分制御を行なうも
の等がそれである。
In addition, in this acceleration slip control fl H position, control aj
After the start, the fa! 1f
Some motors are configured to set fiX (that is, the rate of increase/decrease in brake oil pressure, the opening/closing speed of a throttle valve, etc.) in accordance with the deviation ΔV between the rotational speed of the driving wheels and the target rotational speed. For example, there is one that performs proportional/differential control using the following equation (1).

x=a・Δv+b −△V   −(1)(但し、a、
  bは係数) [発明が解決しようとする課題] このように制御量Xを駆動輪の回転速度と目標回転速度
との偏差Δ■に応じて設定した場合、単に駆動輪6回転
速度が目標回転速度を越えたか否かによって一定の制御
量で駆動輪の回転を制御する場合(即ちブレーキ油圧を
一定の割合で増減したり、スロットルバルブを一定速度
で開閉する場合)に比べ、駆動輪の回転速度を目標回転
速度に速やかに収束させることができ、車両急加速時の
駆動輪と路面との摩擦力を最適に制御して加速性をより
向上することができるようになるのであるが、制御開始
時、或は制御中部動輪の回転速度が低下して、駆動輪の
スリップ率が所定範囲内から外れると、回転速度を目標
回転速度に収束させるのに時間がかかるといった問題が
あった。
x=a・Δv+b −ΔV −(1) (However, a,
b is a coefficient) [Problem to be solved by the invention] When the control amount Compared to the case where the rotation of the drive wheel is controlled by a fixed amount of control depending on whether or not the speed exceeds the speed (i.e., when increasing/decreasing the brake oil pressure at a constant rate or opening/closing the throttle valve at a constant speed), the rotation of the drive wheel is The speed can be quickly converged to the target rotational speed, and the frictional force between the drive wheels and the road surface can be optimally controlled when the vehicle suddenly accelerates, thereby further improving acceleration performance. At the start, or when the rotational speed of the drive wheels in the control section decreases and the slip ratio of the drive wheels deviates from a predetermined range, there is a problem that it takes time to converge the rotational speed to the target rotational speed.

即ち、まず加速スリップ制御では、第2図に示すu−9
特性(μ:タイヤと路面との摩擦係数。
That is, first, in the acceleration slip control, the u-9 shown in FIG.
Characteristics (μ: coefficient of friction between the tire and the road surface.

Sニスリップ率)及びタイヤの横坑力特性を考慮して、
駆動輪のスリップ率Sが5〜10%程度の値となるよう
に駆動輪の目標回転速度(以下、目標駆動輪速度ともい
う。)が設定され、制御卸開始後の駆動輪の回転速度(
以下、駆動輪速度ともいう。)が図に示す領域B内に収
まるように駆動輪の回転制御が行なわれる。また領域B
では、スリップ率Sの増加に対して摩擦係数Uが緩やか
に略一定の割合で増加おり、制御量は、この領域B内で
良好な制御理性が得られるように設定された演算式を用
いて駆動輪速度と目標駆動輪速度との偏差に基づき算出
される。即ち前記(1)式において、係数a、  bの
値はこの領域で適合されている。
Considering the tire slippage rate) and the tire's lateral force characteristics,
The target rotational speed of the driving wheels (hereinafter also referred to as target driving wheel speed) is set so that the slip ratio S of the driving wheels becomes a value of about 5 to 10%, and the rotational speed of the driving wheels after the start of control (
Hereinafter, it is also referred to as driving wheel speed. ) is within the region B shown in the figure. Also area B
In this case, the friction coefficient U gradually increases at a substantially constant rate as the slip ratio S increases, and the control amount is determined using an arithmetic formula set to obtain good control efficiency within this region B. It is calculated based on the deviation between the driving wheel speed and the target driving wheel speed. That is, in the above equation (1), the values of coefficients a and b are adapted to this region.

このため駆動輪速度がこの領域B内で制御されている場
合には、上記のように駆動輪速度を目標駆動輪速度に速
やかに収束させることができる。
Therefore, when the driving wheel speed is controlled within this region B, the driving wheel speed can be quickly converged to the target driving wheel speed as described above.

ところが加速スリップ制御装置では、通常、路面の凹凸
等の外乱によって駆動輪速度が一時的に大きくなった場
合に誤って制御が開始されることのないよう、駆動輪速
度が目標駆動輪速度より大きい制御開始基準値以上とな
ったとき(即ちスリップ率が図に示すに点以上となった
とき)、或は駆動輪速度が所定時間継続して目標駆動輪
速度を超えたときに、加速スリップ制御を開始するよう
にされているため、ス【ハンプ率Sが図に示す領域C内
にある時に制御が開始される。
However, in acceleration slip control devices, the drive wheel speed is normally set to be higher than the target drive wheel speed to prevent the control from being started erroneously when the drive wheel speed temporarily increases due to disturbances such as road surface irregularities. Acceleration slip control is performed when the control start reference value is exceeded (that is, when the slip ratio exceeds the point shown in the figure), or when the drive wheel speed continues to exceed the target drive wheel speed for a predetermined period of time. Therefore, the control is started when the hump rate S is within the region C shown in the figure.

この領域Cでは、スリップ率Sの増加と共に摩擦係数μ
が低下しており、加速スリップ制御開始時には、スリッ
プ率Sが急速に増大する状態となっている。このため、
上記のように領域B内で良好な制御性を得られる演算式
を用いて制御量を設定しても、制御不足となって駆動輪
速度を目標駆動輪速度に制御するのに時間がかかり、ま
た横坑力の低下にともない車両の走行安定性が低下する
In this region C, as the slip ratio S increases, the friction coefficient μ
is decreasing, and at the start of acceleration slip control, the slip ratio S is in a state of rapidly increasing. For this reason,
Even if the control amount is set using an arithmetic expression that provides good controllability within region B as described above, the control becomes insufficient and it takes time to control the drive wheel speed to the target drive wheel speed. Furthermore, as the shaft force decreases, the running stability of the vehicle decreases.

一方加速スリップ制御開始後のアンダーシュートによっ
て駆動輪速度が低下し過ぎ、スリップ率Sが図に示す領
域Aに入ることがある。この領域Aでは、スリップ率S
の変化に対して摩擦係数Uが大きく変化し、−旦低下し
たスリップ率Sを領域B方向に増加するには、駆動輪の
駆動力を大きく増加させる必要がある。ところが、制御
量は領域Bで最良の制御性が得られるように設定された
演算式を用いて決定されるため、この場合にも制御量が
不足して、駆動輪速度を目標駆動輪速度に収束させるの
に時間がかかり、車両の加速性が低下する。
On the other hand, the drive wheel speed may drop too much due to undershoot after acceleration slip control is started, and the slip ratio S may fall into the region A shown in the figure. In this region A, the slip rate S
In order to increase the slip ratio S, which has decreased significantly in response to a change in the friction coefficient U, in the direction of region B, it is necessary to greatly increase the driving force of the drive wheels. However, since the control amount is determined using an arithmetic formula set to obtain the best controllability in region B, the control amount is insufficient in this case as well, and the drive wheel speed does not reach the target drive wheel speed. It takes time to converge, and the acceleration of the vehicle decreases.

