JPH01191779A - Method and apparatus for thin film synthesis by hybrid plasma - Google Patents

Method and apparatus for thin film synthesis by hybrid plasma

Info

Publication number
JPH01191779A
JPH01191779A JP1452988A JP1452988A JPH01191779A JP H01191779 A JPH01191779 A JP H01191779A JP 1452988 A JP1452988 A JP 1452988A JP 1452988 A JP1452988 A JP 1452988A JP H01191779 A JPH01191779 A JP H01191779A
Authority
JP
Japan
Prior art keywords
plasma
frequency
vacuum
vessel
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1452988A
Other languages
Japanese (ja)
Other versions
JPH0627340B2 (en
Inventor
Kanji Fujita
藤田 寛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Original Assignee
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC filed Critical Saga University NUC
Priority to JP1452988A priority Critical patent/JPH0627340B2/en
Publication of JPH01191779A publication Critical patent/JPH01191779A/en
Publication of JPH0627340B2 publication Critical patent/JPH0627340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin high-quality film by means of hybrid plasma by biasing, by means of a D.C. electric power source, the hybrid plasma produced by the electric discharge of microwaves and high-frequency waves and regulating bias voltage and the electric power of the microwaves so as to control the energy and density of beam ions. CONSTITUTION:A D.C. bias voltage is impressed on a cylindrical vacuum vessel 1 equipped with an electromagnetic coil 7 outside, and a reactant gas is supplied from the inlet side of the above vessel 1. On the other hand, a wire-mesh grid 8 is provided to the outlet side of the vessel 1 through which the reactant gas is allowed to flow, and also a substrate 11 is provided to the inside of a secondary vacuum vessel 2 located on the center line of the vessel 1, and further, two plate-like high-frequency electrodes 9 connected to a high-frequency electric power source 10 are disposed in a manner to be opposed to each other in front of the above substrate 11, and then, high-frequency electric discharge is carried out in the vessel 2. Subsequently, the above reactant gas is formed into a state of microwave discharge plasma by means of microwaves 12 introduced through a waveguide 4. The reactant gas in the above plasmic state is accelerated by means of bias voltage impressed on the vessel 1, passed through the grid 8, fed into the vessel 2, and then, a high-frequency discharge energy is applied to the above plasma while it is passed between the high-frequency electrodes 9, by which the thin high-quality film can be formed on the substrate 11 at low temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜合成法に使用できるハイブリッドプラズマ
発生装置に係るもので、各種薄膜の製造技術、電子回路
製造技術、各種センサー製造技術の分野に広く応用でき
るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a hybrid plasma generator that can be used in thin film synthesis methods, and is applicable to the fields of various thin film manufacturing technologies, electronic circuit manufacturing technologies, and various sensor manufacturing technologies. It can be widely applied.

(従来の技術) 従来のプラズマを用いた薄膜合成法は高周波、マイクロ
波、パルス、直流などの放電によって低気圧プラズマを
生成して行ってきた。放電の安定性やコスト、できた薄
膜の性質などから、直流放電はあまり用いられず、高周
波放電、又はマイクロ波放電、或いはパルス放電が用い
られる。高周波を気体にかけるやりかたには、高周波コ
イルを容器の周りにまきつけて高周波電力を注入する誘
導結合型と、容器内部に電極を挿入して高周波電圧をか
ける容量結合型がある。前者のほうが電極からの汚染は
少ないが、できる薄膜の膜厚分布が大きいという欠点が
ある。後者はその点で前者にやや優る。印加する高周波
の周波数もIMHz以上あればよく、13.56 M 
Hzがよく用いられる。
(Prior Art) Conventional plasma-based thin film synthesis methods have been carried out by generating low-pressure plasma using high-frequency, microwave, pulse, direct current, or other discharges. Due to the stability of discharge, cost, and the properties of the formed thin film, direct current discharge is not often used, and high frequency discharge, microwave discharge, or pulse discharge is used. There are two ways to apply high-frequency waves to a gas: inductive coupling, in which a high-frequency coil is wrapped around a container and high-frequency power is injected, and capacitive coupling, in which electrodes are inserted inside the container and high-frequency voltage is applied. The former method causes less contamination from the electrodes, but has the disadvantage that the resulting thin film has a wide thickness distribution. The latter is slightly superior to the former in this respect. It is sufficient that the frequency of the high frequency to be applied is equal to or higher than IMHz, which is 13.56 MHz.
Hz is often used.

ただ反応を起こすガスが基板表面に流れるようにするほ
うが、質の高い薄膜が得られる。ガスは容器の外で混合
されることが多い。できる薄膜の組成や性質は薄膜の形
成条件に依存する。形成条件としては、全圧力、ガス流
量、ガスの混合比、注−入電力、基板温度などが挙げら
れる。
However, a thin film of higher quality can be obtained by allowing the gas that causes the reaction to flow to the surface of the substrate. Gases are often mixed outside the container. The composition and properties of the resulting thin film depend on the thin film formation conditions. Formation conditions include total pressure, gas flow rate, gas mixture ratio, injected power, and substrate temperature.

