JPS61246339A - Molten-metal-forged high-toughness aluminum alloy and its manufacture - Google Patents

Molten-metal-forged high-toughness aluminum alloy and its manufacture

Info

Publication number
JPS61246339A
JPS61246339A JP8598685A JP8598685A JPS61246339A JP S61246339 A JPS61246339 A JP S61246339A JP 8598685 A JP8598685 A JP 8598685A JP 8598685 A JP8598685 A JP 8598685A JP S61246339 A JPS61246339 A JP S61246339A
Authority
JP
Japan
Prior art keywords
weight
alloy
aluminum
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8598685A
Other languages
Japanese (ja)
Inventor
Masaaki Nakamura
正明 中村
Masashi Shimoda
下田 正志
Tetsumi Tanaka
田中 徹巳
Ryota Mitamura
三田村 良太
Toshio Watanabe
俊夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONDA KINZOKU GIJUTSU KK
Showa Aluminum Industries KK
Original Assignee
HONDA KINZOKU GIJUTSU KK
Showa Aluminum Industries KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONDA KINZOKU GIJUTSU KK, Showa Aluminum Industries KK filed Critical HONDA KINZOKU GIJUTSU KK
Priority to JP8598685A priority Critical patent/JPS61246339A/en
Publication of JPS61246339A publication Critical patent/JPS61246339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obtain the titled high-toughness Al alloy excelling in toughness, low thermal expansion characteristics and wear resistance by specifying each content of Si, Cu, Mg, P, Ca and Fe and also specifying the width of an alpha-Al crystal as well as the average grain size of primary crystal Si grains in the structure at an arbitrary section. CONSTITUTION:The molten-metal-forged high-toughness Al alloy consists of, by weight, 15-35% Si, 2-6% Cu, 0.3-1.0% Mg, 0.01-0.05% P, <=0.03% Ca, <=0.5% Fe and the balance Al and has the following characteristics : the average grain size of the crystalline Si grains in the structure at an arbitrary section is <=20mu and the width of the alpha-Al crystal is <=20mu in average. In order to prepare this Al alloy, an Al alloy having the above composition is refgined and then solidified at a casting temp of >=100 deg.C, above the liquidus line of each alloy composition and at a cooling rate of >=30 deg.C/sec. In this way, the molten-metal-forged Al alloy excelling in the above various characteristics can be easily and inexpensively obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は靭性、低熱膨張性、耐摩耗性に優れ、摺動部材
として好適な溶湯鍛造されたアルミニウム合金及びその
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molten metal forged aluminum alloy that has excellent toughness, low thermal expansion, and wear resistance and is suitable as a sliding member, and a method for producing the same.

〔従来の技術〕[Conventional technology]

摺動部材は、その摺動面に高耐摩耗性が要求されるため
、従来、鋳鉄、浸炭焼入れ鋼或いはアルミ青銅などが使
われ、また、摺動面にメッキ、陽極酸化被膜処理が施さ
れているものもあった。ところが、近年あらゆる部品に
対し軽舟化、小型化が要求されるようになり、摺動部材
に対しても軽量のアルミニウム合金を使用することが多
くなっている。
Sliding members require high wear resistance on their sliding surfaces, so conventionally cast iron, carburized and hardened steel, aluminum bronze, etc. have been used, and the sliding surfaces have been plated or anodized. There were some that were. However, in recent years, there has been a demand for lighter and more compact boat parts, and lightweight aluminum alloys are increasingly being used for sliding members.

これら摺動部材として用いられるアルミニウム合金は、
J l5AC9ASAC9B、或いはAA規格であるA
390等のケイ素が16〜20重量%(以下%と記す)
の過共晶高ケイ素合金で、主として金型鋳造法、或いは
ダイカスト法によって製造されている。また、連続鋳造
法によって鋳造棒として生産され、鋳造、又は押出し棒
とした後、製品化されているものもある。
The aluminum alloys used for these sliding members are
J l5AC9ASAC9B or AA standard A
16 to 20% by weight of silicon such as 390 (hereinafter referred to as %)
It is a hypereutectic high-silicon alloy that is mainly manufactured by mold casting or die casting. In addition, some rods are produced as cast rods by a continuous casting method, and are manufactured into products after being cast or extruded.

