JPS58103784A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS58103784A
JPS58103784A JP56201626A JP20162681A JPS58103784A JP S58103784 A JPS58103784 A JP S58103784A JP 56201626 A JP56201626 A JP 56201626A JP 20162681 A JP20162681 A JP 20162681A JP S58103784 A JPS58103784 A JP S58103784A
Authority
JP
Japan
Prior art keywords
electrolyte
matrix
electrode
fuel
communication hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56201626A
Other languages
Japanese (ja)
Inventor
Kenzo Ishii
石井 謙「あ」
Shinpei Matsuda
松田 臣平
Toshiki Kahara
俊樹 加原
Seiji Takeuchi
瀞士 武内
Jinichi Imahashi
甚一 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP56201626A priority Critical patent/JPS58103784A/en
Publication of JPS58103784A publication Critical patent/JPS58103784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To readily supply an electrolyte to a matrix from the outside of a battery and provide a cell having stable performance and long life by passing through a path connecting a separator, a fuel electrode, a matrix, and an oxidizing agent electrode with an electrolyte reservoir installed in the edge of the separator by an electrolyte supply groove installed in the separator. CONSTITUTION:When an electrolyte is supplied, an electrolyte is filled in an electrolyte path 9 and overflowed in an electrolyte reservoir 8 of each cell. The electrolyte overflowed in the electrolyte reservoir 8 enters an electrolyte supply groove 6 and is supplied to a matrix 1 through an electrolyte connecting path 10. To prevent wetting of a fuel electrode base material 2a by the electrolyte, the fuel electrode base material 2a is coated with polytetrafluoroethylene to make it water repellent. When the electrolyte is supplied to the fuel electrode base material 2a by electrolyte supply pressure, the number of the stacked cells which are an electrolyte supply unit are decreased to reduce electrolyte supply pressure. After the electrolyte is filled in electrolyte supply groove 6, the electrolyte is removed from the electrolyte path 9 to prevent liquid short circuit by the electrolyte.

Description

【発明の詳細な説明】 本発明は、燃料電池、特に、電力用の燃料電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fuel cells, and in particular to fuel cells for electric power.

燃料および酸化剤よシミ気エネルギーを生成する燃料電
池は古くから知られている技術である。
Fuel cells, which produce fuel and oxidant gas energy, are a long-known technology.

燃料電池は、燃料極、燃料極よシ装置された酸化剤極、
これらの電極間にそれらに接触して配置された電解質、
集電板を兼用するセパレータおよび燃料極、酸化剤極と
セパレータとの間に形成された燃料ガス、酸化剤ガス用
のガス流路を基本構成としている。そして、電解質には
、固体、溶融ペースト、自由に流動する液体、あるいは
、マトリックス内に保持された液体がある。このうち、
マトリックスに保持された電解質を用いる燃料電池は多
くの用途に適している。
A fuel cell consists of a fuel electrode, an oxidizer electrode attached to the fuel electrode,
an electrolyte placed between these electrodes and in contact with them;
The basic configuration includes a separator that also serves as a current collector plate, a fuel electrode, and a gas flow path for fuel gas and oxidant gas formed between the oxidizer electrode and the separator. The electrolyte can then be a solid, a molten paste, a free flowing liquid, or a liquid held within a matrix. this house,
Fuel cells using matrix-supported electrolytes are suitable for many applications.

しかし、このようなマトリックス内に保持された水性電
解質を使用する燃料電池を最適条件で作動させるために
は、マトリックスはある特性を有するものでなければな
らない。例えば、マトリックスは親水性であり、また、
マトリックスは燃料電池内におけるガスの交差や混合を
阻止するよう連続的であり、ピンホールや割れのないも
のが要求され、さらに、マトリックスは通常1mm以下
の厚さに形成されるが、内部抵抗を小さくするため可能
な限如薄<シ、マトリックスが触媒層と密に接触する必
要がある。また、電流分布を一様にするために、マトリ
ックス厚さが一様で、かつマトリックスの細孔の寸法が
均一であることが望ましく、マトリックス材料は熱的化
学的に安定で、経済的でなければならない。このような
性質を有するマトリックスに電解質を含浸させて電極と
組合せ、電池を組み立てた場合、長時間安定した性能を
得ることが期待できる。
However, in order for a fuel cell using an aqueous electrolyte held within such a matrix to operate under optimal conditions, the matrix must have certain properties. For example, the matrix is hydrophilic and
The matrix must be continuous and free of pinholes or cracks to prevent cross-crossing and mixing of gases within the fuel cell, and the matrix is typically formed to a thickness of 1 mm or less, but it is important to minimize internal resistance. In order to reduce the size, it is necessary to make the matrix as thin as possible, and the matrix must be in close contact with the catalyst layer. Furthermore, in order to make the current distribution uniform, it is desirable that the matrix thickness be uniform and the pore size of the matrix be uniform, and the matrix material must be thermally and chemically stable and economical. Must be. If a matrix having such properties is impregnated with an electrolyte and combined with electrodes to assemble a battery, stable performance can be expected over a long period of time.