そこで本発明は、駆動輪のスリップ状態に関係なく、常
に駆動輪速度を目標駆動輪速度に速やかに収束させるこ
とのできる車両の加速スリップ制御装置を提供すること
を目的としてなされた。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an acceleration slip control device for a vehicle that can always quickly converge a drive wheel speed to a target drive wheel speed regardless of the slip state of the drive wheels.

[課題を解決するための手段] 即ち上記目的を達するためになされた本発明は、第1図
に例示する如く、 駆動輪M1の回転速度を検出する駆動輪速度検出手段M
2と、 車体速度を検出する車体速度検出手段M3と、該検出さ
れた車体速度に基づき駆動輪の目標回転速度を算出する
目標駆動輪速度算出手段M4と、上記検出された駆動輪
M1の回転速度に基づき駆動輪M1の加速スリップを検
出し、その後加速スリップが発生しなくなるまでの間、
駆動輪M1の回転を制御する加速スリップ制御手段M5
と、該加速スリップ制御手段M5による駆動輪M1の回
転制御量を、駆動輪M1の回転速度と目標回転速度との
偏差に基づき算出する制御量算出手段M6と、 を備えた車両の加速スリップ制御装置において、上記駆
動輪M1の回転速度と車体速度とに基づき駆動輪のスリ
ップ状態を検出するスリップ状態検出手段M7と、 該検出されたスリップ状態の目標スリップ状態からのず
れに応じて、上記制御量算出手段M6で算出された駆動
輪M1の回転制御量を増量補正するホリ1卸量補正手段
M8と、 を設けたことを特徴とする車両の加速スリップ制御装置
を要旨としている。
[Means for Solving the Problems] That is, the present invention, which has been made to achieve the above object, includes a drive wheel speed detection means M for detecting the rotational speed of the drive wheel M1, as illustrated in FIG.
2, a vehicle body speed detection means M3 that detects the vehicle body speed, a target drive wheel speed calculation means M4 that calculates a target rotation speed of the drive wheels based on the detected vehicle body speed, and a rotation of the drive wheels M1 detected above. The acceleration slip of the drive wheel M1 is detected based on the speed, and until the acceleration slip no longer occurs,
Acceleration slip control means M5 for controlling rotation of drive wheel M1
and control amount calculation means M6 for calculating the rotation control amount of the drive wheel M1 by the acceleration slip control means M5 based on the deviation between the rotation speed of the drive wheel M1 and the target rotation speed. The apparatus includes: a slip state detection means M7 that detects a slip state of the drive wheel based on the rotational speed of the drive wheel M1 and the vehicle body speed; The gist of the present invention is an acceleration slip control device for a vehicle, characterized in that it is provided with: a wheel 1 wholesale amount correcting means M8 for increasing the rotation control amount of the drive wheel M1 calculated by the amount calculating means M6;

ここでまず目標駆動輪速度算出手段M4は、車両加速時
に駆動輪と路面との摩擦力が最大となる駆動輪の回転速
度を目標駆動輪速度として設定するためのもので、例え
ば駆動輪のスリップ率が5〜lO%程度の値となるよう
に車体速度に1以上の所定係数を乗じて目標駆動輪速度
を算出するとか、或は車体速度に予め設定された所定値
を加算して目標駆動輪速度を算出するように構成すれは
よい。
First, the target driving wheel speed calculation means M4 is for setting the rotational speed of the driving wheels at which the frictional force between the driving wheels and the road surface is maximum when the vehicle accelerates as the target driving wheel speed. The target drive wheel speed is calculated by multiplying the vehicle body speed by a predetermined coefficient of 1 or more so that the ratio becomes a value of about 5 to 10%, or the target drive wheel speed is calculated by adding a predetermined value set in advance to the vehicle body speed. It may be configured to calculate the wheel speed.

次に加速スリップ制御手段’M5において、駆動輪の回
転は、ブレーキ装置を用いて直接制御するようにしても
よく、スロットルバルブ開度9煮火時期、燃料噴IJ′
J量等により駆動輪を駆動する内燃機関の出力トルクを
制御することで間接的に制御計するようにしてもよく、
或はこれらの制御の絹み合わせにより行なうようにして
もよい。
Next, in the acceleration slip control means 'M5, the rotation of the driving wheels may be directly controlled using a brake device, the throttle valve opening is 9, the boiling timing is set, and the fuel injection IJ'
It may be indirectly controlled by controlling the output torque of the internal combustion engine that drives the drive wheels using the amount of J, etc.
Alternatively, the control may be performed by combining these controls.

また次に制’tB量算出手段M6は、駆動輪M1の制御
量、つまりブレーキ油圧の増減速度やスロットルバルブ
の開閉速度を、駆動輪速度と目標駆動輪速度との偏差に
基づき算出するためのもので、例えば駆動輪速度VRと
目標駆動輪速度VSとの偏差ΔV (=VS−VR)及
びその変化量△Vとに基づき設定された前述の(1)式
を用いて駆動輪M1の制御量Xを算出するように構成す
ればよい。
Next, the control amount calculation means M6 calculates the control amount of the driving wheels M1, that is, the rate of increase/decrease of brake oil pressure and the opening/closing speed of the throttle valve, based on the deviation between the driving wheel speed and the target driving wheel speed. For example, the drive wheel M1 is controlled using the above-mentioned equation (1), which is set based on the deviation ΔV (=VS - VR) between the drive wheel speed VR and the target drive wheel speed VS and the amount of change ΔV. It may be configured to calculate the amount X.

また駆動輪M1の回転制御をスロットルバルブの開閉制
御によって行なう場合、第3図に示す如く、スロットル
バルブの開閉速度が同じであっても、内燃機関の出力ト
ルク(即ち駆動輪の駆動トルク)は−律に変化せず、内
燃機関の回転速度NEとスロットル開度θによって異な
ることから、そのスロットルバルブの制御量(即ち開閉
速度)としては、上記のように求めた制fall量Xを
内燃機関の回転速度NEとスロットル開度θとにより補
正することが望ましい。
Furthermore, when the rotation of the driving wheel M1 is controlled by opening and closing the throttle valve, the output torque of the internal combustion engine (i.e., the driving torque of the driving wheel) is - Since it does not change regularly and varies depending on the rotational speed NE of the internal combustion engine and the throttle opening θ, the control amount (i.e. opening/closing speed) of the throttle valve should be set to the control fall amount It is desirable to correct the rotational speed NE and the throttle opening degree θ.