しかし、上記金型鋳造による製品は、凝固速度が遅いた
め初晶ケイ素が粗大化し、強度、特に靭性が低下するた
め、20%以上のケイ素を含有する合金で製造すること
は困難である。また、ダイカスト法は、これによってシ
フトフォークやエンジンブロック等をつくる例はあるが
、初晶ケイ素は微細になるが、ダイカスト特有のガスポ
ロシティ−等の鋳造欠陥を多量に有するため充分な靭性
が得られない。また、連続鋳造法による鋳造棒は内部欠
陥も少なく良好な素材であるが、ケイ素含有量が18%
を越えると実際には連続鋳造そのものが困難となること
、及び最終製品とするためには、鍛造や切削加工などの
過程が必要である。そして、切削加工においては工具摩
耗が著しい。
However, it is difficult to manufacture products made by die casting with an alloy containing 20% or more silicon because the solidification rate is slow and the primary silicon becomes coarse, reducing strength, especially toughness. In addition, the die-casting method has examples of making shift forks, engine blocks, etc., but although the primary silicon is fine, it does not have sufficient toughness because it has many casting defects such as gas porosity peculiar to die-casting. I can't do it. In addition, rods cast using the continuous casting method are good materials with few internal defects, but the silicon content is 18%.
Exceeding this makes continuous casting itself difficult, and processes such as forging and cutting are required to produce the final product. In addition, tool wear is significant during cutting.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

カークーラピストン用ベーン材や自動車用ピストンは軽
量化による年賀向−ヒのため、アルミニウム合金を使用
するニーズが高まっており、高靭性、低熱膨張性、耐摩
耗性にすぐれ、ガスポロシティ−等の鍛造欠陥のない合
金素材の開発が強く望まれている現状にある。
There is a growing need for the use of aluminum alloys in vane materials for car cooler pistons and automobile pistons for New Year holidays due to weight reduction. There is currently a strong desire to develop an alloy material free of forging defects.

本発明は上記要望を満すに足る各種特性の優れた溶湯鍛
造されたアルミニウム合金、およびこの合金を安価、か
つ容易に製造する方法を提供することを目的とする。
The object of the present invention is to provide a molten-forged aluminum alloy with excellent various properties that satisfy the above-mentioned needs, and a method for manufacturing this alloy at low cost and easily.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はN−5i−Cu−−系合金の優れた特性に
着目し、これを基本として鋭意研究を行なった結果、上
記目的にかなった合金およびその製造方法を発明するに
致った。すなわち、本発明の要旨は、ケイ素18〜35
%、銅2〜6%、マグネシウム0.3〜1.0%、IJ
ンO,,01〜0.05%、カルシウム0.03%以下
、鉄0.5%以下、残余アルミニウムより成る合金、又
は上記合金成分にさらにチタン0.05〜0.20%含
有するアルミニウム合金であり、任意断面組織における
初晶ケイ素粒子の平均粒径が20ミクロン以下で、α−
アルミニウム晶の幅が平均20ミクロン以下である溶湯
鍛造された高靭性アルミニウム合金であり、上記のごと
き鋳造組織を有する合金材の製造法として、鋳造温度が
各組成合金の液相線上100℃以上で、冷却速度が30
℃/sec以上で溶湯鍛造することを特徴とする。
The present inventors focused on the excellent properties of the N-5i-Cu--based alloy, and as a result of conducting intensive research based on this, they were able to invent an alloy that meets the above objectives and a method for producing the same. . That is, the gist of the present invention is that silicon 18-35
%, copper 2-6%, magnesium 0.3-1.0%, IJ
An alloy consisting of O, 0.01 to 0.05%, calcium of 0.03% or less, iron of 0.5% or less, and residual aluminum, or an aluminum alloy containing 0.05 to 0.20% of titanium in addition to the above alloy components. , the average particle size of primary silicon particles in any cross-sectional structure is 20 microns or less, and α-
It is a high-toughness aluminum alloy that is molten metal forged with an average width of aluminum crystals of 20 microns or less, and has the above-mentioned casting structure.As a manufacturing method for the alloy material, the casting temperature is 100°C or higher above the liquidus line of each composition alloy. , the cooling rate is 30
It is characterized by molten metal forging at a temperature of ℃/sec or higher.

