JPH0497518A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH0497518A
JPH0497518A JP21535790A JP21535790A JPH0497518A JP H0497518 A JPH0497518 A JP H0497518A JP 21535790 A JP21535790 A JP 21535790A JP 21535790 A JP21535790 A JP 21535790A JP H0497518 A JPH0497518 A JP H0497518A
Authority
JP
Japan
Prior art keywords
substrate
layer
contact hole
reaction
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21535790A
Other languages
Japanese (ja)
Inventor
Hideji Hirao
秀司 平尾
Hiroshi Yamamoto
浩 山本
Yuka Terai
由佳 寺井
Toyokazu Fujii
藤居 豊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21535790A priority Critical patent/JPH0497518A/en
Publication of JPH0497518A publication Critical patent/JPH0497518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent generation of a leak current between n<+> diffused layer and P type substrate by opening a contact hole, forming a high concentration As layer n<++> at the bottom thereof and then selectively burying the contact hole through reaction of a gas including a metal and the Si substrate. CONSTITUTION:After forming an n<+> diffused layer 2 on a P type silicon substrate 1, an insulating layer 4 is deposited and a contact hole 5 is opened. Next, As is implanted to the bottom of the hole 5 to form an n<++> layer 3. Thereafter, WF6 is selectively deposited in the contact hole 5 through reaction of a gas reduced by Ar(argon) and SiH4. In this case, reduction of silicon occurs simultaneously with reduction of silane and tungsten W is grown into the Si substrate. With formation of As layer of 4X10<28>cm<-3> or more, amount of growth can be reduced to about 40nm or less and generation of a leak current between the layer 2 and substrate 1 due to the growth of W into the Si substrate can also be prevented. Thereby, disconnection is never generated even when electrodes and wirings are formed and reliability such as electromigration resistance can also be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細な電極コンタクトや多層配線を有する高密
度大集積な半導体集積回路の製造方法に関するものであ
も 従来の技術 ]ンタクトに電極を形成する場合において、通常はAI
等の金属が用いられ その堆積方法としてスパッタ方が
採用されていも しかしながらコンタクトの幅が1μm
以下の微細寸法になるとAIのスパッタ法ではコンタク
トの側面にほとんどAlが付着しなくなも その結! 
 AI配線が断線したりエレクトロマイグレーション耐
性等の信頼性に重要な問題が発生することにな4 これ
を防ぐためにコンタクトに選択的にメタルを埋め込む技
術があa この例を以下に示も 第3図に従来の製造法を用いて、微細コンタクトに選択
的に金属を埋め込んだ場合の断面図を示も 同図におい
て、 1はシリコンp型基板 2はn0拡散凰 4は絶
縁!!、5はコンタクトホーJk6はコンタクトホール
に埋め込まれたタングステンであム これは以下に述べ
る製法により形成され九 埋板 絶縁層4にコンタクト
ホール5を開孔したaWFs(6弗化タングステン)の
シラン還元反応 2WF・  +   3SiHn   →  2W+5
ip4 +  6H*  (反応1) を利用してタングステン6をコンタクトホール5に選択
的に成長させも この反応は絶縁層4上では起こらず、
コンタクトホールには基板のSiが露出しているので選
択成長が可能とな本発明が解決しようとする課題 しかしながらこの方法では以下に述べる問題点が生じム
 WをWF・のシラン還元で成長させる線間時にSi基
板1とWF・が反応するシリコン還元反応 2WF@   +   3Si   →  2W   
+   3SiF、  (反応2) が起こり下地Siが消費されてその代わりにWが基板内
部方向に成長すも この反応はコンタクト抵抗を下げる
ために必要である力(Wが内部まで成長しすぎると第3
図中のWとp型基板との距離Tが短くなり、n0拡散層
とp型基板との間でリーク電流が発生し 回路動作の不
都合等の重大な問題が生じも 本発明は従来の欠点を鑑みてなされたもので、簡単な方
法でコンタクトホール底面での下地SiとWF、の反応
を抑制することによってn′−拡散層とp型基板間のリ
ーク電流が発生しないようにすることを目的としていも 課題を解決するための手段 本発明は上記問題を解決するた亀 コンタクトホールを
開孔した微 コンタクトホールの底面に高濃度のAs層
n°°を形成すも その喪 金属を含んだガスをSi基
板と反応させ、選択的にコンタクトホールを埋め込むも
のであも 作用 本発明は上記の方法により、コンタクトホール埋め込み
時にSi基板内部へのWの成長を制御Ln゛拡散層とp
型基板間のリーク電流を防ぐ効果があも 実施例 第1図は本発明の実−施例において、金属(タングステ
ン)を埋め込んだ微細なコンタクトの断面図であも 同
図において1はシリコン基板 2はn0拡散[3はn”
M!、 4は絶縁WL 5はコンタクトホールk 6は
コンタクトホールに埋め込まれたタングステンであム 第2図を用いて製造法を説明すム 第2図(a):1 
シリコンn基板中 絶縁層4を堆積し コンタクトホール5を開孔したもの
であム 第2図(b)において、コンタクトホール底面
に表面濃度が4×10101C’になるようにAsを注
入Ln−層3を形成すも 第2図(C)においてWF6
をAr(アルゴン)で希釈したガスを5iHaと反応さ
せて(反応1)コンタクトホール5に選択的に堆積させ
も このときシラン還元(反応1)と同時にシリコン還
元(反応2)も起こり、Wの基板Si内部への成長が起
こも このWの基板内部への成長量は第4図のグラフに示され
るようにSi中のAs濃度に依存していも つまり、従
来の条件では WのSi基板内部への成長量は250℃
で約50〜70nm程度(グラフ中[イ]、 [ロコ)
である力<、第2図(C)において4 X l O”c
m−”以上のAs層を形成することにより約40nm以
下に(グラフ中[ハ])減少させることがでLWのSi
基板内部への成長によるn゛拡散層とp型基板間のリー
ク電流を防ぐことができも な耘 本実施例ではシリコンn基板中にn°拡散層を形
成しn ”層を形成する場合について述べたカミ シリ
コンn基板中にpウェルを形成し 本実施例と同様にn
゛拡散凰 n ”層−を形成する場合も同様の効果が得
られることは言うまでもなり℃発明の効果 以上述べたように本発明によれ1戴 簡単な方法で選択
的に金属を埋め込む際のリーク電流が防止できるので、
電極や配線を形成しても断線が起こらない上にエレクト
ロマイグレーション耐性等の信頼性向上に著しい効果が
あム 従って高密度で大規模な半導体集積回路の実現が
容易であも
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method of manufacturing a high-density, large-scale integrated semiconductor integrated circuit having fine electrode contacts and multilayer wiring. In some cases, usually AI
However, the width of the contact is only 1 μm.