このような方式で高周波放電を持続させるためには、電
子が電場の1周期の間に電極に捕らえられないことが必
要である。周波数が低いほど電子の運動の振幅は増加す
るから、電極の間の距離は大きくとらなくてはならない
。逆に周波数が高くなれば、電極間距離が小さくても放
電を持続できる。そこで、13.56 M Hzの高周
波放電の代りに、さらに高い周波数の電磁波を用いれば
、電極間距離を小さくすることができ、したがってより
小さな容器で放電を行わせることができる。周波数に2
.45G Hzを用いることが試みられ、ある程度成功
している。このような周波数を用いて行うCVDをマイ
クロ波放電CVDという。
In order to sustain high-frequency discharge in this manner, it is necessary that electrons are not captured by the electrodes during one period of the electric field. The lower the frequency, the greater the amplitude of electron movement, so the distance between the electrodes must be large. Conversely, if the frequency is high, the discharge can be sustained even if the distance between the electrodes is small. Therefore, if an electromagnetic wave with an even higher frequency is used instead of the high frequency discharge of 13.56 MHz, the distance between the electrodes can be reduced, and therefore the discharge can be performed in a smaller container. 2 to frequency
.. Attempts have been made to use 45 GHz with some success. CVD performed using such a frequency is called microwave discharge CVD.

これらのプラズマ“CVD装置は真空容器の一方に設置
した基板に対し、他方より反応ガスを供給し、これに高
周波又はマイクロ波を印加し、得られる放電プラズマに
より基板上に極薄の薄膜を形成する方法である。
These plasma CVD devices supply a reactive gas from the other side to a substrate placed in one side of a vacuum chamber, apply high frequency or microwave to this, and form an extremely thin film on the substrate using the resulting discharge plasma. This is the way to do it.

(発明が解決しようとする課題) 従来の方法は高周波放電又はマイクロ波放電のうち一種
類の放電形式を用いているためプラズマの制御が困難で
あるという問題点があった。また、白熱したフィラメン
ト陰極を用いた直流放電形式で2つのプラズマを生成し
、プラズマを制御しようとする技術も提案されたことも
あるが、反応性プラズマには不適当である。
(Problems to be Solved by the Invention) Conventional methods have a problem in that plasma control is difficult because they use one type of discharge type out of high frequency discharge or microwave discharge. Furthermore, a technique has been proposed in which two plasmas are generated in a direct current discharge format using an incandescent filament cathode and the plasmas are controlled, but this technique is unsuitable for reactive plasma.

(課題を解決するための手段) 本発明は上述の如き課題を解決するために考えられたも
ので、目的とする薄膜合成を反応性プラズマ内で行うに
は、そのプラズマの電子、イオンなどのエネルギー、電
界などの制御が可能であることが必要である。発明は高
周波放電とマイクロ波放電という2つの異なる放電形式
を用いて混合反応ガスよりハイブリッドプラズマを生成
し、片方の真空容器に直流バイアスし、しかもこれら再
放電の間のグリッドにより2つのプラズマを混合させて
、上記のパラメータの制御が可能となるように構成した
ものである。
(Means for Solving the Problems) The present invention was devised to solve the above-mentioned problems, and in order to perform the desired thin film synthesis in a reactive plasma, electrons, ions, etc. of the plasma must be It is necessary to be able to control energy, electric field, etc. The invention uses two different discharge formats, high-frequency discharge and microwave discharge, to generate a hybrid plasma from a mixed reaction gas, applies a DC bias to one vacuum chamber, and mixes the two plasmas using a grid between these re-discharges. In this way, the above-mentioned parameters can be controlled.

本発明によると反応性プラズマの制御が容易であり、白
熱したフィラメント陰極を用いていないので反応性ガス
にも侵されず薄膜合成に最適である。従って、本発明は
電子デバイス、半導体、機能性材料などの製造分野でプ
ラズマCVD法等に利用できる装置を開発したものであ
る。
According to the present invention, it is easy to control reactive plasma, and since an incandescent filament cathode is not used, it is not attacked by reactive gases and is ideal for thin film synthesis. Therefore, the present invention has developed an apparatus that can be used in plasma CVD methods and the like in the field of manufacturing electronic devices, semiconductors, functional materials, and the like.

本発明の特徴とする所は次の通りである。The features of the present invention are as follows.

(1)同径の導波管と円筒型の第1真空容器とを絶録し
て連結し、第1真空容器の他端に金網状グリッド電極を
介して絶縁して連結した第2の真空容器を設け、第2真
空容器中に導波管の中心軸線上に基板と、その前面に設
けられた高周波円盤電極とを設け、第1真空容器に直流
バイアス電源を接続し、その容器の外周を包囲して電磁
石コイルを設け、前記金網状グリッドを接続し、第1真
空容器中にマイクロ波照射により生成したマイクロ波放
電プラズマのイオンビームをグリッドを通して第2真空
容器中に注入し、第2真空容器中の高周波電界による高
周波プラズマ放電と併せてビームのエネルギーと密度を
パワーアップし、基板上に生成される薄膜の成長速度と
薄膜の品質を制御することを特徴とするハイブリッドプ
ラズマによる薄膜合成法。
(1) A waveguide with the same diameter and a cylindrical first vacuum vessel are connected intermittently, and a second vacuum is connected to the other end of the first vacuum vessel in an insulated manner via a wire mesh grid electrode. A container is provided, a substrate is placed on the central axis of the waveguide in the second vacuum container, and a high frequency disk electrode is provided on the front surface of the substrate, a DC bias power source is connected to the first vacuum container, and the outer periphery of the container is An electromagnetic coil is provided surrounding the first vacuum vessel, the metal mesh grid is connected to the second vacuum vessel, and an ion beam of microwave discharge plasma generated by microwave irradiation in the first vacuum vessel is injected into the second vacuum vessel through the grid. Thin film synthesis using hybrid plasma, which is characterized by controlling the growth rate and quality of the thin film formed on the substrate by increasing the energy and density of the beam in conjunction with high-frequency plasma discharge using a high-frequency electric field in a vacuum container. Law.