次に、本発明に係る合金の成分範囲限定の根拠について
述べる。
Next, the basis for limiting the range of components of the alloy according to the present invention will be described.

ケイ素はアルミニウム合金の耐摩耗性をよくし、熱膨張
率を低くする成分である。その含有量が18%未満では
、耐摩耗性、熱膨張率ともによい結果が得られない。ま
た、含有量が35%を越えると鋳造温度が1ooo℃以
上となり、水素ガスの吸収、酸化物の発生等により鋳造
が著しく困難となる。さらに、初晶ケイ素の面積比率が
増大し、強度及び靭性が低下する。したがって、ケイ素
の含有量は18〜35%でその効果を発揮するが、特に
18〜25%の範囲が好ましい。
Silicon is a component that improves the wear resistance of aluminum alloys and lowers their coefficient of thermal expansion. If the content is less than 18%, good results in both wear resistance and thermal expansion coefficient cannot be obtained. Furthermore, if the content exceeds 35%, the casting temperature will exceed 100° C., making casting extremely difficult due to absorption of hydrogen gas, generation of oxides, etc. Furthermore, the area ratio of primary silicon increases, and the strength and toughness decrease. Therefore, the effect is exhibited when the silicon content is 18 to 35%, but a range of 18 to 25% is particularly preferable.

銅は固溶化、時効硬化に寄与し、合金の強度を向上させ
る成分である。その含有1が2%未満では強度の充分な
向上が得られず、6%を越えるとM  SL  Cuの
三元共晶が晶出し、逆に強度の低下や熱処理時のバーニ
ングを発生し、さらに熱膨張が大きくなる。したがって
、銅は2〜6%が有効で、特に4〜5.5%の範囲が好
ましい。
Copper is a component that contributes to solid solution formation and age hardening and improves the strength of the alloy. If the content of 1 is less than 2%, sufficient improvement in strength cannot be obtained, and if it exceeds 6%, ternary eutectic of MSL Cu will crystallize, resulting in a decrease in strength and burning during heat treatment. Thermal expansion increases. Therefore, 2 to 6% of copper is effective, and a range of 4 to 5.5% is particularly preferable.

マグネシウムは、合金に熱処理性を与えて時効硬化に大
きく寄与し、合金の強度および硬さを向上させる成分で
ある。含有量が0.3%未満では充分な強度が得られず
、1%を越えると靭性を低下せしめ、初晶ケイ素を粗大
化させる。したがってマグネシウムは、0.3〜1.0
%が有効で、特に0.3〜0.6%の範囲が好ましい。
Magnesium is a component that provides heat treatability to the alloy, greatly contributes to age hardening, and improves the strength and hardness of the alloy. If the content is less than 0.3%, sufficient strength cannot be obtained, and if it exceeds 1%, the toughness is reduced and the primary silicon becomes coarse. Therefore, magnesium is 0.3 to 1.0
% is effective, and a range of 0.3 to 0.6% is particularly preferred.

リンは初晶ケイ素を微細化するのに必須な成分である。Phosphorus is an essential component for refining primary silicon.