次にスリップ状態検出手段M7は、駆動輪速度VRと車
体速度VFとに基づき駆動輪のスリップ状態を検出する
ためのもので、例えは次式(2)%式%(2) を用いて駆動輪のスリップ率Sを算出し、これを駆動輪
のスリップ状態として検出するとか、或は駆動輪速度V
Rと車体速度VFとの偏差(VR−VF)を駆動輪のス
リップ状態として検出するように構成すればよい。
Next, the slip state detection means M7 is for detecting the slip state of the driving wheels based on the driving wheel speed VR and the vehicle body speed VF, and for example, the following formula (2) % formula % (2) is used to detect the slip state of the driving wheels. The slip rate S of the wheels is calculated and this is detected as the slip state of the driving wheels, or the driving wheel speed V is calculated.
The configuration may be such that the deviation (VR-VF) between R and the vehicle body speed VF is detected as a slip state of the driving wheels.

[作用] 以上のように構成された本発明の加速スリップ制御装置
では、駆動輪M1に加速スリップが発生し、加速スリッ
プ制御手段M5が駆動輪M1の回転制御を開始すると、
制御量算出手段M6が駆動輪M1の回転制御量を駆動輪
速度と目標駆動輪速度との偏差に基づき算出し、制御量
補正手段M8がその算出された制御量を、駆動輪のスリ
ップ状態の目標スリップ状態からのずれに応じて増量補
正する。
[Function] In the acceleration slip control device of the present invention configured as described above, when acceleration slip occurs in the drive wheel M1 and the acceleration slip control means M5 starts rotation control of the drive wheel M1,
The control amount calculation means M6 calculates the rotation control amount of the drive wheel M1 based on the deviation between the drive wheel speed and the target drive wheel speed, and the control amount correction means M8 uses the calculated control amount to calculate the rotation control amount of the drive wheel M1 based on the deviation between the drive wheel speed and the target drive wheel speed. The amount is increased according to the deviation from the target slip state.

この結果加速スリップ制御開始時等、駆動輪速度が上昇
し過ぎて駆動輪のスリップ率が第2図の領域Cにある場
合、或は加速スリップ制御によって駆動輪の回転を抑制
し過ぎ、駆動輪のスリップ率が第2図の領域Aにある場
合には、駆動輪の制御量が大きい値に補正されて、駆動
輪のスリップ率を第2図の領域Bに速やかに移行させる
ことができ、駆動輪速度を目標駆動輪速度に速やかに収
束させることができるようになる。
As a result, if the driving wheel speed increases too much and the slip rate of the driving wheels is in region C in Figure 2, such as when starting acceleration slip control, or if the acceleration slip control suppresses the rotation of the driving wheels too much and the driving wheels When the slip ratio of the drive wheel is in the region A of FIG. 2, the control amount of the drive wheels is corrected to a large value, and the slip ratio of the drive wheels can be quickly shifted to the region B of FIG. It becomes possible to quickly converge the driving wheel speed to the target driving wheel speed.

[実施例] 以下に本発明の実施例を図面と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

まず第4図はガソリン内燃機関を備えたフロントエンジ
ン・リヤドライブ(F R)方式の自動車に本発明を適
用した実施例の加速スリ・ツブ制御装置全体の構成を表
わす概略構成図である。
First, FIG. 4 is a schematic configuration diagram showing the entire configuration of an acceleration sleeve control system according to an embodiment in which the present invention is applied to a front engine rear drive (FR) type automobile equipped with a gasoline internal combustion engine.

図に示す如く本実施例の加速スリ・ツブ制御装置は、内
燃機関2の吸気通路4にアクセルペダル6と連動して開
閉される主スロツトルバルブ8とは別に設けられたサブ
スロットルバルブ10を開閉して加速スリップ制御を実
行するように構成されている。サブスロットルバルブ1
0は、通常は全開状態に制御され、加速スリップ発生時
に、加速スリップ制御回路20から出力される開閉制御
信号によって駆動モータ22を介して開閉制御される。
As shown in the figure, the acceleration throttle control device of this embodiment includes a sub-throttle valve 10 that is provided in the intake passage 4 of the internal combustion engine 2 separately from the main throttle valve 8 that is opened and closed in conjunction with the accelerator pedal 6. It is configured to open and close to execute acceleration slip control. Sub throttle valve 1
0 is normally controlled to be fully open, and when an acceleration slip occurs, the opening/closing control signal is outputted from the acceleration slip control circuit 20 and the opening/closing control is performed via the drive motor 22.

このサブスロ・ントルバルブ10及び主スロツトルバル
ブ8には、夫々、その開度を検出するためのサブスロッ
トル開度センサ24及び主スロツトル開度センサ26が
設けられ、加速スlルンブ制御回路20側で、各スロッ
トルバルブ24. 26の開度を確認しつつサブスロッ
トルバルブ24の開閉制御を実行できるようにされてい
る。
The sub-throttle valve 10 and the main throttle valve 8 are provided with a sub-throttle opening sensor 24 and a main throttle opening sensor 26, respectively, for detecting their openings. , each throttle valve 24. The opening/closing control of the sub-throttle valve 24 can be executed while checking the opening degree of the sub-throttle valve 26.

また内燃機関2にはその回転速度を検出するための回転
速度センサ28が設けられ、内燃機関2の回転をディフ
ァレンシャルギヤ29を介して左右後輪(駆動輪) 3
0RL、  30RRtこ伝達する変速機32の出力軸
には、駆動輪速度VRを検出するための駆動輪速度セン
サ34が設けられ、左右前輪(従動輪)30FL、30
FRには、各々の回転速度を検出するための左右従動輪
速度センサ36゜38が設けられており、これら各セン
サからの検出信号も加速スリップ制御回路20に人力さ
れる。
Further, the internal combustion engine 2 is provided with a rotation speed sensor 28 for detecting its rotation speed, and the rotation of the internal combustion engine 2 is transmitted to the left and right rear wheels (drive wheels) 3 via a differential gear 29.
A drive wheel speed sensor 34 for detecting the drive wheel speed VR is provided on the output shaft of the transmission 32 that transmits the 0RL, 30RRt.
The FR is provided with left and right driven wheel speed sensors 36 and 38 for detecting the respective rotational speeds, and detection signals from these sensors are also input manually to the acceleration slip control circuit 20.

次に加速スリップ制御回路20は、第5図に示す如く、
CPU20aS ROM20b、RAM20c、バッフ
ァ・ツブRAM20d等を中心に論理演算回路として構
成され、コモンバス20eを介して入出カポ−)2Of
に接続されて外部との入出力を行なう。
Next, the acceleration slip control circuit 20, as shown in FIG.
It is configured as a logic operation circuit centering around the CPU 20aS ROM 20b, RAM 20c, buffer/tube RAM 20d, etc., and input/output capo) 2Of via the common bus 20e.
is connected to perform input/output with the outside.

