JPH01184849A - Manufacture of multilayer interconnection - Google Patents

Manufacture of multilayer interconnection

Info

Publication number
JPH01184849A
JPH01184849A JP467288A JP467288A JPH01184849A JP H01184849 A JPH01184849 A JP H01184849A JP 467288 A JP467288 A JP 467288A JP 467288 A JP467288 A JP 467288A JP H01184849 A JPH01184849 A JP H01184849A
Authority
JP
Japan
Prior art keywords
layer
wiring
interlayer insulating
conductor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP467288A
Other languages
Japanese (ja)
Other versions
JPH0618196B2 (en
Inventor
Koji Shiozaki
宏司 塩崎
Hiroi Ootake
大竹 弘亥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63004672A priority Critical patent/JPH0618196B2/en
Publication of JPH01184849A publication Critical patent/JPH01184849A/en
Publication of JPH0618196B2 publication Critical patent/JPH0618196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reliability of a multilayer interconnection, by growing selectively and flatly conducting material like tungsten in through holes whose depths are different. CONSTITUTION:On a semiconductor substrate, the following are formed; a first layer WSix wiring 2, impurity-implanted layer (B<+>) 3, an interlayer insulating film 4, and a second layer WSix wiring 6. On the whole part of the wiring 6, an impurity ion implanted layer (P<+>)6 is formed by ion implantation method. After an interlayer insulating film 7 is stuck, through holes 8, 9 which reach a first and a second layer wirings 2, 5 and have different depths are formed at specified positions in the interlayer insulating films 4, 7. Then tungsten 10 is selectively buried and formed in the through holes 8, 9. Next, a third layer Al-Si wiring 11 is formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、超LSIの金属配線技術として期待されてい
る多層配線の製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a method for manufacturing multilayer wiring, which is expected to be used as a metal wiring technology for VLSI.

〈従来の技術〉 集積回路の高集積、高密度化に伴って、多層配線技術が
重要となって来ている。しかし層間絶縁層に形成するス
ルーホールの微細化と共に、従来の多層配線技術では、
スルーホール内の配線の膜厚が薄くなり、多層配線の信
頼性が低下するという問題が発生している。
<Prior Art> Multilayer wiring technology has become important as integrated circuits become more highly integrated and densely packed. However, with the miniaturization of through holes formed in interlayer insulation layers, conventional multilayer wiring technology
A problem has arisen in that the film thickness of the wiring inside the through hole becomes thinner, and the reliability of the multilayer wiring decreases.

このため、最近第2図[al乃至(clに示すように、
半導体基板21上に第1層の配線22を形成した後、第
1の層間絶縁膜28を形成し、更にその上に第2の配線
24を形成した後、第2の眉間絶縁膜25を形成し、次
にこれらの層間絶縁膜23゜25にそれぞれ第1層及び
第2層の配線22.24に通じるスルーホール26.2
7を開けた後、スルーホール26.27内にタングステ
ン28.28を選択的に形成し、更にその後に第3の配
線29を形成する方法が提案されている。
For this reason, recently, as shown in Fig. 2 [al to (cl),
After forming the first layer of wiring 22 on the semiconductor substrate 21, forming the first interlayer insulating film 28, and further forming the second wiring 24 thereon, forming the second glabellar insulation film 25. Then, through holes 26.2 are formed in these interlayer insulating films 23 and 25, respectively, leading to the wirings 22 and 24 of the first and second layers.
A method has been proposed in which after opening the through holes 26, 27, tungsten 28, 28 is selectively formed in the through holes 26, 27, and then the third wiring 29 is formed.

〈発明が解決しようとする問題点〉 しかしながら、上記した従来の方法では、3層以上の多
層配線構造において、深さの異なるスルーホールを督す
る場合、スルーホールの深さの違いがその中に導体を埋
め込む工程である選択成長後の平坦性に反映され、深い
スルーホール26で第3層の配線29の被覆特性が低下
し、多層配線の信頼性が低下するという問題が発生して
いた。
<Problems to be Solved by the Invention> However, in the conventional method described above, when managing through holes of different depths in a multilayer wiring structure of three or more layers, the difference in the depth of the through holes is This is reflected in the flatness after selective growth, which is the process of embedding a conductor, and the covering characteristics of the third layer wiring 29 deteriorate in the deep through hole 26, resulting in a problem that the reliability of the multilayer wiring deteriorates.