その含有量が0.01%未満では充分に微細化せず、0
.05%を越えても効果は増大せず、逆に未溶解リン分
となって異物を発生する原因となる。したがって、リン
は0.01〜0.05%が有効で、特に0.01〜0.
025%の範囲が好ましい。
If the content is less than 0.01%, it will not be sufficiently refined, and 0.
.. Even if it exceeds 0.5%, the effect will not increase, and on the contrary, it will become undissolved phosphorus and cause foreign matter to be generated. Therefore, 0.01 to 0.05% of phosphorus is effective, especially 0.01 to 0.05%.
A range of 0.025% is preferred.

カルシウムは、高ケイ素合金の場合不可避的な不純物で
ある。その含有量が0.03%を越えると、初晶ケイ素
を粗大化させ、かつ、リンの微細効果を減殺してしまう
Calcium is an unavoidable impurity in high silicon alloys. When the content exceeds 0.03%, primary silicon becomes coarse and the fine effect of phosphorus is diminished.

鉄は、鋳造用合金の熱間割れを防ぎ、ダイカストの場合
、金型焼付防止に効果がある。しかしNSL系合金中に
鉄が含有されるとAI  SL  Fe金属間化合物を
晶出し靭性が低下する。本発明の合金はベーン材のよう
な摺動部材であるので鉄の混入は好ましくない。したが
って鉄の含有量は0.5%以下、特に0.2%以下が好
ましい。
Iron prevents hot cracking in casting alloys, and in the case of die casting, is effective in preventing mold seizure. However, when iron is contained in the NSL alloy, AI SL Fe intermetallic compounds are crystallized and the toughness is reduced. Since the alloy of the present invention is used for sliding members such as vane materials, it is undesirable for iron to be mixed into the alloy. Therefore, the iron content is preferably 0.5% or less, particularly 0.2% or less.

また、さらにチタンを添加するのは、チタンが鋳造合金
のマクロ結晶粒の微細化に寄与し、伸びを増加する成分
であることによる。その含有量が0.05%未満では寄
与が少なく、0.2%を越えるとfiJ  TL  S
Lの金属間化合物を発生し靭性を低下させる。
Furthermore, titanium is added because titanium is a component that contributes to the refinement of macrocrystalline grains in the cast alloy and increases elongation. If the content is less than 0.05%, the contribution is small, and if it exceeds 0.2%, fiJ TL S
Generates L intermetallic compounds and reduces toughness.

次に、本発明に係る合金の組織について説明する。Next, the structure of the alloy according to the present invention will be explained.

第1図はケイ素18.5%、銅1.0%、マグネシウム
1.0%、ニッケル0.7%、リン0.012%、カル
シウム00017%、鉄0.25%、残余アルミニウム
及び不可避不純物よりなるAC9[3を、冷却速度6℃
/ Secで金型鋳造した場合の合金組織である。図よ
り明がなように初晶ケイ素は粗大で、α−アルミニウム
晶の幅も大きい。初晶ケイ素について、画像解析装置(
ルーゼックス5000.日本レキュレータ社製)を使用
し、初晶ケイ素の重心を通る位置を切断した直径、いわ
ゆるマーチン径を測定すると、150ケの平均で26ミ
クロンである。また、α−アルミニウムの幅も同様に上
記に準じて測定した結果、70ケの平均で約18ミクロ
ンであった。
Figure 1 is based on silicon 18.5%, copper 1.0%, magnesium 1.0%, nickel 0.7%, phosphorus 0.012%, calcium 00017%, iron 0.25%, residual aluminum and unavoidable impurities. AC9 [3, cooling rate 6℃
This is the alloy structure when mold casting is performed at /Sec. As is clear from the figure, primary silicon is coarse and the width of the α-aluminum crystals is also large. Regarding primary silicon, an image analysis device (
Luzex 5000. When the diameter of the primary silicon cut through the center of gravity, the so-called Martin diameter, is measured using a diameter (manufactured by Nippon Reculator), the average of 150 pieces is 26 microns. Further, the width of the α-aluminum was similarly measured according to the above method, and the average of 70 pieces was about 18 microns.