既述したサブスロ・ントル開度センサ24及び主スロツ
トル開度センサ26からの検出信号は直接、また回転速
度センサ28、駆動輪速度センサ34、及び左右従動輪
速度センサ36.3Bからの検出信号は波形成形回路4
0gを介して、人出力ボート20fに人力される。また
人出カポ−)2Ofには、サブスロ・ントルバルブ10
を駆動するための駆動モータ22の駆動回路40hも接
続され、CPU40aは人出カポ−)2Ofを介して各
駆動回路40hに制御lI倍信号出力する。
The detection signals from the sub-throttle opening sensor 24 and the main throttle opening sensor 26 described above are directly, and the detection signals from the rotational speed sensor 28, driving wheel speed sensor 34, and left and right driven wheel speed sensors 36.3B are Waveform shaping circuit 4
It is man-powered via 0g to the man-power boat 20f. In addition, the sub-throttle valve 10 is available for 2 of the crowded capo.
A drive circuit 40h of the drive motor 22 for driving the drive motor 22 is also connected, and the CPU 40a outputs a control lI times signal to each drive circuit 40h via the output capo 2Of.

上記のように構成された加速スリップ制御回路20は、
各車輪速度センサ34.36.38からの検出信号に基
づき駆動輪の加速スリップを検出し、加速スリツブ検出
時には駆動輪の回転速度が目標回転速度となるようにサ
ブスロットルバルブ10の開閉制御を行なう。
The acceleration slip control circuit 20 configured as described above is
Acceleration slip of the driving wheels is detected based on detection signals from each wheel speed sensor 34, 36, 38, and when acceleration slip is detected, opening/closing control of the sub-throttle valve 10 is performed so that the rotational speed of the driving wheel becomes the target rotational speed. .

以下、このように加速スリラブ制御回路20で実行され
る加速ス1ルンブ制御について第6図及び第7図に示す
フローチャートに沿って詳しく説明する。
Hereinafter, the acceleration lumber control executed by the acceleration lumber control circuit 20 will be described in detail with reference to the flowcharts shown in FIGS. 6 and 7.

まず第6図は、駆動輪の加速スリップを検出し、その後
加速スリップが発生しなくなるまでの間、加速スリップ
制御のためのサブスロットルバルブ10の制御量Qsを
算出するために、加速スリップ制御回路20で所定時間
毎に繰り返し実行される制御量算出処理を表わすフロー
チャートである。
First, FIG. 6 shows an acceleration slip control circuit that detects acceleration slip of the drive wheels and then calculates the control amount Qs of the sub-throttle valve 10 for acceleration slip control until acceleration slip no longer occurs. 20 is a flowchart illustrating a control amount calculation process that is repeatedly executed at predetermined time intervals in step 20.

図に示す如くこの処理が開始されると、まずステップ1
00を実行し、左右従動輪速度センサ34.36からの
検出信号及び駆動輪速度センサ38からの検出信号に基
づき、車体速度VF及び駆動輪速度VRを夫々算出する
。尚車体速度VFには、左右従動輪速度センサ34.3
6により検出される左右従動輪速度の平均値、又はその
うち大きい方の値が設定される。
As shown in the figure, when this process starts, first step 1
00 is executed, and based on the detection signals from the left and right driven wheel speed sensors 34 and 36 and the detection signal from the driving wheel speed sensor 38, the vehicle body speed VF and the driving wheel speed VR are calculated, respectively. In addition, the left and right driven wheel speed sensor 34.3 is used for the vehicle body speed VF.
The average value of the left and right driven wheel speeds detected by 6, or the larger value thereof, is set.

次にステップ110では、後述の処理で加速スリップ制
御開始時にセットされる制御実行フラグFSがリセ・ン
ト状態であるか否か、即ち現在加速スリップ制御が実行
されていないか否かを判断し、制御実行フラグFSがリ
セット状態で、加速スリップ制御が実行されていないと
判断されると、続くステップ120に移行する。
Next, in step 110, it is determined whether the control execution flag FS, which is set at the start of acceleration slip control in a process to be described later, is in a reset state, that is, whether acceleration slip control is not currently being executed. If it is determined that the control execution flag FS is in a reset state and acceleration slip control is not being executed, the process moves to the following step 120.

ステップ120では、上記ステップ100で算出した車
体速度VFに基づき、加速スリップ制御を実行するか否
かを判断するための駆動輪の基準速度(制御開始基準速
度)VKを算出する。この制御開始基準速度VKは、駆
動輪速度から駆動輪に加速スリップが発生した否かを判
断するためのもので、加速スリップを誤検出することの
ないよう、後述の目標駆動輪速度より大きな値が設定さ
れる。またこの制御開始基準速度VKは、車体速度VF
が低速である場合には車体速度VFに所定の基準値bo
を加算することで算出され、車体速度が所定速度以上の
場合には車体速度VFに所定の基準ifl a oを乗
することで算出される。
In step 120, based on the vehicle body speed VF calculated in step 100, a reference speed (control start reference speed) VK of the drive wheels for determining whether or not to execute acceleration slip control is calculated. This control start reference speed VK is used to determine whether acceleration slip has occurred in the drive wheels based on the drive wheel speed, and is set to a value larger than the target drive wheel speed described later to avoid erroneously detecting acceleration slip. is set. Moreover, this control start reference speed VK is the vehicle body speed VF
is low, the vehicle body speed VF is set to a predetermined reference value bo.
If the vehicle speed is equal to or higher than a predetermined speed, it is calculated by multiplying the vehicle speed VF by a predetermined reference ifla o.

このようにステップ120で制御開始基準速度VKが算
出されると、続くステ・ンプ130に移行し、駆動輪速
度VRが制御開始基準速度VK以上で、かつ主スロ・ン
トルバルブ8が全閉状態でないといった加速スリップ制
御開始条件が成立しているか否かを判断する。そしてこ
のステップ130で加速スリップ制御開始条件が成立し
ていないと判断されるとそのまま処理を一旦終了し、そ
うでなければステップ140に移行して、加速スリップ
制御開始条件成立後所定時間(例えば8 m5ec、)
経過したか否かを判断し、所定時間経過していない場合
にはそのまま処理を終了する。これは路面の凹凸等によ
る瞬間的な駆動輪7.8の回転変動に対して加速スリッ
プが発生したと判断してスロットルバルブの開閉制御を
実行することのないようにするためである。
When the control start reference speed VK is calculated in step 120 in this way, the process moves to the next step 130, where the driving wheel speed VR is equal to or higher than the control start reference speed VK and the main throttle valve 8 is not in a fully closed state. It is determined whether or not the acceleration slip control start condition is satisfied. If it is determined in this step 130 that the acceleration slip control start condition is not satisfied, the process is temporarily terminated, and if not, the process proceeds to step 140 for a predetermined period of time (for example, 8 m5ec,)
It is determined whether the predetermined time has elapsed or not, and if the predetermined time has not elapsed, the process is immediately terminated. This is to prevent opening/closing control of the throttle valve from being determined that acceleration slip has occurred due to instantaneous rotational fluctuations of the drive wheels 7.8 due to unevenness of the road surface, etc.