When the micro dimensions are as follows, almost no Al will adhere to the side surfaces of the contact using the AI sputtering method.As a result!
This can cause serious reliability problems such as disconnection of AI wiring and electromigration resistance.4 To prevent this, there is a technology that selectively embeds metal in the contacts.An example of this is shown below in Figure 3. Also shown is a cross-sectional view of the case where metal is selectively embedded in fine contacts using the conventional manufacturing method. In the same figure, 1 is a silicon p-type substrate, 2 is an N0 diffusion layer, and 4 is an insulation! ! , 5 is a contact hole Jk6 is tungsten embedded in the contact hole. This is formed by the manufacturing method described below. Reaction 2WF・+3SiHn → 2W+5
Even if tungsten 6 is selectively grown in the contact hole 5 using ip4 + 6H* (reaction 1), this reaction does not occur on the insulating layer 4,
Since the Si of the substrate is exposed in the contact hole, selective growth is possible.Problems to be Solved by the Present InventionHowever, the following problems arise with this method. Silicon reduction reaction 2WF@ + 3Si → 2W in which Si substrate 1 and WF react in time
+3SiF, (reaction 2) occurs, the underlying Si is consumed, and W grows in its place toward the inside of the substrate. 3
The distance T between W in the figure and the p-type substrate becomes shorter, and leakage current occurs between the n0 diffusion layer and the p-type substrate, causing serious problems such as inconvenience in circuit operation. This method was developed in consideration of the above, and aims to prevent leakage current between the n'-diffusion layer and the p-type substrate by suppressing the reaction between the underlying Si and WF at the bottom of the contact hole using a simple method. The present invention aims to solve the above-mentioned problems by forming a high-concentration As layer on the bottom of the contact hole, which contains metal. The present invention uses the method described above to control the growth of W inside the Si substrate when filling the contact hole by reacting the gas with the Si substrate to selectively fill the contact hole.
Figure 1 is a cross-sectional view of a fine contact embedded with metal (tungsten) in an embodiment of the present invention, which has the effect of preventing leakage current between mold substrates. 2 is n0 diffusion [3 is n”
M! , 4 is an insulating WL, 5 is a contact hole k, and 6 is tungsten embedded in the contact hole.The manufacturing method will be explained using FIG. 2.FIG. 2(a): 1
An insulating layer 4 is deposited on a silicon n substrate, and a contact hole 5 is formed. In FIG. In Figure 2 (C), WF6
A gas diluted with Ar (argon) may be reacted with 5iHa (reaction 1) to selectively deposit it in the contact hole 5. At this time, silicon reduction (reaction 2) also occurs at the same time as silane reduction (reaction 1). Even though growth occurs inside the Si substrate, the amount of W growing inside the substrate depends on the As concentration in the Si as shown in the graph of Figure 4.In other words, under conventional conditions, W grows inside the Si substrate. The amount of growth is 250℃
Approximately 50 to 70 nm ([A] and [Loco] in the graph)
The force <, 4 X l O”c in Fig. 2 (C)
By forming an As layer with a thickness of m-" or more, it is possible to reduce the thickness of the LW to about 40 nm or less ([c] in the graph).
It is not possible to prevent leakage current between the n° diffusion layer and the p-type substrate due to growth inside the substrate.In this example, an n° diffusion layer is formed in a silicon n substrate to form an n'' layer. As described above, a p-well is formed in a silicon n-substrate and an n-well is formed in the same manner as in this example.
It goes without saying that the same effect can be obtained when forming a ``diffusion layer'' layer. ℃ Effects of the Invention As described above, the present invention has the following advantages: Leakage when selectively embedding metal by a simple method Since the current can be prevented,
Even when electrodes and wiring are formed, disconnection does not occur, and it has a remarkable effect on improving reliability such as electromigration resistance.Therefore, it is easy to realize high-density, large-scale semiconductor integrated circuits.

