JPS62262372A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS62262372A
JPS62262372A JP61103112A JP10311286A JPS62262372A JP S62262372 A JPS62262372 A JP S62262372A JP 61103112 A JP61103112 A JP 61103112A JP 10311286 A JP10311286 A JP 10311286A JP S62262372 A JPS62262372 A JP S62262372A
Authority
JP
Japan
Prior art keywords
electrolyte
cell
grooves
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61103112A
Other languages
Japanese (ja)
Inventor
Tadanori Maoka
忠則 真岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61103112A priority Critical patent/JPS62262372A/en
Publication of JPS62262372A publication Critical patent/JPS62262372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to feed the electrolyte to each unit cell from the outside, and to acquire a fuel cell to maintain a high performance of a laminate cell as a whole for a long time, by arranging small pipes with small bores at the grooves formed at a fuel electrode of a fuel cell. CONSTITUTION:At every 10 to 50 grooves of gas flow grooves 12 of a fuel electrode (anode) 2, small pipes 11 made of Teflon with niddle-form holes facing the grooves are fixed, which are led through the manifold to the outside of the cell. The cell is composed to feed the electrolyte to each unit cell through the small pipes 11. The diameter of the Teflon small pipe is preferable to be almost equal to the width of the rib grooves 12. By pressing cylinders 22, the electrolyte (phosphoric acid) is pushed out of the neddle-form holes of the small pipe 11, permeates to a porous body at the bottom of the gas flow grooves, passes through a catalyst layer, and reaches an electrolyte holding matrix layer 1. Therefore, by checking the ion resistance of each unit cell, it is possible to feed the adequate amount of electrolyte only to the unit cell of a large ion resistance value.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料電池外部より電解質を供給するJ:うにし
たガス流路溝付きの多孔質ガス拡散電極を用いた燃料電
池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a fuel cell using a porous gas diffusion electrode with gas flow grooves that supplies an electrolyte from the outside of the fuel cell. Regarding.

(従来の技術) 従来、燃料の有している化学的エネルギーを直接電気的
エネルギーに変換する装置として燃R電池が知られてい
る。このJ:うな燃料電池は、通;J:扶電解質を保持
するマトリックス層を挟んで片面に触媒層が夫々形成さ
れた燃料(セおよび酸化剤極からなる一対の多孔質電極
を対向配置するとと5に燃料極の背面に水素等の燃料ガ
スを接触させ、また酸化剤極の背面に酸素等の酸化剤ガ
スを接触させ、このときに起こる電気化学的反応を利用
して上記両電極間から電気エネルギーを取り出すように
構成したものであり、燃お1カスと酸化剤ガスか供給さ
れている限り高い変換効率で、電気エネルギーを取り出
すことができる。
(Prior Art) Conventionally, a fuel cell is known as a device that directly converts chemical energy contained in fuel into electrical energy. This J fuel cell is constructed by disposing a pair of porous electrodes, each consisting of a catalyst layer on one side and an oxidizer electrode, facing each other, with a matrix layer holding a supporting electrolyte in between. In step 5, a fuel gas such as hydrogen is brought into contact with the back surface of the fuel electrode, and an oxidizing gas such as oxygen is brought into contact with the back surface of the oxidizing agent electrode, and the electrochemical reaction that occurs at this time is used to release the gas from between the two electrodes. It is configured to extract electrical energy, and as long as combustion residue and oxidizing gas are supplied, electrical energy can be extracted with high conversion efficiency.

