JPH01159965A - Matrix type fuel cell - Google Patents

Matrix type fuel cell

Info

Publication number
JPH01159965A
JPH01159965A JP62317147A JP31714787A JPH01159965A JP H01159965 A JPH01159965 A JP H01159965A JP 62317147 A JP62317147 A JP 62317147A JP 31714787 A JP31714787 A JP 31714787A JP H01159965 A JPH01159965 A JP H01159965A
Authority
JP
Japan
Prior art keywords
electrolyte
matrix layer
wick
matrix
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317147A
Other languages
Japanese (ja)
Inventor
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62317147A priority Critical patent/JPH01159965A/en
Publication of JPH01159965A publication Critical patent/JPH01159965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide quick and uniform dispersed refill of electrolyte by pulling out the tip of a wick as an electrolyte refill passage dispersed and embedded in the surface of a matrix layer, and putting this tip of wick in communication with the electrode base, or an electrolyte reserver of separator. CONSTITUTION:A matrix type fuel cell includes a matrix layer 1 retaining electrolyte 9, an anode electrode 2, a cathode electrode 3, and separator 6, which are laminated one over another. At the end of the rib-equipped electrode base on the cathode electrode side situated under the matrix layer 1, for exam ple, an electrolyte reservoir 8 is provided in the form of a groove. To this reservoir 8, electrolyte is supplied from outside the battery. A wick 10 is embed ded in the layer as dispersed over the whole area of the matrix layer. The tip 10a of the wick 10 is drawn out aside from the matrix layer 1 and dipped in the electrolyte 9 in the reservoir 8. When the electrolyte is to be refilled, the capillary force of the wick 10 causes quick permeation of the electrolyte 9 into the whole area of the matrix layer 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はマトリックス形燃料電池、特に電解液を含浸
保持したマトリックス層に対する電解液の補給構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a matrix fuel cell, and particularly to a structure for replenishing an electrolyte to a matrix layer impregnated with an electrolyte.

〔従来の技術〕[Conventional technology]

頭記したマトリックス形燃料電池は、周知のようにりん
酸等の電解液を含浸保持したマトリックス層と、該マト
リックス層を挟んで対向するアノード電極、カソード電
極とから成る単セルを、セパレータを介して多数個積層
して構成されている。
As is well known, the above-mentioned matrix type fuel cell is a single cell consisting of a matrix layer impregnated with an electrolyte such as phosphoric acid, and an anode electrode and a cathode electrode facing each other with the matrix layer in between. It is constructed by laminating many pieces.

また該燃料電池は単セルへの反応ガス供給の仕方により
リブ付き電極方式とリブ付セパレータ方式タイプに大別
される。
Furthermore, fuel cells are roughly classified into ribbed electrode type and ribbed separator type, depending on the method of supplying the reactant gas to the single cell.

ところでかかる燃料電池を長時間連続して運転した場合
には、マトリックス層に含浸保持されている電解液が電
池反応に伴う反応生成水とともに燃料電池に供給される
反応ガスにより飛散して燃料電池外に逸出し、これが原
因で電池内部抵抗の増加1反応ガスのクロスリーク等が
生じて電池特性の低下を来すことが知られており、その
対策として連続的ないし一定周期毎にマトリックス層へ
電解液を補給することが従来より一般に実施されている
By the way, when such a fuel cell is operated continuously for a long period of time, the electrolyte impregnated and held in the matrix layer is scattered by the reaction gas supplied to the fuel cell together with the water produced by the reaction in the cell, and the liquid flows outside the fuel cell. It is known that this causes an increase in internal resistance of the battery, cross leakage of reactant gas, etc., and a decrease in battery characteristics.As a countermeasure, electrolysis is applied to the matrix layer continuously or at regular intervals. Replenishing liquid has been commonly practiced in the past.