(2)反応ガスとマイクロ波を導入する導波管と、導波
管と同径で絶縁して連結された円筒型の第1真空容器と
、第1真空容器に対し絶縁物を介して連結された大径の
第2真空容器と、第1真空容器を包囲して設けられた電
磁石コイルと、第1真空容器と第2真空容器との間に介
挿された金網状グリッドと、導波管の中心軸線上にマイ
クロ波プラズマと対向して第2真空容器中に設けられた
基板と、基板の前面にこれを挟むように設けられた高周
波円板電極と、高周波円板電極に接続された高周波電源
と、前記第1真空容器に接続された直流バイアス電源と
より成り、第1真空容器中にマイクロ波照射により生成
したプラズマのイオンを第2真空容器中に発生する高周
波プラズマ中に注入し、マイクロ波電力によりビームの
プラズマ密度を、第1真空容器にかけられる直流バイア
ス電圧によりプラズマのエネルギーを制御すると共に、
高周波電極にかけられる高周波プラズマのプラズマ密度
及び温度を制御し、基板上に生成される薄膜の成長速度
及び薄膜の品質を制御するよう構成したことを特徴とす
るハイブリッドプラズマによる薄膜合成装置。
(2) A waveguide that introduces the reaction gas and microwaves, a cylindrical first vacuum vessel that has the same diameter as the waveguide and is insulated and connected, and is connected to the first vacuum vessel via an insulator. a second vacuum vessel with a large diameter, an electromagnetic coil provided surrounding the first vacuum vessel, a wire mesh grid interposed between the first vacuum vessel and the second vacuum vessel, and a waveguide. A substrate is provided in a second vacuum container facing the microwave plasma on the central axis of the tube, a high-frequency disk electrode is provided on the front surface of the substrate to sandwich the same, and the substrate is connected to the high-frequency disk electrode. and a DC bias power source connected to the first vacuum vessel, and injects ions of plasma generated in the first vacuum vessel by microwave irradiation into the high frequency plasma generated in the second vacuum vessel. The plasma density of the beam is controlled by microwave power, and the plasma energy is controlled by a DC bias voltage applied to the first vacuum vessel.
1. A thin film synthesis apparatus using hybrid plasma, characterized in that the plasma density and temperature of high-frequency plasma applied to a high-frequency electrode are controlled, and the growth rate and quality of a thin film formed on a substrate are controlled.

本発明においてマイクロ波電力は少なくとも2.45G
 Hzがよく、また高周波電源で容量結合により高周波
電極に印加する周波数は少なくとも13.56 M H
zが好ましい。
In the present invention, the microwave power is at least 2.45G
Hz is good, and the frequency applied to the high frequency electrode by capacitive coupling with the high frequency power source is at least 13.56 MHz.
z is preferred.

本発明の方法によると、マイクロ波のプラズマ放電と、
高周波のプラズマ放電とを併用することにより、プラズ
マ放電のパワーアップができるので品質のよい薄膜が得
られると共に薄膜の成長速度を著しく高められ、安定し
た薄膜の形成ができると共に、バイアス電圧の調節によ
りプラズマの密度及びエネルギーを調節して、高品位の
薄膜を迅速に得られる点が特徴である。
According to the method of the invention, a microwave plasma discharge;
By using high-frequency plasma discharge in combination, it is possible to increase the power of the plasma discharge, resulting in a thin film of good quality, and the growth rate of the thin film can be significantly increased, making it possible to form a stable thin film. It is characterized by the ability to quickly obtain high-quality thin films by adjusting the plasma density and energy.

(発明の構成) 以下添付図面について、本発明の具体的実施の態様を説
明する。第1図は本発明のハイブリッドプラズマ発生装
置の1例を示すもので、1は両端に外径18.5 cm
のフランジのついた直径10cm長さ45C11の円筒
型ステンレス製真空容器、2はこれに連結した6つの面
に外径18.5cmのフランジのついた直径30cm長
さ30cmの円筒型ステンレス製真空容器、3は外径1
8.5 cn+内径10.5 cm厚さ2cmの(アク
リル製)絶縁物、4は直径10CIIの導波管で前記円
筒型ステンレス容器1の1端に直径14C11厚さ10
11I11の溶融シリカ製の円板5を介して連結する。
(Structure of the Invention) Specific embodiments of the present invention will be described below with reference to the accompanying drawings. Figure 1 shows an example of the hybrid plasma generator of the present invention, and 1 has an outer diameter of 18.5 cm at both ends.
2 is a cylindrical stainless steel vacuum container with a diameter of 10 cm and a length of 45C11 with a flange, and 2 is a cylindrical stainless steel vacuum container with a diameter of 30 cm and a length of 30 cm and has flanges with an outer diameter of 18.5 cm on the six sides connected to this. , 3 is the outer diameter 1
8.5 cn + inner diameter 10.5 cm, 2 cm thick insulator (made of acrylic), 4 is a waveguide with a diameter of 10 CII, and one end of the cylindrical stainless steel container 1 has a diameter of 14 C and a thickness of 10
They are connected via a disk 5 made of fused silica of 11I11.

6は直流電源、7は内径20cn+。6 is a DC power supply, 7 is an inner diameter of 20cn+.

外径32cI11厚さ8cmの電磁石コイル、8は外径
91の2枚のステンレス製金網状グリッド電極を示す。
An electromagnetic coil with an outer diameter of 32 cI11 and a thickness of 8 cm, 8 indicates two stainless steel wire mesh grid electrodes with an outer diameter of 91.