第4図は、特にリン酸を電解質としたリブ付電極型燃料
電池の基本的構成例を縦断面斜視図にて示したものでお
る。同図において、電解質としてリン酸を保持するマト
リックス層1を挟んで互いに直交する方向に溝が規則的
に複数本平行に設けられかつ片面に触媒層が夫々形成さ
れた通常炭素材からなる燃料極(アノード)2および酸
化剤極(カソード)3の一対のリブ付電極を対向配置し
て、燃料電池の単位セル5を構成している。ここで、こ
れらの溝は燃料ガスおよび酸化剤ガスの流通路を夫々形
成している。そして、上記単位セル5を複数個積層する
ととしに単位セル5間に誘電性を有しかつガス透過性の
ないセパレータ4を挟/Vで燃わ1電池を構成するよう
にしている。
FIG. 4 shows, in a vertical sectional perspective view, an example of the basic configuration of a ribbed electrode type fuel cell using phosphoric acid as an electrolyte. In the figure, a fuel electrode is usually made of a carbon material and has a plurality of grooves regularly arranged in parallel in mutually orthogonal directions with a matrix layer 1 holding phosphoric acid as an electrolyte in between, and a catalyst layer formed on one side. A pair of ribbed electrodes (anode) 2 and oxidizer electrode (cathode) 3 are arranged to face each other to form a unit cell 5 of the fuel cell. Here, these grooves form flow paths for fuel gas and oxidizing gas, respectively. When a plurality of the unit cells 5 are stacked, a separator 4 having dielectric property and not having gas permeability is interposed between the unit cells 5 and burned at a voltage of /V to form one battery.

しかして、電解質は上記マトリックス層1に保持されて
おり、71〜リックス月としては耐熱、耐酸性で電気絶
縁性を有し、しかも電解質保持力の大きな炭化珪素の微
粉末などが用いられている。
Therefore, the electrolyte is retained in the matrix layer 1, and silicon carbide fine powder, etc., which is heat resistant, acid resistant, electrically insulating, and has a large electrolyte retention ability, is used as the matrix layer 1. .

そして、マトリックス層1はこのような電気化学反応に
必要な電解質を保持するとともに電極2゜3に供給する
役目を果すほか、燃料ガスと酸化剤ガスとが混合しない
ように両反応ガスを互いに分離しておくという重要な役
目をも兼ねている。
The matrix layer 1 not only holds the electrolyte necessary for such an electrochemical reaction but also serves to supply it to the electrodes 2. It also plays the important role of keeping things safe.

(発明が解決しようとする問題点) ところで、上記のような構成の燃料電池を長期間運転し
た場合、電極2,3とマトリックス層1の界面において
は前述の電気化学反応によって反応生成物である水が生
成し、電解質がこれによって希釈される。この希釈によ
り電解液但が増えてしまうので反応生成水をその生成し
た分だけ反応ガス中に蒸発させてやらなねばならない。
(Problems to be Solved by the Invention) By the way, when a fuel cell configured as described above is operated for a long period of time, reaction products are generated due to the aforementioned electrochemical reaction at the interface between the electrodes 2 and 3 and the matrix layer 1. Water is produced and the electrolyte is diluted thereby. Since the amount of electrolyte increases due to this dilution, it is necessary to evaporate the amount of reaction product water into the reaction gas.

このため反応ガスは理論消費足の数倍の旧を電極2,3
の表面に流してその蒸発を促進している。ざらに、反応
ガスの触媒面までの拡散を円滑にするという点からも反
応ガスは過剰に供給されている。しかしながら、この除
黴■ずつではあるが電解質が蒸発水分と共に電極2,3
から持ち出されていく傾向があり、マトリックス層1内
に最初保持されていた電解質の量がゆるやかに減少して
いくことになる。
For this reason, the reaction gas consumes several times the theoretical consumption at electrodes 2 and 3.
evaporation is promoted by pouring it onto the surface of the In general, the reaction gas is supplied in excess in order to ensure smooth diffusion of the reaction gas to the catalyst surface. However, the electrolyte is removed from the electrodes 2 and 3 along with the evaporated water, although this mold removal process is carried out one by one.
There is a tendency for the electrolyte to be taken out from the matrix layer 1, and the amount of electrolyte initially held within the matrix layer 1 gradually decreases.