第2図はケイ素19%、銅4.5%、マグネシウム0.
8%、リン0.018%、カルシウム0.015%、鉄
0.28%、残余アルミニウムからなる合金を、液相線
上100℃以上の850℃で鋳造し、冷却速度43℃/
 secで溶湯鍛造した組織である。図より明かなよう
に初晶ケイ素は非常に微細であり、α−アルミニ・クム
の幅も小さい。初晶ケイ素のマーチン径を第1図の場合
と同じ様にして測定した結果、150ケの平均で16ミ
クロンであり、また、α−アルミニウムの幅は、70ケ
の平均で8ミクロンであった。
Figure 2 shows 19% silicon, 4.5% copper, and 0.0% magnesium.
An alloy consisting of 8% phosphorus, 0.018% phosphorus, 0.015% calcium, 0.28% iron, and residual aluminum was cast at 850°C, 100°C or higher above the liquidus line, and the cooling rate was 43°C/
The structure is molten metal forged at sec. As is clear from the figure, the primary silicon is extremely fine, and the width of the α-aluminum cum is also small. The Martin diameter of primary silicon was measured in the same manner as in Figure 1, and the average of 150 pieces was 16 microns, and the width of α-aluminum was 8 microns on average of 70 pieces. .

また、一般に溶湯鍛造することによって、初晶ケイ素は
微細化すると言われているが、液相線上100℃以下で
注湯し、冷却速度30℃/sec以下で溶湯鍛造しても
第2図のような微細な初晶ケイ素は得られない。
In addition, it is generally said that primary silicon becomes finer by molten metal forging, but even if the molten metal is poured at a temperature below 100°C above the liquidus line and molten metal forged at a cooling rate of 30°C/sec or less, the Such fine primary crystal silicon cannot be obtained.

第3図は、ケイ素23%、銅2.5%、マグネシウム0
.5%、リン0.015%、カルシウム0.015%、
鉄0.25%、残余アルミニウムの合金を、液相線上7
0℃以上の810’Cで鋳造し、冷却速度27℃/ s
ecで溶湯鍛造した場合の組織を示したものである。第
2図と比較して初晶ケイ素は粗く、粗大になっている。
Figure 3 shows 23% silicon, 2.5% copper, and 0 magnesium.
.. 5%, phosphorus 0.015%, calcium 0.015%,
An alloy of 0.25% iron and the remainder aluminum at a temperature above the liquidus line of 7
Cast at 810'C above 0℃, cooling rate 27℃/s
This figure shows the structure when molten metal is forged using EC. Compared to FIG. 2, primary silicon is coarser and coarser.

このように、液相線上100℃以上で注渇し、冷却速度
30℃/ Sec以上で溶湯鍛造しなければ、第2図に
示したような組織は得られない。
As described above, the structure shown in FIG. 2 cannot be obtained unless the molten metal is drained at a temperature above the liquidus line of 100°C and forged at a cooling rate of 30°C/Sec or above.

初晶ケイ素粒子径、及びαアルミニウム晶の幅は、合金
の機械的性質、特に靭性を支配する因子であり、平均値
がともに20ミクロン以下においてすぐれた特性を示す
The primary silicon particle diameter and the width of the α-aluminum crystal are factors that control the mechanical properties of the alloy, particularly the toughness, and exhibit excellent properties when the average value of both is 20 microns or less.

以下、本発明に係る開発合金と比較合金の諸物性を測定
し、その結果に基づいて詳述する。
Hereinafter, various physical properties of the developed alloy according to the present invention and a comparative alloy will be measured and detailed description will be given based on the results.

〔実施例1〕 開発合金の溶湯鍛造は、先ず黒鉛ルツボによって所定の
原料を溶解し、脱ガス鎮静後、液相線上100℃以上に
加熱注湯し、100m++LX60InWX10Mtの
板が得られる金型を使用し’I OOOK9/ cIi
に加圧し、冷却速度47℃/ secで溶湯鍛造した。
[Example 1] For the molten metal forging of the developed alloy, the specified raw materials were first melted in a graphite crucible, and after the degassing had subsided, the melt was heated and poured to a temperature above the liquidus line of 100°C or higher, using a mold capable of producing a plate of 100 m++ LX60InWX10Mt. Shi'IOOOK9/ cIi
The molten metal was forged at a cooling rate of 47°C/sec.