本発明においては、円筒型真空容器1の外側に電磁石コ
イル7を設け、真空容器1に直流バイアス電圧を印加し
て、この容器の入口側より反応ガスを供給し、真空容器
1の出口側に金網状グリッド8を設け、反応ガスが流れ
る円筒型真空容器1の中心線上に基板11を第2の真空
容器2中に設け、基板11の前方に高周波電源10に接
続された平板状の高周波電極9を2枚対向して配置して
第2真空容器2中で高周波放電が行われるようにする。
In the present invention, an electromagnetic coil 7 is provided outside the cylindrical vacuum vessel 1, a DC bias voltage is applied to the vacuum vessel 1, a reaction gas is supplied from the inlet side of the vessel, and the reaction gas is supplied to the outlet side of the vacuum vessel 1. A wire mesh grid 8 is provided, a substrate 11 is provided in the second vacuum container 2 on the center line of the cylindrical vacuum container 1 through which the reaction gas flows, and a flat high frequency electrode connected to a high frequency power source 10 is provided in front of the substrate 11. Two vacuum chambers 9 are arranged facing each other so that high-frequency discharge is performed in the second vacuum container 2.

第1真空容器lは円筒型をなし、その入口側に接続され
た導波管4でマイクロ波12と共に反応ガスが送り込ま
れ、第1真空容器1中で反応ガスはマイクロ波放電プラ
ズマとなり、このプラズマが第1真空容器1に加えられ
たバイアス電圧により加速されて、金網状グリッド8を
通して第2の真空容器2中に入り、高周波電極9の間を
通る間に高周波放電のエネルギーが加えられ、マイクロ
波放電プラズマは更に活性を増して基板11に衝突し、
低温で高品位の薄膜が得られるのである。
The first vacuum vessel l has a cylindrical shape, and a waveguide 4 connected to the inlet side feeds a reaction gas together with microwaves 12, and the reaction gas becomes microwave discharge plasma in the first vacuum vessel 1, and this The plasma is accelerated by the bias voltage applied to the first vacuum vessel 1 and enters the second vacuum vessel 2 through the wire mesh grid 8, and while passing between the high frequency electrodes 9, the energy of high frequency discharge is applied, The microwave discharge plasma becomes more active and collides with the substrate 11,
High-quality thin films can be obtained at low temperatures.

真空容器1と真空容器2を絶縁物3を介して接続する。A vacuum container 1 and a vacuum container 2 are connected via an insulator 3.

真空容器lの一端には導波管4を接続し、マイクロ波電
力(2,45G Hz )の供給を可能にする。真空容
器lと導波管4との間には溶融シリカ製の円板5を挟み
、真空容器1と導波管4とを絶縁する。従って、真空容
器1と真空容器2の間には直流電源6で電圧を印加でき
る構造になっている。真空容器l、2は真空容器2に接
続された真空ポンプにより高真空に排気する。真空容器
1の外側には電磁石コイル7があり磁界をIKガウスま
で印加できる。真空容器1と真空容器2の接続部にステ
ンレス製の金網状グリッド8をおく、真空容器2の内部
に電極9をおき、これに高周波電源10で容量結合によ
り高周波(13,56M Hz )を印加する。薄膜を
成長させる基板11は真空容器2の軸上におく。
A waveguide 4 is connected to one end of the vacuum vessel 1, making it possible to supply microwave power (2.45 GHz). A disk 5 made of fused silica is sandwiched between the vacuum container 1 and the waveguide 4 to insulate the vacuum container 1 and the waveguide 4. Therefore, the structure is such that a voltage can be applied between the vacuum container 1 and the vacuum container 2 by the DC power supply 6. The vacuum containers 1 and 2 are evacuated to a high vacuum by a vacuum pump connected to the vacuum container 2. There is an electromagnetic coil 7 on the outside of the vacuum container 1, and it is possible to apply a magnetic field up to IK Gauss. A stainless wire mesh grid 8 is placed at the connection between the vacuum containers 1 and 2, and an electrode 9 is placed inside the vacuum container 2, to which a high frequency (13.56 MHz) is applied by capacitive coupling with a high frequency power source 10. do. A substrate 11 on which a thin film is to be grown is placed on the axis of the vacuum vessel 2 .

高真空に排気したのち、ガスを導入し所定の圧力にする
。電磁石コイル7に直流電流を流し約900ガウスの磁
界を印加した後、導波管4より2.45G Hzのマイ
クロ波を真空容器1に導入すると、ECR(電子サイク
ロトロン共鳴)によりマイクロ波プラズマが生成される
。更に、電極9に高周波を印加すると高周波プラズマが
生成できる。
After evacuating to a high vacuum, gas is introduced to achieve a predetermined pressure. After applying a magnetic field of about 900 Gauss by applying a direct current to the electromagnetic coil 7, when microwaves of 2.45 GHz are introduced into the vacuum vessel 1 from the waveguide 4, microwave plasma is generated by ECR (electron cyclotron resonance). be done. Furthermore, when high frequency is applied to the electrode 9, high frequency plasma can be generated.