本発明は上記の点に鑑みて創案され念ものであり、深さ
の異なるスルーホールに導体材料を選択的かつ平坦に成
長させ、多層配線の信頼性の向上を図り得る新規な多層
配線の製造方法を提供することを目的としている。
The present invention has been devised in view of the above points, and is a novel method for producing multilayer interconnections that can improve the reliability of multilayer interconnections by selectively and flatly growing conductor material in through holes of different depths. The purpose is to provide a method.

く問題点を解決するための手段〉 上記の目的を達成するため、本発明の多層配線の製造方
法は、半導体基板上に第1層の導体配線を形成する工程
と、この第1層の導体配線上に第1の層間絶縁膜を介し
て第2層の導体配線を形成する工程と、この第2層の導
体配線上に第2の層間絶縁膜を形成する工程と、上記の
第2の層間絶縁膜及び第1の層間絶縁膜にそれぞれ上記
の第1層及び第2層の導体配線に通じる第1及び第2の
スルーホールを形成する工程と、この第1及び第2のス
ルーホールに選択成長により導体を埋め込む工程と、上
記の第2の層間絶縁膜上に上記の第1−及び第2のスル
ーホールに埋め込まれた導体に接続される第3の導体配
線を形成する工程と、を含んでなり、上記の第1層及び
第2層の導体配線にそれぞれ異なる種類の不純物イオン
を注入するようになしており、特に第1層の導体配線及
び第2層の導体配線にそれぞれ異種の不純物イオンを注
入することによって、例えばスルーホールに埋め込むタ
ングステン等の導体材料の選択成長速度を制御し、深さ
の異なるスルーホールにも選択的かつ平坦にタングステ
ン等の導体材料を成長し、多層配線の信頼性を向上させ
るようになしている。
Means for Solving the Problems In order to achieve the above object, the method for manufacturing a multilayer wiring of the present invention includes a step of forming a first layer of conductor wiring on a semiconductor substrate, and a step of forming a first layer of conductor wiring on a semiconductor substrate. a step of forming a second layer of conductive wiring on the wiring via a first interlayer insulating film; a step of forming a second interlayer insulating film on the second layer of conductive wiring; forming first and second through holes in the interlayer insulating film and the first interlayer insulating film that communicate with the conductor wiring in the first and second layers, respectively; a step of embedding a conductor by selective growth; a step of forming a third conductor wiring on the second interlayer insulating film to be connected to the conductor embedded in the first and second through holes; In this method, different types of impurity ions are implanted into the first layer and second layer conductor wiring, and in particular, different types of impurity ions are implanted into the first layer conductor wiring and the second layer conductor wiring. By implanting impurity ions of This is intended to improve the reliability of wiring.

く作 用〉 例えば、本発明の実施例において用いるタングステンの
選択成長では、下地材料への不純物イオン注入の不純物
種1表面濃度等により、タングステンの成長速度が異な
る。例えばWS(xに不純物イオンを注入しない場合に
比へ、 Bt?注入エネルギー40keVで3 X 1
0 ” as−”注入した場合には、50%程度成長速
度が増大する。一方31p+を100 keVで5 X
 10 ”fi−”注入した場合には、10%程度成長
速度が低下する。
For example, in the selective growth of tungsten used in the embodiments of the present invention, the growth rate of tungsten differs depending on the surface concentration of the impurity species 1 in the impurity ion implantation into the underlying material. For example, when no impurity ions are implanted into WS (
When 0 "as-" is implanted, the growth rate increases by about 50%. On the other hand, 31p+ at 100 keV 5X
When 10 "fi-" is implanted, the growth rate decreases by about 10%.