このような場合にも電解質をマトリックス層1に供給し
てやれば燃料電池は正常な状態に復帰する。したがって
、マトリックス層1への電解質の供給は長期に亘る燃料
電池の運転において、燃料電池性能を安定に維持するた
めの鍵となる重要な技術課題である。
Even in such a case, if the electrolyte is supplied to the matrix layer 1, the fuel cell will return to its normal state. Therefore, the supply of electrolyte to the matrix layer 1 is an important technical issue that is the key to stably maintaining fuel cell performance during long-term fuel cell operation.

かかる技術課題を解決するために、従来より様々な技術
が提案されてきた。
Various techniques have been proposed in the past in order to solve such technical problems.

かかる技術の一つに、反応ガスによる濃度分極の影響の
比較的少ないアノード2に電解質のリザーブ機能を設け
、ここに予め充分なmの電*i’、質を保持さけておく
という方法があった。しかし、この方法においても保持
できる電fl¥質の絶対量は限られており、それに対応
する寿命はイJ限のものであった。
One such technique is to provide an electrolyte reserve function in the anode 2, which is relatively unaffected by concentration polarization due to the reaction gas, and to maintain sufficient m charge *i', quality therein in advance. Ta. However, even with this method, the absolute amount of electrolyte that can be retained is limited, and the corresponding life span is limited to J.

これをざらに改良するものとして電池外部より電解質を
供給する方法が提案された。例えば電解71を霧状にし
て反応ガスと共に電極面に送る方法、電解質を積層セル
の上部にり精通した電vR,貿流路を通して流す方法な
どが提案されてさたが、前者はマニホールド等の電池構
成材料の腐蝕の問題、後者は電解質の供給がどのセルに
も均等に行われてしまうという難点があった。
As a rough improvement on this, a method of supplying electrolyte from outside the battery has been proposed. For example, methods have been proposed, such as a method in which the electrolyte 71 is atomized and sent to the electrode surface together with the reaction gas, and a method in which the electrolyte is passed through the upper part of the laminated cell through a well-known electric current VR or a flow path, but the former method is There was a problem of corrosion of battery constituent materials, and the latter had the problem that electrolyte was supplied evenly to all cells.

本発明は、上述のような問題点に鑑みてなされたもので
、電池外部より各単位セル5毎に電解質を補給できるよ
うな構造のセルとすることにより積層セル全体としての
性能を長期に亘り高性能に維持できるようにした燃料電
池を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and it improves the performance of the entire stacked cell over a long period of time by providing a cell structure in which electrolyte can be supplied to each unit cell 5 from outside the battery. The purpose of this invention is to provide a fuel cell that can maintain high performance.

[発明の構成] (問題点を解決するための手段) 本発明は上記目的を達成するために、燃料電池の燃料(
へに形成された溝に小孔を有する細管を配設したことを
特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides fuel for a fuel cell (
It is characterized in that a thin tube having a small hole is disposed in a groove formed in the groove.

(作用) 上記の如く構成された燃料電池において、前記細管を単
位セル外部に導き、電池性能が低下した時点で外部より
各単位セルに電解質を補給するようにしたので、長期に
亘り電池性能を維持することができる。
(Function) In the fuel cell configured as described above, the thin tubes are guided outside the unit cells, and electrolyte is supplied to each unit cell from the outside when the battery performance deteriorates, so that the battery performance can be improved over a long period of time. can be maintained.