次にステップ140で加速スリップ制御開始条件成立後
所定時間経過したと判断されると、続くステップ150
に移行して制御実行フラグFSをセットした後、ステッ
プ160に移行し、回転速度センサ28により検出され
る内燃機関2の回転速度NEと、スロットル開度θとに
基づき、後述の処理でサブスロットルバルブ10の制御
量bsを算出するのに用いられる補正係数Klを、第8
図に示すマツプから補間して求める。
Next, if it is determined in step 140 that a predetermined period of time has elapsed after the acceleration slip control start condition was satisfied, the following step 150
After moving to Step 160 and setting the control execution flag FS, the process moves to Step 160, and based on the rotational speed NE of the internal combustion engine 2 detected by the rotational speed sensor 28 and the throttle opening degree θ, the subthrottle is adjusted in a process described later. The correction coefficient Kl used to calculate the control amount bs of the valve 10 is
It is determined by interpolation from the map shown in the figure.

尚この算出に用いるスロットル開度θには、サブスロ・
ントル開度センサ24を用いて検出されるサブスロット
ル開度θSが用いられる。またこの補正係数に1は、駆
動輪の回転トルクを決定する内燃機関の出力トルクを、
駆動輪速度と目標駆動輪速度との偏差に応じて常に一定
の割合で増減できるようにサブスロ・ントルバルブ10
の制御量bSを設定するためのものである。
The throttle opening θ used for this calculation is based on the sub-throttle
The sub-throttle opening θS detected using the throttle opening sensor 24 is used. In addition, this correction coefficient of 1 indicates the output torque of the internal combustion engine that determines the rotational torque of the drive wheels.
The sub-throttle valve 10 is designed to always increase or decrease at a constant rate depending on the deviation between the drive wheel speed and the target drive wheel speed.
This is for setting the control amount bS.

次にステップ170では、ステップ100で算出した車
体速度VFが予め設定された基準速度VFO以上である
か否かを判断し、車体速度VFが基準速度VFo以上の
高速であればステップ180に、車体速度VFが基準速
度VFoより低い低速であればステ・ンプ190に移行
する。そしてステップ180では車体速度VFに所定の
基準値aを乗じ、ステップ190では車体速度VFに所
定の基準値すを加えることで、駆動輪のスリップ率Sが
目標スリップ率(5〜10%程度の値)となる目標駆動
輪速度VS7f−算出する。
Next, in step 170, it is determined whether the vehicle body speed VF calculated in step 100 is equal to or higher than a preset reference speed VFO. If the vehicle body speed VF is higher than the reference speed VFo, the vehicle body If the speed VF is a low speed lower than the reference speed VFo, the process moves to step 190. Then, in step 180, the vehicle speed VF is multiplied by a predetermined reference value a, and in step 190, a predetermined reference value a is added to the vehicle speed VF, so that the slip rate S of the driving wheels is adjusted to the target slip rate (approximately 5 to 10%). The target driving wheel speed VS7f- is calculated.

尚この目標駆動輪速度VSを設定するのに使用される基
準値a又はbには、上述の制御開始基準速度VKを設定
するのに使用される基準値ao又はboより小さい値が
設定されている。
Note that the reference value a or b used to set the target driving wheel speed VS is set to a value smaller than the reference value ao or bo used to set the control start reference speed VK described above. There is.

次にステ・ンブ180で目標駆動輪速度VSが算出され
ると、ステップ200に移行して、上記ステップ100
で算出された駆動輪速度VRと車体速度VFとに基づき
、上述の(2)式を用いて駆動輪のスリップ率Sを算出
する。そして続くステップ210に移行して、その算出
されたスリップ率Sに基づき、第9図(A−1)に示す
如きマツプを用いた補間計算によって、第9図(B−1
)に示す如く補正係数に2を算出する。
Next, when the target drive wheel speed VS is calculated in the step 180, the process moves to step 200, and the process proceeds to step 100.
Based on the drive wheel speed VR and the vehicle body speed VF calculated in the above, the slip ratio S of the drive wheels is calculated using the above-mentioned equation (2). Then, the process moves to the following step 210, and based on the calculated slip ratio S, an interpolation calculation using a map as shown in FIG. 9 (A-1) is performed as shown in FIG.
2 is calculated as the correction coefficient as shown in ).

またステップ190で目標駆動輪速度VSが算出される
と、ステ・ンプ220に移行して、上記ステップ100
で算出された駆動輪速度VRと車体速度VFとの偏差S
xを算出する。そして続くステップ230では、その算
出された偏差SXに基づき、第9図(A −2)に示す
如きマツプを用いた補間計算によって、第9図(B−2
)に示す如く補正係数に2を算出する。
Further, when the target drive wheel speed VS is calculated in step 190, the process moves to step 220, and the process proceeds to step 100.
Deviation S between the driving wheel speed VR and the vehicle body speed VF calculated by
Calculate x. In the subsequent step 230, based on the calculated deviation SX, an interpolation calculation using a map as shown in FIG. 9 (A-2) is performed as shown in FIG. 9 (B-2).
2 is calculated as the correction coefficient as shown in ).

尚この補正係数に2は、前述の補正係数に1と同様、サ
ブスロ・ントルバルブ10の制御量bsを算出するため
のに使用されるもので、ステップ200及びステップ2
20では、夫々ステップ180又はステップ190で目
標駆動輪速度VSを設定した際の駆動輪の目標スリップ
状態に対応した駆動輪のスリップ状態を検出し、ステッ
プ210及びステップ230では、その検出されたスリ
ップ状態の目標スリップ状態からのずれに応じて、補正
係数に2を算出している。
Note that the correction coefficient 2 is used to calculate the control amount bs of the sub-throttle valve 10, similar to the correction coefficient 1 described above, and is used in step 200 and step 2.
In step 20, the slip state of the drive wheel corresponding to the target slip state of the drive wheel when the target drive wheel speed VS is set in step 180 or step 190, respectively, is detected, and in step 210 and step 230, the detected slip state is detected. A correction coefficient of 2 is calculated depending on the deviation of the state from the target slip state.

そしてこのようにステップ210又はステ・ンプ230
で補正係数に2が算出されると、続くステップ240に
移行して、上記算出された補正係数Kl、に2.駆動輪
速度VRと目標駆動輪速度VSとの偏差へV、及びその
変化率ΔMをパラメータとする次式(3)を用いてサブ
スロットルバルブ10の制御卸量(開閉速度)汐Sを算
出し、−旦処理を終了する。
and thus step 210 or step 230
When the correction coefficient Kl is calculated as 2, the process moves to the following step 240, and the correction coefficient Kl calculated above is changed to 2. The control amount (opening/closing speed) S of the sub-throttle valve 10 is calculated using the following equation (3) with the deviation V between the driving wheel speed VR and the target driving wheel speed VS and its rate of change ΔM as parameters. , - the processing ends.