したがって、各層の導体配線に種類の異なる不純物イオ
ンを注入することにより、コンタクト用のスルーホール
の深さに限定されることなく、スルーホールにタングス
テン等の導体材料を選択的かつ平坦に成長させることが
出来、その結果、多層配線の信頼性が向上する。
Therefore, by implanting different types of impurity ions into the conductor wiring in each layer, it is possible to grow conductive materials such as tungsten selectively and flatly in the through holes without being limited to the depth of the through holes for contacts. As a result, the reliability of multilayer wiring is improved.

〈実施例〉 以下、図面を参照して本発明の一実施例全詳細に説明す
る。
<Embodiment> Hereinafter, an embodiment of the present invention will be described in full detail with reference to the drawings.

第1図[al乃至(ilは各々本発明に係る多層配線の
製造方法の一実施例を示す工程図である。
FIG. 1 [al to (il) are process diagrams each showing an embodiment of the method for manufacturing a multilayer interconnection according to the present invention.

まず、第1図(aJに示すように半導体基板1にスパッ
タ法によりWSix’r0.5μ霞厚で被着し、第1層
WSix配線2を形成する。次に第1図[blに示すよ
うに上記の第1層W S ix配線2の全面に、イオン
注入法により B  150keVで3 X 10 ”
 m−”注入して不純物イオン注入層(B”)lを形成
する。次に第1図(dに示すようにCVD法等の慣用手
法により層間絶縁膜4を0.8μm被着した後、第1図
(dlに示すようにスパッタ法によりW S ixを0
.5μ町、厚:!7ri被着して第2層WSix配線5
″f:形成する。
First, as shown in FIG. 1 (aJ), WSix'r is deposited to a thickness of 0.5 μm on a semiconductor substrate 1 by sputtering to form a first layer WSix wiring 2.Next, as shown in FIG. Then, the entire surface of the first layer WSix wiring 2 was injected with 3×10” B at 150 keV by ion implantation.
m-'' is implanted to form an impurity ion implantation layer (B'')l. Next, as shown in FIG. 1 (d), an interlayer insulating film 4 of 0.8 μm is deposited by a conventional method such as CVD, and then W S ix is reduced to 0 by sputtering as shown in FIG. 1 (dl).
.. 5μ town, thickness:! 7ri deposited and second layer WSix wiring 5
″f: Form.

次に第1図felに示すように上記の第2層W S t
 x配線5の全面に、イオン注入法により P、全10
0 keVで5 X 1016ea−”注入して、不純
物イオン注入層(P )6を形成する。次に第1図げ)
に示すようにCVD法等の慣用手法により層間絶縁膜7
を1.2μm被着した後、第1図1に示すように、上記
した層間絶縁膜4゜7の所定の位置に、それぞれ上記し
た第1層及び第2層配線2.5に達する深さの異なるス
ルーホール8.9に形成する。その後、第1図fh)に
示すようにそれぞれ深さの異なるスルーホール8.9に
、例えばW F sのH2還元法によるタングステンの
選択CVD法により、タングステン10を選択的に埋込
み形成する。その後第1図G)に示すように第3層A1
−5i配線11を形成する。
Next, as shown in FIG. 1, the above second layer W S t
P, total 10
5 x 1016ea-'' is implanted at 0 keV to form an impurity ion implantation layer (P) 6. Next, in Figure 1)
As shown in FIG.
After depositing 1.2 μm of the above-mentioned interlayer insulating film 4°7, as shown in FIG. Through holes 8 and 9 are formed with different numbers. Thereafter, as shown in FIG. 1 (fh), tungsten 10 is selectively embedded in the through holes 8.9 having different depths, for example, by selective CVD of tungsten using the H2 reduction method of W F s. Then, as shown in Figure 1G), the third layer A1
-5i wiring 11 is formed.

以上のように、各層の導体配線に種類の異なる不純物イ
オン全注入することにより、深さの異なるスルーホール
に、タングステンを選択的かつ平坦に成長させることが
出来、多層配線の信頼性が向上する。
As described above, by fully implanting different types of impurity ions into the conductor wiring in each layer, tungsten can be grown selectively and flatly in through holes of different depths, improving the reliability of multilayer wiring. .