なお、比較合金において条件を一部変える場合にはその
つど記載した。次いでこれらより、それぞれテストピー
スを切出し、500℃X3hr続いて150℃X5hr
の熱処理を施し、これらによって引張強度、伸び、曲げ
強度、シャルピーの衝撃試験を行った。供試試験片形状
は、実体からの切出しのため、ひっばり試験片について
はASTM、シャルピー衝撃試験についてはJ l5Z
2242、まげ試験についてはJIS22248に準拠
した試験片形状に加工した試験片を使用した。試験に使
用した合金成分を第1表に、試験結果を第2表に示した
In addition, when some conditions were changed in the comparison alloy, each case was described. Next, test pieces were cut out from these and heated at 500°C for 3 hours, then at 150°C for 5 hours.
The specimens were subjected to heat treatment and subjected to tensile strength, elongation, bending strength, and Charpy impact tests. The shape of the test piece is cut out from the actual body, so ASTM is used for the open test piece, and J15Z is used for the Charpy impact test.
2242, and for the curl test, a test piece processed into a test piece shape based on JIS22248 was used. The alloy components used in the test are shown in Table 1, and the test results are shown in Table 2.

表より明らかなように、本発明に係る開発合金は、それ
に相当する比較合金に比べて抗張力、伸び、曲げ強度、
シャルピー衝撃値が良好な結果を示している。また、ケ
イ素26%の場合通常の鋳造法では鋳造出来ない範囲で
あるにもかかわらず、溶湯鍛造法においては容易に鋳造
出来、靭性を示す伸び、シャルピー衝撃値も向上してい
る。
As is clear from the table, the developed alloy according to the present invention has higher tensile strength, elongation, bending strength, and
Charpy impact value shows good results. In addition, in the case of 26% silicon, although it is in a range that cannot be cast using normal casting methods, it can be easily cast using the molten metal forging method, and the elongation indicating toughness and Charpy impact value are also improved.

〔実施例2〕 実施例1と同じ操作で開発合金をつくり、これより、テ
ストピースを切出し、500℃×3h「続いて150℃
x5hrの熱処理を施し比摩耗度(大越式摩耗試験機使
用)、熱膨張係数(真空理工製DL−1500H使用)
を測定した。
[Example 2] A developed alloy was prepared in the same manner as in Example 1, and a test piece was cut out from it and heated at 500°C for 3 hours.
After heat treatment for x5hr, specific wear rate (using Okoshi type abrasion tester), coefficient of thermal expansion (using Shinku Riko DL-1500H)
was measured.

合金成分を第3表に、測定結果を第4表に示す。The alloy components are shown in Table 3, and the measurement results are shown in Table 4.

表より明らかなように、本発明に係る開発合金はA39
0よりも、熱膨張係数が低く、特にケイ素30%のNo
11は、鋳鉄とほぼ同等の値が得られている。また、比
摩耗度は、A390よりも優れた結果が得られているが
、これは初晶ケイ素及びα−アルミニウム晶の幅を20
ミクロン以下にコントロールされたことに起因している
As is clear from the table, the developed alloy according to the present invention is A39
The thermal expansion coefficient is lower than No. 0, especially No. 30% silicon.
For No. 11, a value almost equivalent to that of cast iron was obtained. In addition, the specific wear rate is better than that of A390, but this is because the width of primary silicon and α-aluminum crystals is 20
This is due to the fact that it is controlled to below microns.