一方、マトリックス層への電解液補給手段として、リブ
付電極方式のタイプに付いてリブ付電極基材のリブ部等
の一部を親水処理し、この親水処理部をリザーバとして
ここに電解液を含浸貯留させておき、ここから電極触媒
層の一部に設けた電解液連通路を通じてマトリックス層
に電解液を補給する方法、あるいはリブ付電極方式にお
ける電極基材の周縁端部、ないしはリブ付セパレータ方
式におけるセパレータの周縁端部にリザーバとなる電解
液補給溝を形成するとともに、該電解液補給溝とマトリ
ックス層の端部との間に直通の電解液連通路を設けて電
解液補給溝よりマトリックス層へ電解液を随時補給るす
方法等が従来より実施されている。
On the other hand, as a means for replenishing the electrolyte to the matrix layer, a part of the rib part of the ribbed electrode base material of the ribbed electrode type is treated to make it hydrophilic, and this hydrophilic treated part is used as a reservoir to supply the electrolyte. A method of impregnating and storing the electrolyte and then replenishing the electrolyte from there to the matrix layer through an electrolyte communication path provided in a part of the electrode catalyst layer, or the peripheral edge of the electrode base material in the ribbed electrode method, or the ribbed separator In this method, an electrolyte replenishment groove serving as a reservoir is formed at the peripheral end of the separator, and a direct electrolyte communication path is provided between the electrolyte replenishment groove and the end of the matrix layer, so that the electrolyte replenishment groove is connected to the matrix layer. Conventionally, a method of replenishing the electrolyte solution to the layer as needed has been practiced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで前記した従来の電解液補給方式では次記のよう
な問題点がある。すなわちリブ付電極方式の電極基材に
親木処理部のリザーバを形成した上で電極触媒層に設け
た電極連通路を通じてマトリックス層へ電解液を補給す
る方式では、電池を長時間運転させた場合にはふっ素樹
脂等で撥水処理したリザーバ以外の電極基材領域にも次
第に電解液が浸透してしまい、この結果として電極基材
のガス拡散性が低下して電極の放電特性を低下させる。
However, the conventional electrolyte replenishment method described above has the following problems. In other words, in the ribbed electrode method, in which a reservoir for the mother wood treatment part is formed on the electrode base material and then the electrolyte is supplied to the matrix layer through the electrode communication passage provided in the electrode catalyst layer, when the battery is operated for a long time, In this case, the electrolytic solution gradually penetrates into areas of the electrode base other than the reservoir treated with water repellent such as fluororesin, and as a result, the gas diffusivity of the electrode base decreases and the discharge characteristics of the electrode deteriorate.

また電極の製作面から見ても、電極基材の面上に電極触
媒層を成層させた後に、該電極触媒層に電解液連通路を
設ける必要があり、製作工程が複雑化して製作コスト高
を招く。
Also, from the viewpoint of manufacturing the electrode, it is necessary to provide an electrolyte communication path in the electrode catalyst layer after layering it on the surface of the electrode base material, which complicates the manufacturing process and increases the manufacturing cost. invite.

またリブ付電極方式の電極基材、あるいはリブ付セパレ
ータ方式のセパレータに対してその周縁端部に電解液補
給溝のリザーバを設け、ここからマトリックス層へ直接
電解液を補給する方式では、電極触媒層の面域に電解液
連通路を設ける煩わしさがない反面、リザーバからの電
解液補給地点がマトリックス層の端部となる。しがもマ
トリックス層自体は電解液の保持性を高めるために緻密
な構造であることから、前記のようにマトリックス層の
端部より電解液補給を行うとすると、マトリックス層の
全面域に速やかに補給電解液を浸透させるのにかなりの
長時間を必要とし、特にマトリックス層の面積が大きい
大容量の燃料電池はどこの傾向が大となる。
In addition, in the electrode base material of the ribbed electrode method or the separator of the ribbed separator method, an electrolyte replenishment groove reservoir is provided at the peripheral edge of the separator, and in a method in which the electrolyte is directly supplied to the matrix layer from there, the electrode catalytic converter is While there is no need to provide an electrolyte communication path in the surface area of the layer, the electrolyte replenishment point from the reservoir is at the end of the matrix layer. However, since the matrix layer itself has a dense structure to increase the retention of the electrolyte, if the electrolyte is replenished from the edge of the matrix layer as described above, the entire area of the matrix layer will be quickly filled. It takes a considerable amount of time for the supplementary electrolyte to permeate, and this tendency is particularly noticeable in large-capacity fuel cells where the matrix layer has a large area.

この発明は上記の点にかんがみ成されたものであり、そ
の目的はマトリックス層への電解液補給が短時間で層内
全域へ均等に電解液を迅速に補給できるようにしたマト
リックス形燃料電池、特にその電解液補給構造を提供す
ることにある。
The present invention has been made in view of the above points, and its purpose is to provide a matrix type fuel cell in which electrolyte can be quickly and evenly replenished throughout the entire matrix layer in a short time; In particular, it is an object of the present invention to provide an electrolyte replenishment structure.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、マト
リックス層の面域に分散して電解液補給通路となる耐蝕
性のウィックを埋設し、かつ該ウィックの先端をマトリ
ックス層外に引出して電極基材、ないしセパレータの一
部に設けた電解液リザーバに連通させて構成するものと
する。
In order to solve the above-mentioned problems, according to the present invention, a corrosion-resistant wick is embedded in a surface area of a matrix layer to serve as an electrolyte replenishment passage, and the tip of the wick is pulled out outside the matrix layer. It is configured to communicate with an electrolyte reservoir provided in the electrode base material or a part of the separator.