ルs=■(l−に2(α・Δv+β・△v) ・・・(
3)つまり本実施例では、上記(3)式の(α・へ■十
β・△V)により、駆動輪速度VRと目標駆動輪速度V
Sとの偏差ΔV (=VS−VR)に応じた駆動輪の回
転制御量を算出し、その値を補正係数に1によってサブ
スロットルバルブ10の制御量に換算し、更にその値を
補正係数に2によって駆動輪のスリップ状態が目標スリ
ップ状態から外れる程大きな値に補正することで、サブ
スロットルバルブ10の制御量θSを決定するのである
Le s=■(l-2(α・Δv+β・△v)...(
3) In other words, in this embodiment, the driving wheel speed VR and the target driving wheel speed V
Calculate the rotation control amount of the driving wheels according to the deviation ΔV (=VS - VR) from S, convert that value into the control amount of the sub-throttle valve 10 by using 1 as a correction coefficient, and then use that value as a correction coefficient. 2, the control amount θS of the sub-throttle valve 10 is determined by correcting the slip state of the drive wheels to a value so large that it deviates from the target slip state.

次にステップ110で制御実行フラグFSがセット状態
であると判断された場合、即ち加速スリップ制御が既に
実行されている場合には、ステップ250に移行して、
主スロットル開度θ門がサブスロ・ントル開度θS以上
となっているが否かを判断し、θN≧θSであればステ
ップ160に移行して上述の処理を実行し、θN〈θS
となっておれは、ステップ260に移行して、その状態
が所定時間(例えば500m5ec、)経過したが否か
を判断する。そしてステップ260でθN〈θSの状態
が所定時間経過したと判断されると、もはや駆動輪に加
速スリップが発生することはないと判断して、ステップ
270で制御実行フラグFSをリセットして処理を一旦
終了し、そうでなければステップ160に移行して、上
述の処理を実行する。
Next, if it is determined in step 110 that the control execution flag FS is set, that is, if acceleration slip control has already been executed, the process proceeds to step 250,
It is determined whether the main throttle opening θ is equal to or greater than the subthrottle opening θS, and if θN≧θS, the process moves to step 160 and the above-mentioned process is executed, and θN<θS
Therefore, the process moves to step 260, and it is determined whether or not a predetermined period of time (for example, 500 m5ec) has elapsed in this state. When it is determined in step 260 that the state of θN<θS has passed for a predetermined period of time, it is determined that acceleration slip will no longer occur in the drive wheels, and the control execution flag FS is reset in step 270 and the process is started. Once the process is finished, if not, the process moves to step 160 and the above-described process is executed.

次に第7図は、上記第6図の制御量算出処理で算出され
た制御量Qsに応じてサブスロットルバルブ10を開閉
するために所定時間毎に実行される駆動モータ22の駆
動処理を表わすフローチャートである。
Next, FIG. 7 shows a process for driving the drive motor 22, which is executed at predetermined time intervals to open and close the sub-throttle valve 10 in accordance with the control amount Qs calculated in the control amount calculation process shown in FIG. It is a flowchart.

図に示す如くこの駆動処理では、まずステ・ンブ300
で現在制御実行フラグFSがセ・ントされているか否か
を判断し、制御実行フラグFSがセットされておれば、
ステップ310に移行して、上記制御量算出処理で算出
された制御量9sに応じた回転速度で駆動モータ22を
駆動し、サブスロットルバルブ10を開閉する。
As shown in the figure, in this driving process, first the stem 300 is
It is determined whether the control execution flag FS is currently set, and if the control execution flag FS is set,
Proceeding to step 310, the drive motor 22 is driven at a rotational speed according to the control amount 9s calculated in the control amount calculation process to open and close the sub-throttle valve 10.

一方ステップ300で制御実行フラグFSがリセット状
態であると判断されると、ステップ320に移行し、サ
ブスロットル開度θSが最大値θSMAX以上となって
いるか否か、つまりサブスロットルバルブ10が全開状
態になっているか否かを判断する。そしてこのステ・ン
プ320でサブスロットルバルブ10が全開状態でない
と判断されると、サブスロ・ントルバルブ10を全開状
態に制御すべく駆動モータ55を駆動した後、処理を一
旦終了し、サブスロットルバルブ55が全開状態となっ
ておれば、サブスロットルバルブ54の駆動を停止すべ
く駆動モータ55を停止した後、処理を一旦終了する。
On the other hand, if it is determined in step 300 that the control execution flag FS is in the reset state, the process moves to step 320 and checks whether the sub-throttle opening degree θS is greater than or equal to the maximum value θSMAX, that is, the sub-throttle valve 10 is in the fully open state. Determine whether it is. If the step 320 determines that the sub-throttle valve 10 is not fully open, the drive motor 55 is driven to control the sub-throttle valve 10 to the fully-open state, and the process is temporarily terminated. If the sub-throttle valve 54 is fully open, the drive motor 55 is stopped to stop driving the sub-throttle valve 54, and then the process is temporarily terminated.

以上説明したように本実施例では、補正係数に1と駆動
輪速度VRと目標駆動輪速度Vsとの1扁差△Vに基づ
き算出されるサブスロットルバルブ100制御量が、補
正係数に2によって駆動輪のスリップ状態が目標スリッ
プ状態から外れる程大きな値に補正される。
As explained above, in this embodiment, the sub-throttle valve 100 control amount calculated based on the correction coefficient of 1 and the 1 deviation ΔV between the drive wheel speed VR and the target drive wheel speed Vs is set by the correction coefficient of 2. The more the slip state of the driving wheels deviates from the target slip state, the larger the value is corrected.

このため、加速スリップ制御開始時等、駆動輪速度が上
昇し過ぎて駆動輪のスリップ状態が第2図の領域Cに入
ると、サブスロットルバルブ1゜の制御量すを従来より
大きい値に補正して、駆動輪の回転を速やかに抑制し、
逆に加速スリップ制御によって駆動輪の回転脚抑制し過
ぎて、駆動輪のスリップ状態が第2図の領域Aに入ると
、サブフロ・ントルバルブ10の制御量汐を従来より大
きい値に補正して、駆動輪の回転を速やかに上昇させる
ことができ、第10図に点線で示す如く、実線で示す補
正係数に2による制御量補正を行なわない場合に比べ、
駆動輪速度をより速く目標駆動軸速度VSに収束させる
ことが可能となる。尚第10図において、A、  B、
  Cは、夫々、第2図に示すスリップ領域A、  B
、  Cを表わしている。
Therefore, when the drive wheel speed increases too much and the drive wheel slip state enters region C in Figure 2, such as when starting acceleration slip control, the control amount of the sub-throttle valve 1° is corrected to a value larger than before. to quickly suppress the rotation of the drive wheels,
On the other hand, if the acceleration slip control suppresses the rotating leg of the drive wheels too much and the slip state of the drive wheels falls into region A in FIG. The rotation of the driving wheels can be quickly increased, and as shown by the dotted line in FIG. 10, compared to the case where the control amount correction is not performed by adding 2 to the correction coefficient shown by the solid line,
It becomes possible to more quickly converge the drive wheel speed to the target drive shaft speed VS. In addition, in Fig. 10, A, B,
C are slip areas A and B shown in FIG. 2, respectively.
, represents C.