〔効果〕〔effect〕

本発明に係る成分および製造法による溶湯鍛造用アルミ
ニウム合金は、従来の高ケイ素合金と比較して、靭性、
耐摩耗性が格段に優れ、高強度で、かつ低熱膨張係数を
有しているので、カークーラーピストン用ベーン材、或
いは自動車ピストン等に好適に使用することが出来る。
The aluminum alloy for molten metal forging with the ingredients and manufacturing method according to the present invention has higher toughness and better toughness than conventional high-silicon alloys.
Since it has extremely excellent wear resistance, high strength, and a low coefficient of thermal expansion, it can be suitably used as a vane material for car cooler pistons or automobile pistons.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、AC9Bを冷却速度6℃/ secで金型鍛
造した合金の組織を示す顕微鏡写真、第2図は、本発明
の合金の組織を示す顕微鏡写真、第3図は本発明に係る
合金を、液相線上70℃、冷却速度27℃/ secで
溶湯鍛造した合金の組織を示す顕微鏡写真である。
Fig. 1 is a micrograph showing the structure of an alloy made by die forging AC9B at a cooling rate of 6°C/sec, Fig. 2 is a micrograph showing the structure of the alloy of the present invention, and Fig. 3 is a micrograph of the alloy according to the present invention. This is a micrograph showing the structure of an alloy obtained by melt forging the alloy at a temperature of 70° C. above the liquidus line and a cooling rate of 27° C./sec.

Claims (1)

【特許請求の範囲】 (1)ケイ素18〜35重量%、銅2〜6重量%、マグ
ネシウム0.3〜1.0重量%、リン 0.01〜0.05重量%、カルシウム0.03重量%
以下、鉄0.5重量%以下、残余アルミニウムより成る
合金であり、任意断面組織における初晶ケイ素粒子の平
均粒径が20ミクロン以下で、α−アルミニウム晶の幅
が平均20ミクロン以下であることを特徴とする溶湯鍛
造された高靭性アルミニウム合金。 (2)ケイ素18〜35重量%、銅2〜6重量%、マグ
ネシウム0.3〜1.0重量%、リン 0.01〜0.05重量%、カルシウム0.03重量%
以下、鉄0.5重量%以下の成分にさらにチタン0.0
5〜0.20重量%含有し、残余アルミニウムより成る
合金であり、任意断面組織における初晶ケイ素粒子の平
均粒径が20ミクロン以下で、α−アルミニウム晶の幅
が平均20ミクロン以下であることを特徴とする溶湯鍛
造された高靭性アルミニウム合金。 (3)ケイ素18〜35重量%、銅2〜6重量%、マグ
ネシウム0.3〜1.0重量%、リン 0.01〜0.05重量%、カルシウム0.03重量%
以下、鉄0.5重量%以下、残余アルミニウムより成る
合金を溶製し、鋳造温度が各組成合金の液相線上100
℃以上で、冷却速度が30℃/sec以上で凝固させる
ことを特徴とする溶湯鍛造された高靭性アルミニウム合
金の製造法。 (4)ケイ素18〜35重量%、銅2〜6重量%、マグ
ネシウム0.3〜1.0重量%、リン 0.01〜0.05重量%、カルシウム0.03重量%
以下、鉄0.5重量%以下の成分に、さらにチタン0.
05〜0.20重量%含有し、残余アルミニウムより成
る合金を溶製し、鋳造温度が各組成合金の液相線上10
0℃以上で、冷却速度が30℃/sec以上で凝固させ
ることを特徴とする溶湯鍛造された高靭性アルミニウム
合金の製造法。
Scope of Claims: (1) 18-35% by weight of silicon, 2-6% by weight of copper, 0.3-1.0% by weight of magnesium, 0.01-0.05% by weight of phosphorus, 0.03% by weight of calcium. %
The following shall be an alloy consisting of 0.5% by weight or less of iron and the remainder aluminum, and the average grain size of primary silicon particles in any cross-sectional structure is 20 microns or less, and the average width of α-aluminum crystals is 20 microns or less. A high toughness aluminum alloy made of molten metal and forged. (2) Silicon 18-35% by weight, copper 2-6% by weight, magnesium 0.3-1.0% by weight, phosphorus 0.01-0.05% by weight, calcium 0.03% by weight
Below, the ingredients are 0.5% by weight or less of iron and 0.0% titanium.
It is an alloy containing 5 to 0.20% by weight and consisting of residual aluminum, and the average grain size of primary silicon particles in any cross-sectional structure is 20 microns or less, and the average width of α-aluminum crystals is 20 microns or less. A high toughness aluminum alloy made of molten metal and forged. (3) Silicon 18-35% by weight, copper 2-6% by weight, magnesium 0.3-1.0% by weight, phosphorus 0.01-0.05% by weight, calcium 0.03% by weight
Below, an alloy consisting of 0.5% by weight or less of iron and the remainder aluminum is melted, and the casting temperature is 100% above the liquidus line of each composition alloy.
A method for producing a molten-metal forged high-toughness aluminum alloy, characterized by solidifying at a temperature of 30° C. or higher and a cooling rate of 30° C./sec or higher. (4) Silicon 18-35% by weight, copper 2-6% by weight, magnesium 0.3-1.0% by weight, phosphorus 0.01-0.05% by weight, calcium 0.03% by weight
Hereinafter, the ingredients are 0.5% by weight or less of iron, and 0.5% by weight of titanium.
An alloy containing 0.05 to 0.20% by weight with the remainder aluminum is melted, and the casting temperature is 10% above the liquidus line of each composition alloy.
A method for producing a high-toughness molten-forged aluminum alloy, characterized by solidifying at a temperature of 0° C. or higher and a cooling rate of 30° C./sec or higher.
JP8598685A 1985-04-22 1985-04-22 Molten-metal-forged high-toughness aluminum alloy and its manufacture Pending JPS61246339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8598685A JPS61246339A (en) 1985-04-22 1985-04-22 Molten-metal-forged high-toughness aluminum alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8598685A JPS61246339A (en) 1985-04-22 1985-04-22 Molten-metal-forged high-toughness aluminum alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPS61246339A true JPS61246339A (en) 1986-11-01