〔作用〕[Effect]

上記の構成で、ウィックは例えばシリコンカーバイド繊
維を材料とする撚糸で作られた網状体のものであり、マ
トリックス層を成形する工程で同時にマトリックス層内
に埋設される。また電解液リザーバはマトリックス層の
下側に位置する電極基材ないしセパレータに設けた電解
液補給溝であり、該溝内に貯留した電解液に前記ウィッ
クの先端が浸漬されている。
In the above configuration, the wick is, for example, a net-like body made of twisted threads made of silicon carbide fibers, and is embedded in the matrix layer at the same time as the process of forming the matrix layer. The electrolyte reservoir is an electrolyte supply groove provided in the electrode base material or separator located below the matrix layer, and the tip of the wick is immersed in the electrolyte stored in the groove.

かかる構成により、ウィックはマトリックス層の基材に
比べて遥かに毛管力が大きく、電解液の補給時にはウィ
ックを伝わって電解液リザーバ内の電解液が短時間でマ
トリックス層の全面域へ迅速に分散補給されるようにな
る。
Due to this structure, the wick has a much larger capillary force than the base material of the matrix layer, and when replenishing electrolyte, the electrolyte in the electrolyte reservoir is quickly dispersed over the entire surface of the matrix layer in a short time through the wick. will be replenished.

〔実施例〕〔Example〕

第1図、第2図はリブ付電極方式の燃料電池を実施対象
とした本発明実施例の構成断面図、およびその平面図、
第3図、第4図はそれぞれ実験結果による電解液補給時
間とマトリックス層のガス透過量、および燃料電池の開
回路電圧との関係を表した特性図を示すものであり、ま
ず第1図により電解液補給構造を説明する。
FIG. 1 and FIG. 2 are a cross-sectional view of the configuration of an embodiment of the present invention intended for implementation in a ribbed electrode type fuel cell, and a plan view thereof;
Figures 3 and 4 show characteristic diagrams showing the relationship between the electrolyte replenishment time, the amount of gas permeation through the matrix layer, and the open circuit voltage of the fuel cell, respectively, based on experimental results. The electrolyte replenishment structure will be explained.

図において、1は耐電解液性、耐熱性、非導電性を有す
るシリコンカーバイド、あるいはりん酸ジルコニウム等
の粉末に撥水剤として少量のふっ素樹脂を加えて成形さ
れたマトリックス層、2゜3はそれぞれ多孔質のリブ付
電極基材4に電極触媒層5を成層して成るアノード電極
、カソード電極、6はセパレータ、7はマトリックス層
1の外周を包囲したシール部材であり、これらを積層し
て単セルが構成されている。なお4a、 4bはそれぞ
れリブ付電極基材4のリブ間に画成された燃料ガス、酸
化剤ガスの反応ガス通路である。
In the figure, 1 is a matrix layer formed by adding a small amount of fluororesin as a water repellent to powder such as silicon carbide or zirconium phosphate, which has electrolyte resistance, heat resistance, and non-conductivity, and 2.3 is a matrix layer. An anode electrode and a cathode electrode are respectively formed by laminating an electrode catalyst layer 5 on a porous ribbed electrode base material 4, 6 is a separator, and 7 is a sealing member surrounding the outer periphery of the matrix layer 1. A single cell is configured. Note that 4a and 4b are reaction gas passages for fuel gas and oxidant gas defined between the ribs of the ribbed electrode base material 4, respectively.

かかる燃料電池構造に対して本発明により、まずマトリ
ックス層1の下側に位置するカソード電極側のリブ付電
極基材4の端部には凹溝の電解液補給溝として成る電解
液リザーバ8が形成され、ここに95〜105ivt%
の高濃度なりん酸等の電解液9が収容されている。なお
電極基材4における電解液リザーバ8となる凹溝の周域
は撥水処理されており、また必要によりリザーバ8は電
池の外部より電解液を供給できるように構成されている
With respect to such a fuel cell structure, according to the present invention, first, an electrolyte reservoir 8 formed as a recessed electrolyte supply groove is provided at the end of the ribbed electrode base material 4 on the cathode side located below the matrix layer 1. formed, here 95-105 ivt%
An electrolytic solution 9 such as high concentration phosphoric acid is contained therein. The surrounding area of the concave groove which becomes the electrolyte reservoir 8 in the electrode base material 4 is treated to be water repellent, and if necessary, the reservoir 8 is configured so that the electrolyte can be supplied from outside the battery.