なお、本発明は上記した実施例に限定されるものではな
く、その主旨を逸脱しない範囲で種々の変形で実施する
ことが出来、例えば各層の導体配線に注入する不純物イ
オン種、注入量、注入エネルギーあるいは注入の有無1
層間絶縁膜の膜厚は適宜決定することが出来ることは言
うまでもない。
It should be noted that the present invention is not limited to the above-described embodiments, and can be implemented with various modifications without departing from the spirit thereof. Energy or injection presence 1
It goes without saying that the thickness of the interlayer insulating film can be determined as appropriate.

また4層以上の多層配線にも適用し得ることは言うまで
もない。更に導体材料としてもW S r x配線に代
えてM OS s x 、AノーSiなどの他の導体材
料を用いても良いことは言うまでもない。
It goes without saying that the present invention can also be applied to multilayer wiring of four or more layers. Furthermore, it goes without saying that other conductive materials such as MOS s x and A-no-Si may be used instead of the W S r x wiring.

〈発明の効果〉 以上のように本発明によれば、深さの異なるスルーホー
ル内にタングステン等の導体材料を選択的かつ平坦に成
長させることが出来、その結果、多層配線の信頼性?著
しく向上させることが出来る。
<Effects of the Invention> As described above, according to the present invention, conductor materials such as tungsten can be selectively and flatly grown in through holes of different depths, and as a result, the reliability of multilayer wiring can be improved. It can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al乃至filはそれぞれ本発明に係る多層配
線の製造方法の一実施例の工程を説明するための図、第
2図(al乃至(clはそれぞれ従来の多層配線の製造
方法の工程を説明するための図である。 1・・・半導体基板、2・・・第1層W S ix配線
、8・・・不純物イオン注入層(B+)、4・・・層間
絶縁膜I、5・・・第2層WSix配線、6・・・不純
物イオン注入層(P+)、7・・・層間絶縁膜■、8.
9・・・スルーホール、10・・・選択成長タングステ
ン(導体)、11・・・第3層AノーSi配線。
FIG. 1 (al to fil are diagrams for explaining the steps of an embodiment of the multilayer wiring manufacturing method according to the present invention, respectively, and FIG. 2 (al to (cl) are diagrams for explaining the steps of the conventional multilayer wiring manufacturing method, respectively. 1... Semiconductor substrate, 2... First layer W S ix wiring, 8... Impurity ion implantation layer (B+), 4... Interlayer insulating film I, 5 . . . second layer WSix wiring, 6 . . . impurity ion implantation layer (P+), 7 . . . interlayer insulating film ■, 8.
9...Through hole, 10...Selectively grown tungsten (conductor), 11...3rd layer A no-Si wiring.

Claims (1)