従って、この装置では2つの異なる種類のプラズマから
なる複合プラズマ(ハイブリッドプラズマ)を生成でき
る。グリッド8は電気的にはどことも接続されず絶縁状
態になっているので2つのプラズマの電位を独立にする
作用がある。真空容器2を接地し、真空容器1に正の電
圧を印加するとマイクロ波プラズマのイオンを真空容器
2の高周波プラズマ中に注入でき、直流電源6の電圧に
よりそのエネルギーを、マイクロ波電力によりその密度
をそれぞれ制御できる。一方、高周波電力により高周波
プラズマの密度及び温度を制御できる。
Therefore, this device can generate a composite plasma (hybrid plasma) consisting of two different types of plasma. Since the grid 8 is not electrically connected to anything and is in an insulated state, it has the effect of making the potentials of the two plasmas independent. When the vacuum vessel 2 is grounded and a positive voltage is applied to the vacuum vessel 1, microwave plasma ions can be injected into the high-frequency plasma of the vacuum vessel 2.The voltage of the DC power supply 6 is used to transfer the energy, and the microwave power is used to increase the density. can be controlled individually. On the other hand, the density and temperature of high-frequency plasma can be controlled by high-frequency power.

更に、真空容器2のハイブリッドプラズマ内の電界、電
子のエネルギーは印加磁界の強度、配位などを調整して
制御できる。
Furthermore, the electric field and electron energy within the hybrid plasma in the vacuum chamber 2 can be controlled by adjusting the strength of the applied magnetic field, the configuration, and the like.

第1図の装置を使用して、各種の直流バイアスに対する
イオンエネルギー分布状態と、磁界を加えたときと、磁
界なしのときのハイブリッドプラズマ及びRFプラズマ
の等電位曲線の挙動を調べ゛た。
Using the apparatus shown in FIG. 1, we investigated the state of ion energy distribution for various DC biases and the behavior of equipotential curves of hybrid plasma and RF plasma when a magnetic field was applied and when no magnetic field was applied.

(実施例) 実験に使用した装置は第1図に示す通りである。(Example) The apparatus used in the experiment is as shown in FIG.

10cmと30CI11の直径の異なる2個のステンレ
ス鋼製円筒形真空容器1.2を電気的に絶縁して接続し
た、大径の第2真空容器2は第1真空容器lとの間に2
個のグリッド8を介挿して接地した。
Two stainless steel cylindrical vacuum vessels 1.2 with different diameters of 10 cm and 30 CI11 are electrically insulated and connected, and a large-diameter second vacuum vessel 2 is connected to the first vacuum vessel l.
A grid 8 was inserted and grounded.

そして他方の第1真空容器lにはバイアス電圧vbによ
りバイアスした。2.45C; Hzのマイクロ波を第
1真空容器1の1端に印加して磁界をかけながらプラズ
マを生成した。測定した軸方向の磁界強度は第2図に示
した。なお、軸方向の磁界強度より計算した磁力線を2
次元空間で示した。磁力線は第2真空容器2中で発散し
ている。これはこの区域には磁界が外部よりあたえられ
ていないためである。従って、第1真空容器1中では電
磁石コイルにより生成した磁界強度により電子の動きが
制御できる。第2真空容器2においては直径8cmのス
テンレス製平板電極9に13.56 M Hzの高周波
パワーを印加することにより追加のプラズマが発生する
。他方の同径の平板電極は高周波電極と6.5 crs
の間隔で平行に設置した。
The other first vacuum vessel l was biased with a bias voltage vb. Plasma was generated by applying microwaves of 2.45 C; Hz to one end of the first vacuum container 1 and applying a magnetic field. The measured axial magnetic field strength is shown in FIG. In addition, the lines of magnetic force calculated from the magnetic field strength in the axial direction are 2
Shown in dimensional space. The magnetic field lines diverge within the second vacuum vessel 2. This is because no magnetic field is applied to this area from the outside. Therefore, the movement of electrons in the first vacuum vessel 1 can be controlled by the strength of the magnetic field generated by the electromagnetic coil. In the second vacuum chamber 2, additional plasma is generated by applying a high frequency power of 13.56 MHz to a flat plate electrode 9 made of stainless steel with a diameter of 8 cm. The other flat plate electrode with the same diameter is 6.5 crs as the high frequency electrode.
They were installed parallel to each other with an interval of .

プラズマ生成と、薄膜生成の制御の開発のための本予備
実験においては、反応ガスのプローブ技術が本段階で有
効でないため、不活性ガス(アルゴンガス)プラズマの
挙動を理解するために使用した。
In this preliminary experiment for the development of plasma generation and control of thin film formation, reactive gas probe technology was not effective at this stage, so it was used to understand the behavior of inert gas (argon gas) plasma.

針プローブで得られた高周波電極9の周辺における代表
的プラズマのパラメータは電子密度n1#8X10雫e
ll −’であり、ガス圧P!==i5X10−’To
rrで電子温度Teζ5eVである。イオンエネルギー
分布函数は外径8III11長さ4閣のステンレス鋼製
の円筒で被覆した、コレクターと2個のグリッド電極よ
りなる静電分析器により測定した。
Typical plasma parameters around the high frequency electrode 9 obtained with a needle probe are electron density n1#8X10 drops e
ll −' and the gas pressure P! ==i5X10-'To
rr and the electron temperature Teζ is 5 eV. The ion energy distribution function was measured using an electrostatic analyzer consisting of a collector and two grid electrodes covered with a stainless steel cylinder with an outer diameter of 8III and a length of 4 mm.