一方、前記マトリックスN1には符号10で示すウィッ
クがマトリックス層全面域に分散して層内に埋設されて
いる。このウィック10は例えば0.1〜0.5μm程
度で繊維長10〜20m111程度のシリコンカーバイ
ドの繊維を撚り合わせた太さ約100μmの撚糸を材料
に、この糸を縦横に粗く編んだものであり、かつウィッ
ク10はその先端10aをマトリックス層1より側方に
引出して、前記した電解液リザーバ8内に貯留されてい
る電解液9に浸漬されている。
On the other hand, in the matrix N1, wicks indicated by reference numeral 10 are embedded in the matrix layer and are dispersed over the entire surface area of the matrix layer. The wick 10 is made of twisted yarn approximately 100 μm in thickness, which is made by twisting silicon carbide fibers of approximately 0.1 to 0.5 μm and fiber length of approximately 10 to 20 m111, and is coarsely knitted in the vertical and horizontal directions. , and the wick 10 is immersed in the electrolytic solution 9 stored in the electrolytic solution reservoir 8, with its tip 10a pulled out laterally from the matrix layer 1.

なお、マトリックス層1にウィック10を埋設する方法
としては、例えばあらかじめ製作されたリブ付電極の触
媒層上に網状に編んだウィックを配置し、この状態でマ
トリックス層の材料であるシリコンカーバイドの微粉末
と少量のふっ素樹脂を含む分散混合液をスプレー法、あ
るいはブレード法等によりウィックを埋めるように塗布
し、さらに乾燥することによりウィック10の埋設され
たマトリックス層1が得られる。
In addition, as a method for embedding the wick 10 in the matrix layer 1, for example, a wick knitted in a net shape is placed on the catalyst layer of a ribbed electrode prepared in advance, and in this state, fine particles of silicon carbide, which is the material of the matrix layer, are placed. The matrix layer 1 in which the wick 10 is embedded is obtained by applying a dispersion mixture containing powder and a small amount of fluororesin so as to fill the wick by a spray method, a blade method, or the like, and further drying.

かかる構成により、マトリックス層1への電解液補給時
には、ウィック10の毛管力でリザーバ8内より吸い上
げた電解液9がウィック10を伝わってマトリックス層
1の層内全域へ速やかに浸透するようになる。
With this configuration, when replenishing the electrolyte to the matrix layer 1, the electrolyte 9 sucked up from inside the reservoir 8 by the capillary force of the wick 10 passes through the wick 10 and quickly permeates throughout the matrix layer 1. .

次に上記構成による電解液補給の効果を評価するために
、本発明者は前記実施例のウィック付きマトリックス層
を用いて組立てた単セルと、マトリックス層を挟んで上
方に位置する電極側のリブ付電極基材の端部に設けたリ
ザーバから直接マトリックス層の端部へ電解液を補給す
る従来構造による単セルとを供試電池として、リザーバ
よりマトリックス層へ電解液として100wt%のりん
酸を補給した際の電解液補給時間と反応ガス通路を通じ
て外部より加圧供給した窒素ガスがアノード側からカソ
ード側へ透過するマトリックス層のガスクロス量との関
係を調べた。この実験結果を第3図に示す。なお図中の
特性線Aは本発明実施例によるもの、特性線Bは従来構
造によるものである。
Next, in order to evaluate the effect of electrolyte replenishment with the above configuration, the present inventors assembled a single cell using the wicked matrix layer of the above example and a rib on the electrode side located above with the matrix layer in between. A single cell with a conventional structure in which electrolyte is directly supplied to the edge of the matrix layer from a reservoir provided at the end of the electrode base material was used as a test battery, and 100 wt% phosphoric acid was supplied as electrolyte from the reservoir to the matrix layer. The relationship between the electrolyte replenishment time during replenishment and the amount of gas cross in the matrix layer through which nitrogen gas supplied under pressure from the outside through the reaction gas passage permeates from the anode side to the cathode side was investigated. The results of this experiment are shown in FIG. Note that characteristic line A in the figure is based on the embodiment of the present invention, and characteristic line B is based on the conventional structure.