【特許請求の範囲】 1、半導体基板上に第1層の導体配線を形成する工程と
、 該第1層の導体配線上に第1の層間絶縁膜を介して第2
層の導体配線を形成する工程と、該第2層の導体配線上
に第2の層間絶縁膜を形成する工程と、 上記第2の層間絶縁膜及び第1の層間絶縁膜にそれぞれ
上記第1層及び第2層の導体配線に通じる第1及び第2
のスルーホールを形成する工程と、 該第1及び第2のスルーホールに選択成長により導体を
埋め込む工程と、 上記第2の層間絶縁膜上に上記第1及び第2のスルーホ
ールに埋め込まれた導体に接続される第3層の導体配線
を形成する工程と、 を含んでなり、 上記第1層及び第2層の導体配線にそれぞれ異なる種類
の不純物イオンを注入してなることを特徴とする多層配
線の製造方法。 2、前記第1及び第2のスルーホールに選択成長により
埋め込まれる導体材料をタングステンとなした第1項記
載の多層配線の製造方法。 3、前記第1層の導体配線に注入する不純物イオンがボ
ロンであり、前記第2層の導体配線に注入する不純物イ
オンがリンである第1項記載の多層配線の製造方法。
[Claims] 1. A step of forming a first layer of conductive wiring on a semiconductor substrate, and forming a second layer of conductive wiring on the first layer of conductive wiring via a first interlayer insulating film.
a step of forming a conductor wiring layer, a step of forming a second interlayer insulating film on the conductor wiring of the second layer, and a step of forming the first interlayer insulating film on the second interlayer insulating film and the first interlayer insulating film, respectively. The first and second layers lead to the conductor wiring of the layer and the second layer.
a step of embedding a conductor in the first and second through holes by selective growth; and a step of embedding a conductor in the first and second through holes on the second interlayer insulating film. forming a third layer of conductor wiring connected to the conductor, and implanting different types of impurity ions into the first and second layer conductor wirings, respectively. A method for manufacturing multilayer wiring. 2. The method for manufacturing a multilayer wiring according to item 1, wherein the conductive material buried in the first and second through holes by selective growth is tungsten. 3. The method for manufacturing a multilayer wiring according to item 1, wherein the impurity ions implanted into the first layer conductor wiring are boron, and the impurity ions implanted into the second layer conductor wiring are phosphorus.
JP63004672A 1988-01-14 1988-01-14 Manufacturing method of multilayer wiring Expired - Lifetime JPH0618196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63004672A JPH0618196B2 (en) 1988-01-14 1988-01-14 Manufacturing method of multilayer wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63004672A JPH0618196B2 (en) 1988-01-14 1988-01-14 Manufacturing method of multilayer wiring

Publications (2)

Publication Number Publication Date
JPH01184849A true JPH01184849A (en) 1989-07-24
JPH0618196B2 JPH0618196B2 (en) 1994-03-09

Family

ID=11590396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63004672A Expired - Lifetime JPH0618196B2 (en) 1988-01-14 1988-01-14 Manufacturing method of multilayer wiring

Country Status (1)