【図面の簡単な説明】 第1図は本発明の一実施例における微細なコンタクトの
断面医 第2図は上記微細なコンタクトの製造プロセス
断面医 第3図は従来の製造法による微細なコンタクト
の断面医 第4図は表面As濃度のよるWのSi基板方
向への成長量を表わしたグラフであa 1・・・・・シリコンp型基板 2・・・・・n゛拡散
恩3・・・・・n”恩 4・・・・・絶縁風 5・・・
・・コンタクトホー/k  6・・・・・コンタクトホ
ールに埋め込まれたタングステス
[Brief Description of the Drawings] Fig. 1 shows a cross-section of a fine contact according to an embodiment of the present invention. Fig. 2 shows a cross-section of the manufacturing process of the above-mentioned fine contact. Fig. 3 shows a cross-section of a fine contact according to a conventional manufacturing method. Figure 4 is a graph showing the amount of W growth toward the Si substrate depending on the surface As concentration. ...n"on 4...Insulating wind 5...
...Contact hole/k 6...Tungsten embedded in the contact hole

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の絶縁膜に形成されたコンタクトホールの
底面のp型領域にn^+層を形成する第1の工程と、前
記コンタクトホールにAs注入を行い高濃度のn^+^
+層を形成する第2の工程と、金属を含んだガスを反応
させて前記コンタクトホールに前記の金属を選択的に成
長させる第3の工程を含んでなる半導体集積回路の製造
方法
A first step of forming an n^+ layer in the p-type region at the bottom of a contact hole formed in an insulating film on a semiconductor substrate, and implanting As into the contact hole to form a high concentration n^+^
A method for manufacturing a semiconductor integrated circuit, comprising: a second step of forming a + layer; and a third step of reacting a gas containing metal to selectively grow the metal in the contact hole.
JP21535790A 1990-08-14 1990-08-14 Manufacture of semiconductor integrated circuit Pending JPH0497518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21535790A JPH0497518A (en) 1990-08-14 1990-08-14 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21535790A JPH0497518A (en) 1990-08-14 1990-08-14 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0497518A true JPH0497518A (en) 1992-03-30

Family

ID=16670957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21535790A Pending JPH0497518A (en) 1990-08-14 1990-08-14 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0497518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556402A (en) * 2018-06-01 2019-12-10 群创光电股份有限公司 Electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556402A (en) * 2018-06-01 2019-12-10 群创光电股份有限公司 Electronic device
CN110556402B (en) * 2018-06-01 2022-04-12 群创光电股份有限公司 Electronic device

Similar Documents

Publication Publication Date Title
US5278100A (en) Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US4874719A (en) Method for manufacturing an electrical connection between conductor levels
KR100272523B1 (en) Method for forming metallization of semiconductor device
US5428244A (en) Semiconductor device having a silicon rich dielectric layer
US4538344A (en) Method of forming electrode/wiring layer
US4597167A (en) Method of forming a metal film on a selectively diffused layer
KR900001654B1 (en) Semiconductor device manufacturing method
KR930002673B1 (en) Growing method of metal having high melting point
JPH07130682A (en) Method of manufacturing semiconductor device
JPH0497518A (en) Manufacture of semiconductor integrated circuit
US6175155B1 (en) Selectively formed contact structure
JPS60130825A (en) Manufacture of semiconductor device
US6174563B1 (en) Method for forming thin metal films
JP2751606B2 (en) Wiring formation method
JPH03191518A (en) Semiconductor device and manufacture thereof
JP2985218B2 (en) Semiconductor device and manufacturing method thereof
JPH01276624A (en) Manufacture of semiconductor device
JPH01214137A (en) Manufacture of integrated circuit
JPH01298717A (en) Manufacture of semiconductor device
JP2815170B2 (en) Method for manufacturing semiconductor device
JPS62243324A (en) Manufacture of semiconductor integrated circuit
JP3190715B2 (en) Semiconductor device and method of manufacturing the same
JPS62298110A (en) Manufacture of semiconductor integrated circuit
JPH0425159A (en) Forming method of electrode wiring
JPH0778815A (en) Semiconductor device and its manufacture