(実施例) 以下、本発明の一実施例を図面を参照しながら説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、燃料極(アノード)2のガス流路溝1
2の10〜50溝毎に溝に面する側に針状穴を設けたデ
フロン製細管11を固定し、この細管11をマニホール
ド(図示せず)より電池外部に導き、外部より各単位セ
ルに電解質を補給するように構成されている。この補給
は電池性能が低下してきた時点において行ない、補給後
の単電池イオン抵抗をチェックし、充分な伍の電解質で
あるリン酸が補給されたかを確認する。なお、テフロン
細管11の直径はリブ溝12の巾とほぼ同程度が好まし
い。
In FIG. 1, a gas flow groove 1 of a fuel electrode (anode) 2 is shown.
Deflon thin tubes 11 with needle-like holes provided on the side facing the grooves are fixed for every 10 to 50 grooves of 2, and these thin tubes 11 are guided to the outside of the battery through a manifold (not shown), and each unit cell is connected to each unit cell from the outside. Configured to replenish electrolytes. This replenishment is performed when the battery performance begins to decline, and the ionic resistance of the single cell after replenishment is checked to confirm whether a sufficient level of phosphoric acid, which is an electrolyte, has been replenished. The diameter of the Teflon tube 11 is preferably approximately the same as the width of the rib groove 12.

第2図はアノードに埋設された細管がリン酸入りのシリ
ンヂに接続されたブロック図を示すもので、20は燃料
電池本体、2は燃料極である。
FIG. 2 shows a block diagram in which a thin tube embedded in the anode is connected to a syringe containing phosphoric acid, where 20 is the fuel cell main body and 2 is the fuel electrode.

同図において、触媒層を片面に塗着後焼成した寸法20
0X 200のガス流路付き電極(リブ付ぎ電極)2の
中央の溝12及びその両側に生じる部分のそれぞれの中
央の溝12(第1図)に片面に***を有するデフロン製
細管11を埋設し、この細管11の一方は液溜24に連
結され、また、他方はシリンヂ22に連結される。シリ
ンヂ22はバルブ25を介して外部の液溜24に連結さ
れている。
In the same figure, the size of the catalyst layer after coating on one side and firing is 20.
A deflon tube 11 having a small hole on one side is embedded in the central groove 12 of the 0x200 gas flow channel electrode (ribbed electrode) 2 and in each of the central grooves 12 (Fig. 1) of the parts on both sides thereof. One end of this thin tube 11 is connected to a liquid reservoir 24, and the other end is connected to a syringe 22. The syringe 22 is connected to an external reservoir 24 via a valve 25.

次に、上記の如く構成された燃料電池の作用について述
べる。
Next, the operation of the fuel cell configured as described above will be described.

シリンヂ22を押すことによって細管110針状孔より
押し出された電解質であるリン酸は、ガス流路溝底の多
孔質基体を浸透し、触媒層を通過して電解質保持マトリ
ックス層1に到達する。このJ:うにすることにより、
各単電池のイオン抵抗をそれぞれチェックし、その値の
大きなものにのみ電解質を適正量供給することが可能と
なる。
Phosphoric acid, which is an electrolyte, is pushed out from the needle-like hole of the capillary tube 110 by pushing the syringe 22, permeates the porous substrate at the bottom of the gas flow groove, passes through the catalyst layer, and reaches the electrolyte holding matrix layer 1. By making this J:
It becomes possible to check the ionic resistance of each cell and supply an appropriate amount of electrolyte only to those with a large value.

予めアノード2のリブ部にリン酸を一定吊保14させ、
ざらに上記のように細管11を埋設した電極を用いた単
電池を3セル積層し、常圧205℃において燃料利用率
80%、空気利用率50%(天然ガス改質模擬ガスH2
80%十CO220%)負荷電流220 m^/cmに
て連続運転し電池寿命試験を行なった。
A constant suspension 14 of phosphoric acid is maintained on the rib portion of the anode 2 in advance,
Roughly, three cells using electrodes with capillary tubes 11 embedded as described above were stacked, and at normal pressure 205°C, the fuel utilization rate was 80% and the air utilization rate was 50% (natural gas reformed simulated gas H2
A battery life test was conducted by continuous operation at a load current of 220 m^/cm (80% + CO2 20%).