Family

ID=13874006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8598685A Pending JPS61246339A (en) 1985-04-22 1985-04-22 Molten-metal-forged high-toughness aluminum alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS61246339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158210A (en) * 1992-08-19 1994-06-07 Nippon Light Metal Co Ltd Hyper eutectic al-si alloy having excellent workability and manufacture thereof
CN103572107A (en) * 2013-10-21 2014-02-12 姚富云 Manufacturing method of casting aluminum alloy for engine cylinder block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158210A (en) * 1992-08-19 1994-06-07 Nippon Light Metal Co Ltd Hyper eutectic al-si alloy having excellent workability and manufacture thereof
CN103572107A (en) * 2013-10-21 2014-02-12 姚富云 Manufacturing method of casting aluminum alloy for engine cylinder block

Similar Documents

Publication Publication Date Title
AU2016343539B2 (en) Aluminum alloy
US4867806A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
CA2310351C (en) Cylinder head and motor block castings
JP4187018B2 (en) Cast aluminum alloy with excellent relaxation resistance and heat treatment method
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
CN111020303A (en) 4XXX series aluminum alloy and preparation method thereof
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JPH0762200B2 (en) Abrasion resistant aluminum alloy casting rod for forging and its manufacturing method
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
US5551996A (en) Si-containing magnesium alloy for casting with melt thereof
JP2005139552A (en) Aluminum alloy for casting, aluminum-alloy casting and method for manufacturing aluminum-alloy casting
JPH0121217B2 (en)
JPH07197164A (en) Aluminum alloy having high strength and high workability and its production
RU2752489C1 (en) Powder material with high thermal conductivity
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JPS61246339A (en) Molten-metal-forged high-toughness aluminum alloy and its manufacture
JPH06306521A (en) Hyper-eutectic al-si series alloy for casting and casting method
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
Samuel et al. Intermetallics formation, hardness and toughness of A413. 1 type alloys: role of melt and aging treatments
CN111485139A (en) Al-RE-Y alloy and preparation method thereof