分布函数はコレクタ電流の第2グリツド電圧に関する一
次微分関数より得られた。分析器を作用させて、プラズ
マに直面する第1グリツドは絶縁電位とし、負にバイア
スしたコレクターに流入するイオン電流は第2グリツド
電位を変化させて測定した。第3図に示すように、グリ
ッド電極からの距離をZとすると、Z=18cmと、Z
−20の再位置においてバイアス電圧vbを増加すると
ビームのエネルギーの増加が認められた。低エネルギー
のイオンは高周波プラズマのイオン(バルクイオン)に
対応し、高エネルギーをもった他方のイオンはマイクロ
波プラズマのイオン(ビームイオン)に対応する。バル
クイオンの高さの半分におけるエネルギー幅はビームイ
オンのそれより小さい。これは、高周波プラズマのイオ
ン温度はマイクロ波プラズマのイオン温度より低いこと
を意味する。一方、マイクロ波プラズマの密度はグリッ
ドよりの距離が離れると減少することも別の測定例から
れかった。高周波パワーを増加すると、イオンのバルク
密度は、ビーム密度を概略一定に保ちながら増加する。
The distribution function was obtained from the first derivative of the collector current with respect to the second grid voltage. The analyzer was operated with the first grid facing the plasma at an insulating potential, and the ion current flowing into the negatively biased collector was measured by varying the second grid potential. As shown in Fig. 3, if the distance from the grid electrode is Z, then Z = 18 cm, and Z
An increase in the beam energy was observed when increasing the bias voltage vb at the -20 reposition. The ions with low energy correspond to ions of high frequency plasma (bulk ions), and the other ions with high energy correspond to ions of microwave plasma (beam ions). The energy width at half the height of bulk ions is smaller than that of beam ions. This means that the ion temperature of high frequency plasma is lower than the ion temperature of microwave plasma. On the other hand, another measurement showed that the density of microwave plasma decreases with increasing distance from the grid. As the radio frequency power is increased, the bulk density of ions increases while keeping the beam density approximately constant.

このとき、約30Wまでプラズマ密度は増加するが、3
0W以上ではそれは一定となり、電子温度は4〜7eV
の範囲で少し増加した。ビーム密度はマイクロ波パワー
を変化することによって制御可能である。プラズマに電
界を与える電位分布がエミッシブプロープにより定常状
態で測定された。
At this time, the plasma density increases to about 30W, but
Above 0W, it becomes constant, and the electron temperature is 4 to 7 eV.
There was a slight increase in the range. Beam density can be controlled by varying the microwave power. The potential distribution that provides an electric field to the plasma was measured in steady state using an emissive probe.

第4図は2面における2次元空間における電位分布rの
代表的結果を示す、同図において、(a)はハイブリッ
ドプラズマの分布を示し、(b) 、 (c)は磁界の
ある場合と、磁界のない場合との高周波プラズマだけの
ものの分布を示す。この分布はプラズマ生成位置によっ
て変化するばかりでなく、磁界配位によっても変化する
。これは磁界により影響を受ける電子の運動によること
に原因がある。
Figure 4 shows typical results of the potential distribution r in two-dimensional space on two planes. In the figure, (a) shows the distribution of hybrid plasma, (b) and (c) show the case with a magnetic field, Shows the distribution of only high-frequency plasma with no magnetic field. This distribution not only changes depending on the plasma generation position but also changes depending on the magnetic field configuration. This is due to the movement of electrons affected by the magnetic field.

このことは、この電界は本装置に使用する磁界の強さと
形状とにより容易に制御が可能であることを示す。
This shows that this electric field can be easily controlled by the strength and shape of the magnetic field used in the device.

(結論) 本発明の装置によりマイクロ渡島高周波の放電により生
成したハイブリッドプラズマを直流電源によりバイアス
し、バイアス電圧とマイクロ波電力とを調整することに
よりビームイオンのエネルギーと密度が調節でき、高周
波電力により反応室のプラズマ密度を制御できる。電界
は磁界の強さと形状を調節することにより制御可能であ
る。本実験による上述の結果の確認は不反応ガス中でな
された。
(Conclusion) The device of the present invention biases the hybrid plasma generated by micro-Oshima high-frequency discharge with a DC power supply, and by adjusting the bias voltage and microwave power, the energy and density of beam ions can be adjusted. The plasma density in the reaction chamber can be controlled. The electric field can be controlled by adjusting the strength and shape of the magnetic field. Confirmation of the above results by this experiment was made in a non-reactive gas.

(発明の効果) 本発明装置による効果は次の通りである。(Effect of the invention) The effects of the device of the present invention are as follows.

(1)プラズマのエネルギー、密度を制御できるだけで
なく、高エネルギーのイオンをビーム状に基板に照射で
きるので、薄膜の合成にこの装置を用いると緻密な剥が
れにくい薄膜が得られる。
(1) Not only can the energy and density of the plasma be controlled, but also high-energy ions can be irradiated onto the substrate in the form of a beam, so when this device is used to synthesize thin films, dense thin films that are difficult to peel off can be obtained.

特に、ダイヤモンド、酸化錫薄膜の合成などに有効であ
るが、その他の新材料の薄膜合成例えば、メタン(NH
s)と珪化水素(SiH4)を反応ガスとする窒化珪素
の薄膜合成、或いは各種半導体薄膜の合成の開発にも利
用できる。
It is particularly effective for the synthesis of thin films of diamond and tin oxide, but it is also effective for the synthesis of thin films of other new materials, such as methane (NH
It can also be used for the development of silicon nitride thin film synthesis using s) and hydrogen silicide (SiH4) as reaction gases, or the synthesis of various semiconductor thin films.

(2)薄膜の成長速度、薄膜の品質を制御できる。(2) Thin film growth rate and thin film quality can be controlled.

(3)  ハイブリッドプラズマを生成してイオンビー
ム照射を可能にし、ビームエネルギー、密度及び電子の
エネルギー等を制御する。
(3) Generate hybrid plasma to enable ion beam irradiation, and control beam energy, density, electron energy, etc.