上記の試験結果を第3図に示す。すなわら、第3図に一
定負荷電流220 mA/ciにおける端子電圧の経時
変化及び外部よりテフロン細管を通してリン酸を補給し
た時の端子電圧の変化を示した。真中のセルに比べ上下
のセルは特性の低下が早かったがこの時点において単電
池のイオン抵抗が増大していたので、外部シリンヂ22
を押して電解質を供給したところ(A I I+、)点
)、第3図のグラフ■に示ずように、電圧は除除に回復
し、運転開始直後の性ロヒを維持できた。真中のセルに
はしばらく後にリン酸を補給したところ(A2n1点)
、第3図のグラフ■に示すように上記と同様に電圧は回
復しIこ。
The above test results are shown in FIG. Specifically, FIG. 3 shows the change in terminal voltage over time at a constant load current of 220 mA/ci and the change in terminal voltage when phosphoric acid was supplied from the outside through a Teflon tube. Compared to the middle cell, the characteristics of the upper and lower cells deteriorated faster, but at this point the ionic resistance of the cell had increased, so the external syringe 22
When the electrolyte was supplied by pressing (A I I+, ) point), the voltage gradually recovered as shown in the graph ■ in FIG. 3, and the electrolyte level immediately after the start of operation was maintained. Phosphoric acid was supplied to the middle cell after a while (A2n1 point)
, the voltage recovers in the same way as above, as shown in the graph (■) in Figure 3.

上記実施例においてシリンヂ22よりのリン酸の供給は
、手作業によらなくてもマトリックス1のイオン抵抗が
設定値以下となった時に一定量のリン酸が自動的に供給
されるJ:うな自動供給装置を用いれば簡略化できる。
In the above embodiment, the supply of phosphoric acid from the syringe 22 is automatic, in which a certain amount of phosphoric acid is automatically supplied when the ionic resistance of the matrix 1 becomes below the set value without manual operation. This can be simplified by using a supply device.

なお、アノ−1〜側のガス流路)jへをこのにうな電解
貿供給用の細管でふさぐことによる燃料ガス流量の損失
は細管がない場合の1割以下であって、このことによる
電圧損はほとんど無視できる。
In addition, the loss in fuel gas flow rate due to blocking the gas flow path (J) on the side of Anno-1 with this thin tube for electrolytic supply is less than 10% of the loss in the case without a thin tube, and the voltage due to this The losses are almost negligible.