この実験結果から明らかなように、従来構造では窒素ガ
ス圧力100mm水柱でマトリックスを透過するガスク
ロス量は補給時間の経過とともに次第に減少するように
なるが、ガスクロス量がほぼQm7!/minとなるの
に約20〜25時間を要したのに対し、本発明実施例の
構造では電解液補給開始直後よりガスクロス量が急激に
減少し、補給開始後1〜2時間で略OmA/minとな
った。つまり極短時間でマトリックス層に電解液の補給
を完了できることが確認された。
As is clear from this experimental result, in the conventional structure, the amount of gas cross that permeates the matrix at a nitrogen gas pressure of 100 mm in the water column gradually decreases as the replenishment time passes, but the amount of gas cross is almost Qm7! /min, whereas in the structure of the embodiment of the present invention, the gas cross amount decreased rapidly immediately after the start of electrolyte replenishment, and reached approximately OmA within 1 to 2 hours after the start of replenishment. /min. In other words, it was confirmed that replenishment of the electrolyte to the matrix layer could be completed in an extremely short period of time.

次に同じ単セルの供試電池に付いて、アノード電極、カ
ソード電極側にそれぞれ燃料ガス、酸化剤ガスを供給し
た状態での電解液補給時間と単セルの開回路電圧の経時
変化との関係を調べた。この結果を第4図に示す。なお
図中特性線C,Dはそれぞれ本発明、従来構造によるも
のを示す。すなわちこの実験結果からも、第3図のガス
透過量の経時変化と同様な傾向を示し、従来と比べて本
発明の構造により補給開始後に開回路電圧が短時間で急
速に立ち上がることが確認された。
Next, for the same single cell test battery, the relationship between the electrolyte replenishment time and the change over time in the open circuit voltage of the single cell with fuel gas and oxidant gas supplied to the anode and cathode sides, respectively. I looked into it. The results are shown in FIG. Note that characteristic lines C and D in the figure show those according to the present invention and the conventional structure, respectively. In other words, this experimental result shows a similar trend to the change in gas permeation amount over time shown in Figure 3, and it is confirmed that the open circuit voltage rises rapidly in a short period of time after the start of replenishment due to the structure of the present invention compared to the conventional structure. Ta.

なお図示実施例はリブ付電極方式を対象に電極基材に電
解液リザーバを設けた例を示したが、リブ付セパレータ
方式のセパレータに電解液リザーバを設けても同様に実
施することができる。
Although the illustrated embodiment shows an example in which an electrolytic solution reservoir is provided on the electrode base material for a ribbed electrode system, the same implementation is possible even if an electrolytic solution reservoir is provided in the separator of the ribbed separator system.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、マトリックス層の
面域に分散して電解液補給通路となる耐蝕性のウィック
を埋設し、かつ該ウィックの先端をマトリックス層外に
引出して電極基材、ないしセパレータの一部に設けた電
解液リザーバに連通させて構成したことにより、マトリ
ックス層への電解液補給時にはウィックを介して電解液
をマトリックス層全域に迅速、かつ均一に分散補給させ
ることができる。
As described above, according to the present invention, a corrosion-resistant wick is embedded in a surface area of a matrix layer and serves as an electrolyte replenishment passage, and the tip of the wick is pulled out of the matrix layer to form an electrode base material. By communicating with the electrolyte reservoir provided in a part of the separator, when replenishing the electrolyte to the matrix layer, the electrolyte can be quickly and uniformly dispersed and replenished over the entire matrix layer through the wick. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はリブ付電極方式の燃料電池を対象とし
た本発明実施例の構成断面図、およびその平面図、第3
図1第4図はそれぞれ実験結果による電解液補給時間と
マトリックス層のガス透過量、および燃料電池の開回路
電圧との関係を表した特性図である。各図において、 1:マトリックス層、2ニアノード電極、3:カソード
電極、4:電極基材、5:電極触媒層、6:セパレータ
、8:電解液リザーバ、9:電解液、10:ウィック、
10a:ウィツクの先端。
Figures 1 and 2 are a cross-sectional view of the structure of an embodiment of the present invention intended for a ribbed electrode type fuel cell, a plan view thereof, and Figure 3.
FIG. 1 and FIG. 4 are characteristic diagrams showing the relationship between the electrolyte replenishment time, the amount of gas permeation through the matrix layer, and the open circuit voltage of the fuel cell, respectively, according to experimental results. In each figure, 1: matrix layer, 2 near anode electrode, 3: cathode electrode, 4: electrode base material, 5: electrode catalyst layer, 6: separator, 8: electrolyte reservoir, 9: electrolyte, 10: wick,
10a: Tip of wick.