(3)本発明の装置により、反応性プラズマと膜との物
理過程、化学反応等の選択性が可能になる。
(3) The device of the present invention enables selectivity in physical processes, chemical reactions, etc. between reactive plasma and membrane.

すなわち、例えば、ダイヤモンド薄膜合成においては、
メタンプラズマを生成し、6照射するイオンビームの密
度、エネルギーを調整して、グラファイト状、ダイヤモ
ンド状等の選択、膜の硬度、電気電導率等の膜質を制御
可能とする。
That is, for example, in diamond thin film synthesis,
By generating methane plasma and adjusting the density and energy of the irradiated ion beam, it is possible to select graphite-like, diamond-like, etc., and control film quality such as film hardness and electrical conductivity.

一方、膜の成長速度は分子・原子の電離、励起を作用す
る電子エネルギーを制御して調整することが可能となり
、薄膜の成長速度が著しく高められる。
On the other hand, the growth rate of the film can be adjusted by controlling the electron energy that affects the ionization and excitation of molecules and atoms, and the growth rate of the thin film can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜合成用ハイブリッドプラズマ発生
装置の原理説明図、 第2図(a)は本発明装置を使用する場合の軸方向の磁
界強度を示す特性線図、 第2図(b)はその磁力線を示す特性線図、第3図(a
) (b)は各種バイアス電圧Vb((a)Z=2cm
、 (b)  Z −18cm)に対するイオンエネル
ギー分布を示す特性曲線図、 第4図(a) (b) (c)はそれぞれ(a)ハイブ
リッドプラズマ、高周波プラズマ、(b)磁界あり、(
c)磁界なしの場合の等電位線を示す特性線図である。 1・・・小径ステンレス製の円筒型第1真空容器2・・
・大径ステンレス製の第2真空容器3・・・アクリル製
等の絶縁物 4・・・導波管 5・・・溶融シリカ製等の円板状絶縁板6・・・直流電
源     7・・・電磁石コイル8・・・金網状グリ
ッド  9・・・高周波電極10・・・高周波電源  
  11・・・基板第1図
Fig. 1 is a diagram explaining the principle of the hybrid plasma generation device for thin film synthesis of the present invention, Fig. 2 (a) is a characteristic line diagram showing the magnetic field strength in the axial direction when using the device of the present invention, Fig. 2 (b) ) is a characteristic diagram showing the lines of magnetic force, and Figure 3 (a
) (b) shows various bias voltages Vb ((a) Z=2cm
, (b) Characteristic curve diagram showing the ion energy distribution with respect to
c) It is a characteristic line diagram showing equipotential lines in the case of no magnetic field. 1... Small-diameter stainless steel cylindrical first vacuum container 2...
・Second vacuum vessel 3 made of large-diameter stainless steel...Insulator 4 made of acrylic etc....Waveguide 5...Disc-shaped insulating plate 6 made of fused silica etc....DC power supply 7...・Electromagnetic coil 8...Wire mesh grid 9...High frequency electrode 10...High frequency power supply
11... Board diagram 1

Claims (1)

【特許請求の範囲】 1、同径の導波管と円筒型の第1真空容器とを絶縁して
連結し、第1真空容器の他端に金網状グリッド電極を介
して絶縁して連結した第2の真空容器を設け、第2真空
容器中に導波管の中心軸線上に基板と、その前面に設け
られた高周波円盤電極とを設け、第1真空容器を直流バ
イアスし、その外周を包囲して電磁石コイルを設け、前
記金網状グリッドを接続し、第1真空容器中にマイクロ
波照射により生成したマイクロ波放電プラズマのイオン
ビームを第1及び第2真空容器とは電気的に絶縁された
グリッドを通して第2真空容器中に注入し、第2真空容
器中の高周波電界による高周波プラズマ放電と併せてビ
ームの密度及びエネルギーをパワーアップし、基板上に
生成される薄膜の成長速度と薄膜の品質を制御すること
を特徴とするハイブリットプラズマによる薄膜合成法。 2、反応ガスとマイクロ波を導入する導波管と、導波管
と同径で絶縁して連結された円筒型の第1真空容器と、
第1真空容器に対し絶縁物を介して連結された大径の第
2真空容器と、第1真空容器を包囲して設けられた電磁
石コイルと、第1真空容器と第2真空容器との間に介挿
された金網状グリッドと、導波管の中心軸線上にマイク
ロ波プラズマと対向して第2真空容器中に設けられた基
板と、基板の前面にこれを挟むように設けられた高周波
円板電極と、高周波円板電極に接続された高周波電源と
、前記第1真空容器に接続された直流バイアス電源とよ
り成り、第1真空容器中にマイクロ波照射により生成し
たプラズマのイオンを第2真空容器中に発生する高周波
プラズマ中に注入し、マイクロ波電力によりビームプラ
ズマの密度を、第1真空容器にかけられる直流バイアス
電圧によりビームプラズマのエネルギーを制御すると共
に、高周波電極にかけられる高周波電力により高周波プ
ラズマの密度及び温度を制御し、基板上に生成される薄
膜の成長速度及び薄膜の品質を制御するよう構成したこ
とを特徴とするハイブリッドプラズマによる薄膜合成装
置。
[Claims] 1. A waveguide having the same diameter and a cylindrical first vacuum vessel are insulated and connected, and the other end of the first vacuum vessel is insulated and connected via a wire mesh grid electrode. A second vacuum container is provided, a substrate is provided on the central axis of the waveguide in the second vacuum container, and a high frequency disk electrode is provided on the front surface of the substrate, and the first vacuum container is biased with direct current, and its outer periphery is An electromagnetic coil is provided surrounding the ion beam of the microwave discharge plasma generated by microwave irradiation in the first vacuum container by connecting the wire mesh grid and electrically insulating the ion beam from the first and second vacuum containers. The beam is injected into the second vacuum vessel through the grid, and the density and energy of the beam is increased in conjunction with the high-frequency plasma discharge by the high-frequency electric field in the second vacuum vessel, thereby controlling the growth rate of the thin film produced on the substrate and the thickness of the thin film. A thin film synthesis method using hybrid plasma that is characterized by quality control. 2. A waveguide that introduces the reaction gas and the microwave, and a cylindrical first vacuum container that has the same diameter as the waveguide and is insulated and connected;
A large-diameter second vacuum container connected to the first vacuum container via an insulator, an electromagnetic coil provided surrounding the first vacuum container, and a space between the first vacuum container and the second vacuum container. A wire mesh grid inserted in the waveguide, a substrate provided in the second vacuum container facing the microwave plasma on the central axis of the waveguide, and a high frequency It consists of a disk electrode, a high-frequency power source connected to the high-frequency disk electrode, and a DC bias power source connected to the first vacuum chamber, and is configured to direct ions of plasma generated by microwave irradiation into the first vacuum chamber. 2 Inject into the high-frequency plasma generated in the vacuum vessel, and control the density of the beam plasma using microwave power, the energy of the beam plasma using the DC bias voltage applied to the first vacuum vessel, and the high-frequency power applied to the high-frequency electrode. 1. A thin film synthesis apparatus using hybrid plasma, characterized in that the density and temperature of high-frequency plasma are controlled, and the growth rate and quality of a thin film formed on a substrate are controlled.
JP1452988A 1988-01-27 1988-01-27 Hybrid plasma thin film synthesis method and device Expired - Lifetime JPH0627340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1452988A JPH0627340B2 (en) 1988-01-27 1988-01-27 Hybrid plasma thin film synthesis method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1452988A JPH0627340B2 (en) 1988-01-27 1988-01-27 Hybrid plasma thin film synthesis method and device