[発明の効果] 以上)ホへた如く本発明によれば、リン酸を細管を介し
て補給ずれば各単位電池ごとにリン酸供給の制御が可能
となり、ざらに必要に応じて確実に供給できるので、長
時間運転に伴う電解質の飛散量大に伴なう燃料電池性能
の低下が抑止でき、長野命の燃料電池を提供することが
できる。
[Effects of the Invention] As described above, according to the present invention, by supplying phosphoric acid through a thin tube, it is possible to control the supply of phosphoric acid for each unit battery, and it is possible to supply phosphoric acid reliably as needed. Therefore, it is possible to suppress the deterioration of fuel cell performance due to a large amount of electrolyte scattering due to long-term operation, and Nagano Life can provide a fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃料極の斜視図、第2図は第1図
のアノードに埋設された細管がリン酸入りのシリンヂに
接続されたブロック図、第3図は本発明に係る単電池を
3セル積層して寿命試験を行ない外部からのリン酸の供
給と電圧の回復の関係を示した図、第4図tよ一般的な
燃料電池の一単位セルの構成を示す斜視図である。 1・・・マトリックス層 2・・・電極 3・・・電極 5・・・単位セル 11・・・テフロン製細管 12・・・ガス流路溝 22・・・シリンヂ 24・・・液溜 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 第2図
FIG. 1 is a perspective view of a fuel electrode according to the present invention, FIG. 2 is a block diagram in which the thin tube embedded in the anode of FIG. 1 is connected to a syringe containing phosphoric acid, and FIG. 3 is a fuel electrode according to the present invention. A diagram showing the relationship between the supply of phosphoric acid from the outside and voltage recovery after a life test was carried out by stacking three cells, and Figure 4 (t) is a perspective view showing the configuration of one unit cell of a typical fuel cell. be. 1... Matrix layer 2... Electrode 3... Electrode 5... Unit cell 11... Teflon tube 12... Gas flow channel groove 22... Syringe 24... Liquid reservoir agent Patent Attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)一方の面に燃料ガスが流通する溝を有し、他方の
面に触媒層を塗着した燃料極と、一方の面に酸化剤ガス
が流通する溝を有し、他方の面に触媒層を塗着した酸化
極との間に電解質を保持したマトリックス層を配置した
単位セルを、セパレータを介して複数個積層してなる燃
料電池において、前記燃料極のガスが流通する溝に小孔
を有する細管を配設し、当該細管を通じて単位セルに電
解質を補給するように構成したことを特徴とする燃料電
池。
(1) A fuel electrode with grooves on one side through which fuel gas flows and a catalyst layer coated on the other side, and a fuel electrode with grooves on one side through which oxidant gas flows and the other side In a fuel cell in which a plurality of unit cells are stacked with a separator in between, in which a matrix layer holding an electrolyte is arranged between an oxidation electrode coated with a catalyst layer, a small 1. A fuel cell characterized in that a thin tube having a hole is provided, and an electrolyte is supplied to a unit cell through the thin tube.
(2)燃料極に形成された溝の10溝以上50溝以下毎
に細管を配設したことを特徴とする特許請求の範囲第1
項記載の燃料電池。
(2) A thin tube is provided for every 10 to 50 grooves formed in the fuel electrode.
Fuel cell as described in Section.
(3)溝に囲まれた部分にのみ細管に小孔があけられた
ことを特徴とする特許請求の範囲第1項記載の燃料電池
(3) The fuel cell according to claim 1, wherein a small hole is formed in the thin tube only in a portion surrounded by the groove.
JP61103112A 1986-05-07 1986-05-07 Fuel cell Pending JPS62262372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103112A JPS62262372A (en) 1986-05-07 1986-05-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103112A JPS62262372A (en) 1986-05-07 1986-05-07 Fuel cell

Publications (1)

Publication Number Publication Date
JPS62262372A true JPS62262372A (en) 1987-11-14

Family

ID=14345520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103112A Pending JPS62262372A (en) 1986-05-07 1986-05-07 Fuel cell

Country Status (1)

Country Link
JP (1) JPS62262372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309263A (en) * 1988-02-12 1989-12-13 Internatl Fuel Cells Corp Solid polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309263A (en) * 1988-02-12 1989-12-13 Internatl Fuel Cells Corp Solid polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
US6969664B2 (en) Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
JPS6130385B2 (en)
CA1202067A (en) Fuel cell with electrolyte feed system
EP0235948B1 (en) Fuel cell
JPS60500190A (en) electrochemical cell with at least one gas electrode
JPS62262372A (en) Fuel cell
JPH0622153B2 (en) How to operate a fuel cell
JPS59217958A (en) Device for supplying electrolyte for matrix-type fuel cell
JP2633522B2 (en) Fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
JP2602839B2 (en) Fuel cell manufacturing method
JP2545478Y2 (en) Fuel cell
JPH06101338B2 (en) Fuel cell
JPS61126771A (en) Fuel cell
JPS60105176A (en) Electrolyte supply device for layer-built fuel cell
JPS62237670A (en) Fuel cell
JPS5940473A (en) Electrochemical power generating element made of acid electrolyte
JPH09245823A (en) Phosphoric acid type fuel cell and method for impregnation with phosphoric acid
JPS6180760A (en) Fuel cell
JPH04301368A (en) Fuel cell
JPH07161367A (en) Electrolyte replenishing method for fuel cell
JPH04280076A (en) Fuel cell
JPH08148172A (en) Phosphoric acid fuel cell
JPS62268064A (en) Fuel cell
JPH0336274B2 (en)