Claims (1)

【特許請求の範囲】 1)電解液を含浸保持したマトリックス層、電極基材に
触媒層を成層したアノード電極とカソード電極、および
セパレータの積層体として成るマトリックス形燃料電池
において、マトリックス層の面域に分散して電解液補給
通路となる耐蝕性のウィックを埋設し、かつ該ウィック
の先端をマトリックス層外に引出して電極基材、ないし
セパレータの一部に設けた電解液リザーバに連通させた
ことを特徴とするマトリックス形燃料電池。 2)特許請求の範囲第1項記載のマトリックス形燃料電
池において、ウィックがシリコンカーバイド繊維を材料
としたものであることを特徴とするマトリックス形燃料
電池。 3)特許請求の範囲第1項記載のマトリックス形燃料電
池において、電解液リザーバがマトリックス層の下側に
位置する電極基材ないしセパレータに設けた電解液補給
溝であり、該溝内に貯留した電解液にウィックの先端が
浸漬されていることを特徴とするマトリックス形燃料電
池。
[Scope of Claims] 1) In a matrix fuel cell comprising a laminate of a matrix layer impregnated with an electrolytic solution, an anode electrode and a cathode electrode in which a catalyst layer is laminated on an electrode base material, and a separator, the surface area of the matrix layer A corrosion-resistant wick that is dispersed in the electrode material and serves as an electrolyte replenishment passage is embedded, and the tip of the wick is pulled out of the matrix layer and communicated with an electrolyte reservoir provided in the electrode base material or a part of the separator. A matrix fuel cell featuring: 2) The matrix type fuel cell according to claim 1, wherein the wick is made of silicon carbide fiber. 3) In the matrix type fuel cell according to claim 1, the electrolyte reservoir is an electrolyte replenishment groove provided in the electrode base material or separator located below the matrix layer, and the electrolyte is stored in the groove. A matrix fuel cell characterized by having the tip of the wick immersed in an electrolyte.
JP62317147A 1987-12-15 1987-12-15 Matrix type fuel cell Pending JPH01159965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317147A JPH01159965A (en) 1987-12-15 1987-12-15 Matrix type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317147A JPH01159965A (en) 1987-12-15 1987-12-15 Matrix type fuel cell

Publications (1)

Publication Number Publication Date
JPH01159965A true JPH01159965A (en) 1989-06-22

Family

ID=18084963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317147A Pending JPH01159965A (en) 1987-12-15 1987-12-15 Matrix type fuel cell

Country Status (1)

Country Link
JP (1) JPH01159965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216499A (en) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd Hydrogen generator
US8348271B2 (en) 2005-08-31 2013-01-08 Brother Kogyo Kabushiki Kaisha Printer with sheet sending mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216499A (en) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd Hydrogen generator
US8348271B2 (en) 2005-08-31 2013-01-08 Brother Kogyo Kabushiki Kaisha Printer with sheet sending mechanism

Similar Documents

Publication Publication Date Title
JPS5966066A (en) Liquid fuel cell
US4463067A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
JPH01159965A (en) Matrix type fuel cell
JPS58161267A (en) Matrix type fuel cell
JPS58166636A (en) Fuel cell
US4751062A (en) Fuel cell with electrolyte matrix assembly
JPS5848366A (en) Fuel cell
JPH07176307A (en) Fuel cell
JPH0652656B2 (en) Molten carbonate fuel cell
JP2590526B2 (en) Method of replenishing electrolyte for matrix fuel cell
JPS5842179A (en) Fuel battery
JPS5975568A (en) Fuel cell
JPS58161261A (en) Fuel cell
JPS58103784A (en) Fuel cell
JPS593868A (en) Carbon body for electrode
JPH01292751A (en) Electrolyte replenisher of matrix type fuel cell
JPH01304667A (en) Matrix type fuel cell
JPS62262372A (en) Fuel cell
JPH09180738A (en) Pohsphate fuel cell
JPH02215050A (en) Fuel cell
JP2602839B2 (en) Fuel cell manufacturing method
JPS5763776A (en) Fuel cell
JPH0353458A (en) Electrode base material with rib for fuel cell
JPS6250946B2 (en)
JPS6180760A (en) Fuel cell