Publications (2)

Publication Number Publication Date
JPH01191779A true JPH01191779A (en) 1989-08-01
JPH0627340B2 JPH0627340B2 (en) 1994-04-13

Family

ID=11863666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1452988A Expired - Lifetime JPH0627340B2 (en) 1988-01-27 1988-01-27 Hybrid plasma thin film synthesis method and device

Country Status (1)

Country Link
JP (1) JPH0627340B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227089A (en) * 2012-01-31 2013-07-31 东京毅力科创株式会社 Microwave emitting device and surface wave plasma processing apparatus
CN109932607A (en) * 2019-04-16 2019-06-25 中国人民解放军陆军工程大学 Space radiation environment strong-electromagnetic field induces ESD test system
KR20190101092A (en) * 2018-02-22 2019-08-30 한국기초과학지원연구원 Microwave-direct current hybrid atmospheric or low vacuum plasma source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194674B2 (en) * 1994-10-25 2001-07-30 株式会社ニューラルシステムズ Crystalline thin film forming apparatus, crystalline thin film forming method, plasma irradiation apparatus, and plasma irradiation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227089A (en) * 2012-01-31 2013-07-31 东京毅力科创株式会社 Microwave emitting device and surface wave plasma processing apparatus
KR20190101092A (en) * 2018-02-22 2019-08-30 한국기초과학지원연구원 Microwave-direct current hybrid atmospheric or low vacuum plasma source
CN109932607A (en) * 2019-04-16 2019-06-25 中国人民解放军陆军工程大学 Space radiation environment strong-electromagnetic field induces ESD test system
CN109932607B (en) * 2019-04-16 2023-10-13 中国人民解放军陆军工程大学 Space radiation environment strong electromagnetic field induced electrostatic discharge test system

Also Published As

Publication number Publication date
JPH0627340B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US5648701A (en) Electrode designs for high pressure magnetically assisted inductively coupled plasmas
JP4814986B2 (en) Carbon nanotube growth method
JP3962420B2 (en) Carbon nanowall manufacturing method, carbon nanowall and manufacturing apparatus
KR101488005B1 (en) Method and apparatus for forming a film by deposition from a plasma
US8662010B2 (en) Plasma processing apparatus, plasma processing method, plasma film deposition apparatus, and plasma film deposition method
JPH0668152B2 (en) Thin film forming equipment
EP0670666B1 (en) Plasma generating apparatus and plasma processing apparatus
JPS5915982B2 (en) Electric discharge chemical reaction device
EP2080425B1 (en) Device for forming a film by deposition from a plasma
JPS61213377A (en) Method and apparatus for plasma deposition
JPH01191779A (en) Method and apparatus for thin film synthesis by hybrid plasma
JP2006069816A (en) Method for producing carbon nanowall, carbon nanowall and apparatus for producing the same
JPH0420984B2 (en)
JP2687129B2 (en) Method and apparatus for producing diamond-like thin film
JPH0420985B2 (en)
US20070110644A1 (en) System for manufacturing a fullerene derivative and method for manufacturing
JP2849831B2 (en) Plasma CVD equipment
JP3010333B2 (en) Film forming method and film forming apparatus
JP4531193B2 (en) Carbon nanotube thin film forming ECR plasma CVD apparatus using slot antenna and method of forming the thin film
JP2715277B2 (en) Thin film forming equipment
JPH07211657A (en) Method and equipment for depositing film
JPS62143418A (en) Thin film forming device
JPS59133364A (en) Electric discharge chemical reaction device
JP2000064052A (en) Plasma cvd device
JPS63107899A (en) Formation of thin film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term