[発明の効果] 以上詳述したように本発明の加速スリップ制御装置によ
れは、加速スリップ制御開始時、或は加速スリップ制御
によって駆動輪の回転が抑制された場合等、駆動輪のス
リップ状態が目標スリップ状態から大きくずれた場合に
は、そのずれ量に応じて駆動輪の回転制御量が大きい1
直に補正されるので、従来の装置に比べて駆動輪の回転
速度をより速やかに目標回転速度に収束させることがで
き、駆動軸のスリップ状態を目標スリップ状態に速やか
に制御して車両の加速走行性を向上することが可能とな
る。
[Effects of the Invention] As described in detail above, the acceleration slip control device of the present invention is capable of controlling the slip state of the drive wheels, such as when the acceleration slip control is started or when the rotation of the drive wheels is suppressed by the acceleration slip control. If there is a large deviation from the target slip state, the rotation control amount of the drive wheels will be increased according to the amount of deviation.
Since the correction is made directly, the rotational speed of the drive wheels can be converged to the target rotational speed more quickly than conventional devices, and the slip state of the drive shaft can be quickly controlled to the target slip state to accelerate the vehicle. It becomes possible to improve running performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を表わすプロ・ンク図、第2図は
車両加速時のスリップ率Sと摩擦係数μ及び横抗力との
関係を表わす線図、第3図はフロ・ントル開度と内燃機
関の出力トルクとの関係を表わす線図、第4図は実施例
の加速スリップ制御装置全体の構成を表わす概略構成図
、第5図は加速スリップ制fa11回路の構成を表わす
ブロック図、第6図は加速スリップ制御回路で実行され
る制御量算出処理を表わすフローチャート、第7図は同
じく加速スリップ制御回路で実行される駆動モータの駆
動処理を表わすフローチャート、第8図は補正係数に1
を算出するのに用いるマツプを表わす説明図、第9図は
補正係数に2を算出するのに用いるマツプ及びその特性
を表わす説明図、第10図は駆動輪速度の目標駆動輪速
度に対する収束状態を表わすタイムチャート、である。 Ml・・・駆動輪 (30RL、  30RR・・・後
輪)M2・・・駆動輪速度検出手段 M3・・・車体速度検出手段 M4・・・目標駆動輪速度算出手段 M5・・・加速スリップ制御手段 M6・・・制御量算出手段 Ml・・・スリップ状態検出手段 M8・・・制御量補正手段 2・・・内燃機関 20・・・加速スリップ制御回路2
2・・・駆動モータ 24・・・サブスロットルバルブ 34・・・駆動輪速度センサ 36・・・左従動輪速度センサ 38・・・右従動輪速度センサ
Fig. 1 is a diagram showing the configuration of the present invention, Fig. 2 is a diagram showing the relationship between slip ratio S, friction coefficient μ, and lateral reaction force during vehicle acceleration, and Fig. 3 is a diagram showing the front torque opening. FIG. 4 is a schematic configuration diagram showing the overall configuration of the acceleration slip control device of the embodiment, FIG. 5 is a block diagram showing the configuration of the acceleration slip control fa11 circuit, FIG. 6 is a flowchart showing the control amount calculation process executed by the acceleration slip control circuit, FIG. 7 is a flowchart showing the drive motor drive process also executed by the acceleration slip control circuit, and FIG. 8 is a flowchart showing the control amount calculation process executed by the acceleration slip control circuit.
Figure 9 is an explanatory diagram showing the map used to calculate the correction coefficient 2 and its characteristics. Figure 10 is the convergence state of the driving wheel speed with respect to the target driving wheel speed. This is a time chart representing. Ml... Drive wheel (30RL, 30RR... Rear wheel) M2... Drive wheel speed detection means M3... Vehicle speed detection means M4... Target drive wheel speed calculation means M5... Acceleration slip control Means M6...Controlled amount calculation means Ml...Slip state detection means M8...Controlled amount correction means 2...Internal combustion engine 20...Acceleration slip control circuit 2
2... Drive motor 24... Sub throttle valve 34... Drive wheel speed sensor 36... Left driven wheel speed sensor 38... Right driven wheel speed sensor

Claims (1)

【特許請求の範囲】 駆動輪の回転速度を検出する駆動輪速度検出手段と、 車体速度を検出する車体速度検出手段と、 該検出された車体速度に基づき駆動輪の目標回転速度を
算出する目標駆動輪速度算出手段と、上記検出された駆
動輪の回転速度に基づき駆動輪の加速スリップを検出し
、その後加速スリップが発生しなくなるまでの間、駆動
輪の回転を制御する加速スリップ制御手段と、 該加速スリップ制御手段による駆動輪の回転制御量を、
上記駆動輪の回転速度と目標回転速度との偏差に基づき
算出する制御量算出手段と、を備えた車両の加速スリッ
プ制御装置において、上記駆動輪の回転速度と車体速度
とに基づき駆動輪のスリップ状態を検出するスリップ状
態検出手段と、 該検出されたスリップ状態の目標スリップ状態からのず
れに応じて、上記制御量算出手段で算出された駆動輪の
回転制御量を増量補正する制御量補正手段と、 を設けたことを特徴とする車両の加速スリップ制御装置
[Claims] Drive wheel speed detection means for detecting the rotation speed of the drive wheels; vehicle speed detection means for detecting the vehicle body speed; and a target for calculating the target rotation speed of the drive wheels based on the detected vehicle body speed. a driving wheel speed calculation means; and an acceleration slip control means for detecting acceleration slip of the driving wheel based on the detected rotational speed of the driving wheel and controlling the rotation of the driving wheel until the acceleration slip no longer occurs. , the amount of rotation control of the driving wheels by the acceleration slip control means,
In the acceleration slip control device for a vehicle, the control amount calculation means calculates a control amount based on the deviation between the rotational speed of the driving wheel and the target rotational speed. a slip state detection means for detecting the state; and a control amount correction means for increasing the rotational control amount of the driving wheels calculated by the control amount calculation means according to the deviation of the detected slip state from the target slip state. An acceleration slip control device for a vehicle, comprising: and.
JP63042950A 1988-02-25 1988-02-25 Vehicle acceleration slip control device Expired - Lifetime JP2638891B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63042950A JP2638891B2 (en) 1988-02-25 1988-02-25 Vehicle acceleration slip control device
US07/313,454 US4974694A (en) 1988-02-25 1989-02-22 Acceleration slip controller for a vehicle
DE3905629A DE3905629A1 (en) 1988-02-25 1989-02-23 ACCELERATION SLIP CONTROL DEVICE FOR A VEHICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042950A JP2638891B2 (en) 1988-02-25 1988-02-25 Vehicle acceleration slip control device

Publications (2)

Publication Number Publication Date
JPH01215636A true JPH01215636A (en) 1989-08-29
JP2638891B2 JP2638891B2 (en) 1997-08-06

Family

ID=12650299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042950A Expired - Lifetime JP2638891B2 (en) 1988-02-25 1988-02-25 Vehicle acceleration slip control device

Country Status (3)