Country Link
JP (1) JPH0618196B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043934A (en) * 1990-04-20 1992-01-08 Fujitsu Ltd Manufacture of semiconductor device
DE4021516A1 (en) * 1990-07-06 1992-01-16 Samsung Electronics Co Ltd Differential tungsten growth by CVD - by controlling reaction gas ratio for improved step coverage e.g. in DRAM mfr.
JPH0425075A (en) * 1990-05-16 1992-01-28 Takehide Shirato Semiconductor device
US5671674A (en) * 1994-11-16 1997-09-30 Kabushiki Kaisha Tokyo Kikai Seisakusho Printing plate support device and printing plate removal mounting apparatus as well as methods of operating the same
US6383916B1 (en) * 1998-12-21 2002-05-07 M. S. Lin Top layers of metal for high performance IC's
US7294870B2 (en) 1998-12-21 2007-11-13 Mou-Shiung Lin Top layers of metal for high performance IC's
US7405149B1 (en) 1998-12-21 2008-07-29 Megica Corporation Post passivation method for semiconductor chip or wafer
US7880304B2 (en) * 2004-10-12 2011-02-01 Megica Corporation Post passivation interconnection schemes on top of the IC chips
US8546947B2 (en) 2001-12-13 2013-10-01 Megica Corporation Chip structure and process for forming the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043934A (en) * 1990-04-20 1992-01-08 Fujitsu Ltd Manufacture of semiconductor device
JPH0425075A (en) * 1990-05-16 1992-01-28 Takehide Shirato Semiconductor device
DE4021516A1 (en) * 1990-07-06 1992-01-16 Samsung Electronics Co Ltd Differential tungsten growth by CVD - by controlling reaction gas ratio for improved step coverage e.g. in DRAM mfr.
US5671674A (en) * 1994-11-16 1997-09-30 Kabushiki Kaisha Tokyo Kikai Seisakusho Printing plate support device and printing plate removal mounting apparatus as well as methods of operating the same
US5715751A (en) * 1994-11-16 1998-02-10 Kabushiki Kaisha Tokyo Kikai Seisakusho Printing plate support device and printing plate removably mounting apparatus as well as methods of operating the same
US7372155B2 (en) 1998-12-21 2008-05-13 Mou-Shiung Lin Top layers of metal for high performance IC's
US7384864B2 (en) 1998-12-21 2008-06-10 Mou-Shiung Lin Top layers of metal for high performance IC's
US7294871B2 (en) 1998-12-21 2007-11-13 Mou-Shiung Lin Top layers of metal for high performance IC's
US7329954B2 (en) 1998-12-21 2008-02-12 Mou-Shiung Lin Top layers of metal for high performance IC's
US7368376B2 (en) 1998-12-21 2008-05-06 Mou-Shiung Lin Top layers of metal for high performance IC's
US6383916B1 (en) * 1998-12-21 2002-05-07 M. S. Lin Top layers of metal for high performance IC's
US7372085B2 (en) 1998-12-21 2008-05-13 Mou-Shiung Lin Top layers of metal for high performance IC's
US7294870B2 (en) 1998-12-21 2007-11-13 Mou-Shiung Lin Top layers of metal for high performance IC's
US7405149B1 (en) 1998-12-21 2008-07-29 Megica Corporation Post passivation method for semiconductor chip or wafer
US7420276B2 (en) 1998-12-21 2008-09-02 Megica Corporation Post passivation structure for semiconductor chip or wafer
US7422976B2 (en) 1998-12-21 2008-09-09 Mou-Shiung Lin Top layers of metal for high performance IC's
US8350386B2 (en) * 1998-12-21 2013-01-08 Megica Corporation Top layers of metal for high performance IC's
US8022546B2 (en) * 1998-12-21 2011-09-20 Megica Corporation Top layers of metal for high performance IC's
US8035227B2 (en) * 1998-12-21 2011-10-11 Megica Corporation Top layers of metal for high performance IC's
US8546947B2 (en) 2001-12-13 2013-10-01 Megica Corporation Chip structure and process for forming the same
US7880304B2 (en) * 2004-10-12 2011-02-01 Megica Corporation Post passivation interconnection schemes on top of the IC chips

Also Published As

Publication number Publication date
JPH0618196B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JPH01184849A (en) Manufacture of multilayer interconnection
EP0058124A1 (en) Polycrystalline silicon Schottky diode array and method of manufacturing
DE10054190C2 (en) Method of leveling insulation in the form of a shallow trench
TW465069B (en) Barrier for copper metallization
KR960005046B1 (en) Semiconductor integrated circuit and the manufacturing process
DE10224160A1 (en) Silicon-on-insulator substrate comprises bulk substrate, insulating layer, active semiconductor layer, and diffusion barrier layer having thickness and composition that prevent copper atoms from diffusing through
US5192713A (en) Method of manufacturing semiconductor devices having multi-layered structure
KR100769634B1 (en) Semiconductor device and its manufacturing method
JPH01184848A (en) Manufacture of multilayer interconnection
DE19713501C2 (en) Method for connecting conductive layers in a semiconductor device
JP2874173B2 (en) Method for manufacturing semiconductor device
US20040219778A1 (en) Method for manufacturing metal structure using trench
TW478094B (en) Dual-polysilicon structures in integrated circuits and a method for making them
EP0228183A2 (en) Method for manufacturing semiconductor device
JPH01214137A (en) Manufacture of integrated circuit
JPH05152449A (en) Manufacture of semiconductor device
JPH02203531A (en) Formation of multilayer wiring
JP2998444B2 (en) Method for manufacturing semiconductor integrated circuit device
KR100260522B1 (en) Method for filling a contact hole in a semiconductor device
JP2672976B2 (en) Electrode wiring and method of manufacturing the same
JP2985218B2 (en) Semiconductor device and manufacturing method thereof
JP2723560B2 (en) Method for manufacturing semiconductor device
KR20020054906A (en) Method for forming metal line in semiconductor device
JPH0497518A (en) Manufacture of semiconductor integrated circuit
JPH01243526A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term