Country Link
US (1) US4974694A (en)
JP (1) JP2638891B2 (en)
DE (1) DE3905629A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173608A (en) * 2009-02-02 2010-08-12 Honda Motor Co Ltd Front and rear wheel driving vehicle
JP2014185600A (en) * 2013-03-25 2014-10-02 Keihin Corp Slip amount control device for vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2627439B2 (en) * 1988-11-24 1997-07-09 本田技研工業株式会社 Vehicle drive wheel slip control system
JPH0751903B2 (en) * 1989-09-05 1995-06-05 日産自動車株式会社 Vehicle engine output control device
DE4017845B4 (en) * 1990-06-02 2004-04-01 Continental Teves Ag & Co. Ohg Circuit arrangement for a motor vehicle with traction control
JP2913822B2 (en) * 1990-11-14 1999-06-28 トヨタ自動車株式会社 Acceleration slip control device
US5263548A (en) * 1991-04-15 1993-11-23 Mazda Motor Corporation Vehicle slip control system
JPH06199160A (en) * 1992-11-12 1994-07-19 Ford Motor Co Method of estimating traction characteristic on surface under automobile in motion
JP2001260836A (en) * 2000-03-23 2001-09-26 Toyota Motor Corp Control device for distribution of vehicle driving force
DE10113103A1 (en) * 2001-03-17 2002-09-19 Wabco Gmbh & Co Ohg Road vehicle drive slip regulation involves setting second threshold with fixed, speed-dependent components, drive slip regulation motor control activated if second threshold exceeded
US20080228329A1 (en) * 2007-03-13 2008-09-18 Honeywell International Inc. Methods and systems for friction detection and slippage control
GB2500698B (en) 2012-03-30 2014-12-17 Jaguar Land Rover Ltd Vehicle traction control
US8926467B2 (en) 2013-03-08 2015-01-06 Harley-Davidson Motor Company Group, LLC Transmission with reverse drive assembly
CN110966978B (en) * 2018-09-28 2021-10-26 千寻位置网络有限公司 Bicycle tire deformation detection method and device and bicycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182434A (en) * 1985-02-06 1986-08-15 Nippon Denso Co Ltd Slip preventing apparatus for car

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196940A (en) * 1972-06-27 1980-04-08 Texas Instruments Incorporated Differentiator and variable threshold gate circuit for vehicle skid control brake system
US4193642A (en) * 1974-06-24 1980-03-18 Kelsey Hayes Co. Skid control system
BR8009060A (en) * 1980-05-07 1982-04-13 Caterpillar Tractor Co PROCESS AND APPARATUS TO DIFFERENTIALLY CONTROL SKATING IN ACTION MODE
DE3206694A1 (en) * 1982-02-25 1983-09-01 Vdo Adolf Schindling Ag, 6000 Frankfurt Device for monitoring the slip on wheels of motor vehicles
JPS60128057A (en) * 1983-12-14 1985-07-08 Nissan Motor Co Ltd Control method of preventing slip of power train
JPS611543A (en) * 1984-06-12 1986-01-07 Toyota Motor Corp Accelerating slip preventing method in vehicles
JPS6160331A (en) * 1984-09-03 1986-03-28 Toyota Motor Corp Vehicle slip controller
JPS6185248A (en) * 1984-10-02 1986-04-30 Toyota Motor Corp Acceleration slip controlling apparatus for vehicle
JPH0792003B2 (en) * 1984-12-28 1995-10-09 トヨタ自動車株式会社 Vehicle acceleration slip control device
JPS61283736A (en) * 1985-06-08 1986-12-13 Toyota Motor Corp Car slip controller
JPS61286542A (en) * 1985-06-14 1986-12-17 Toyota Motor Corp Acceleration slip controller for vehicle
JPS627954A (en) * 1985-07-04 1987-01-14 Toyota Motor Corp Acceleration slip control device for car
JPS6229461A (en) * 1985-08-01 1987-02-07 Toyota Motor Corp Acceleration slip controller for vehicle
DE3537452C2 (en) * 1985-10-22 1996-06-13 Bosch Gmbh Robert Traction control system
DE3635095A1 (en) * 1985-10-24 1987-04-30 Volkswagen Ag Method and device for the drive control of a motor vehicle so as to prevent undesirable spinning of the driven vehicle wheels
DE3546575A1 (en) * 1985-12-21 1987-10-01 Daimler Benz Ag Device for controlling the drive on motor vehicles
JPH0684136B2 (en) * 1985-12-25 1994-10-26 トヨタ自動車株式会社 Acceleration slip controller
JPS62157851A (en) * 1985-12-28 1987-07-13 Toyota Motor Corp Acceleration slip control device
DE3722088A1 (en) * 1986-07-03 1988-01-21 Nissan Motor Method for controlling an internal combustion engine and an engine control system for a motor vehicle
JP2545810B2 (en) * 1986-10-27 1996-10-23 トヨタ自動車株式会社 Vehicle acceleration slip controller
JPS63141864A (en) * 1986-12-02 1988-06-14 Sumitomo Electric Ind Ltd Wheel spin control device
JP2504009B2 (en) * 1986-12-13 1996-06-05 トヨタ自動車株式会社 Acceleration slip control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182434A (en) * 1985-02-06 1986-08-15 Nippon Denso Co Ltd Slip preventing apparatus for car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173608A (en) * 2009-02-02 2010-08-12 Honda Motor Co Ltd Front and rear wheel driving vehicle
JP2014185600A (en) * 2013-03-25 2014-10-02 Keihin Corp Slip amount control device for vehicle

Also Published As

Publication number Publication date
DE3905629A1 (en) 1989-09-07
DE3905629C2 (en) 1992-05-27
US4974694A (en) 1990-12-04
JP2638891B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
WO2018121595A1 (en) Acceleration slip regulation control method and device for four-wheel drive electric vehicle
JP2545810B2 (en) Vehicle acceleration slip controller
JPH0310014B2 (en)
JPH01215636A (en) Acceleration slip controller for vehicle
JPH01211630A (en) Device for adjusting at least one variation having effect on propulsion moment of internal combustion engine for automobile
JP3189355B2 (en) Acceleration slip control device for vehicles with automatic transmission
JP2704774B2 (en) Vehicle drive wheel slip control system
JPH0693893A (en) Acceleration slip control device
US5248010A (en) Acceleration slip control device for a vehicle
JPS6223831A (en) Accelerating slip controller for vehicles
JPH0678736B2 (en) Vehicle acceleration slip controller
JPS61129432A (en) Control device of acceleration slip in vehicle
JPS61116035A (en) Acceleration slip control device for vehicle
JPS62203939A (en) Skid controller for automobile
JPS62121839A (en) Slip control device for vehicle
JPH068616B2 (en) Vehicle acceleration slip controller
JP2950035B2 (en) Slip control device and control method thereof
JP2853490B2 (en) Vehicle driving force control device
JP3089847B2 (en) Vehicle driving force control device
JPS62203938A (en) Skid controller for automobile
JPS62121838A (en) Slip control device for vehicle
JPH07127492A (en) Driving torque control device for vehicle
JPS61116034A (en) Acceleration slip control device for vehicle
JPS6312842A (en) Slip rate control device for vehicle
JP2500157Y2 (en) Driving force control device