しかし、マトリックスおよび電極は多孔質であシ、常に
燃料ガスおよび酸化剤ガスが電極基質内を流れておシ、
長時間運転の間には、電解質が蒸発によシ喪失し、電池
性能が劣化する問題があった。
However, the matrix and electrodes are porous, and fuel gas and oxidant gas are constantly flowing through the electrode matrix.
During long-term operation, there was a problem in which the electrolyte was lost through evaporation and the battery performance deteriorated.

この問題を除去するために、電極基材に開けた孔を介し
てセパレータのガス路から電解質をマトリックスに含浸
させる方法、および、セルを縦型とし、電池上部に設け
た電解質通路および上部電解質部を介して電解質をマト
リックスに含浸させる方法が提案されている。しかし、
前者の方法では、電解質含浸時、電極基材に電解質が付
着し、ガス拡散を妨げ、電池出力を低下させる欠点があ
り、また、後者の方法では、電池上部に設けた電解質部
よ如含浸させるため、大形電極の場合、含浸時間が長く
かかる欠点がある。
In order to eliminate this problem, we have proposed a method in which the matrix is impregnated with electrolyte from the gas path of the separator through holes drilled in the electrode base material, and a method in which the cell is made vertical and an electrolyte passage and an upper electrolyte section are provided at the top of the cell. A method has been proposed in which a matrix is impregnated with an electrolyte through a method. but,
The former method has the drawback that the electrolyte adheres to the electrode base material during electrolyte impregnation, impeding gas diffusion and reducing battery output, while the latter method impregnates the electrolyte part provided at the top of the battery. Therefore, in the case of large electrodes, there is a drawback that the impregnation time is long.

本発明はこれらの問題点を除去し、電池外部よシマトリ
ックスに電解質を容易に供給することができ、安定な性
能と長寿命を有する燃料電池の提供することを目的とし
、燃料極と酸化剤極の一対の電極の間に電解質を保持す
るマトリックスを配設して構成されている単電池を、一
対の電極に燃料ガスおよび酸化剤ガスを供給する波路を
有するセパレータを介して積層してなる燃料電池におい
て1セパレータの燃料極側および酸化剤極側の少なくと
も一方に畦Jis買供給用溝を設け、この電解質供給用
溝とマトリックスとを醒極内に位置する電解質連通孔を
介して遵通后せ、電解液連通孔および鉦厨買・洪縮用商
の電惨に対する■に撥水性層が設けてりることを第1の
特徴とし、さらに前述の′屯S質連通孔を燃料価、マト
リックス、rfl化剤イ魅およびセパレーク金J!!通
して設けられている亀iW * iWi路を介して連通
ずるセパレータに設けられた’am買溜Vこ連通させて
めることを第2の特徴とするものでめる。
The present invention aims to eliminate these problems and provide a fuel cell that can easily supply an electrolyte to the cell matrix outside the cell, has stable performance and a long life, and has a fuel electrode and an oxidizer. A unit cell consisting of a matrix that holds an electrolyte between a pair of electrodes is stacked with a separator having a wave path for supplying fuel gas and oxidant gas to the pair of electrodes. In a fuel cell, a ridge supply groove is provided on at least one of the fuel electrode side and the oxidizer electrode side of one separator, and this electrolyte supply groove and the matrix are communicated through an electrolyte communication hole located in the electrode. The first feature is that a water-repellent layer is provided on the electrolyte communication hole and the water-repellent layer on the electrolyte communication hole, and furthermore, the above-mentioned , Matrix, RFL agent Imi and Separate gold J! ! The second feature is that the 'am reservoir V provided in the separator is connected through the iW*iWi path provided through the separator.

本発明は、セパレータに電解質供給用溝を設けることに
よp1セパレータ、燃料価、マトリックスおよび酸化剤
極を連通ずる通路と、セパレータ縁部に設け′#、、亀
解質電解を連通させ、電解質供給用溝を介して、電解質
量からマ) IJラックスへ解質を供給できるようにし
て、吸湿、蒸発によるマトリックス内の電解質量の変化
を吸収し、マトリックス内に常に一定の電解質を保持す
ることを可能にしたものである。
The present invention provides an electrolyte supply groove in the separator to communicate the P1 separator, the fuel cell, the matrix, and the oxidizer electrode, and a passage provided at the edge of the separator to communicate the electrolyte electrolyte. By making it possible to supply electrolyte from the electrolyte to the IJ Lux via the supply groove, it absorbs changes in the electrolyte in the matrix due to moisture absorption and evaporation, and always maintains a constant electrolyte in the matrix. This is what made it possible.

以下、実施例について説明する。Examples will be described below.

第1〜第3図は一実施例の燃料電池の構造を示すもので
、同一部分には同一符号が付しである。
1 to 3 show the structure of a fuel cell according to one embodiment, and the same parts are given the same reference numerals.

この実施例は、燃料に水素リッチガス、酸化剤に空気中
の酸素を用い、′電解質にリン酸型燃料電池に関するも
ので、第1図は部分断面図、第2図および第3図は、そ
れぞれ異なる壁部の平面図ケ示している。この図で、1
はマトリックスで、シリコンカーバイドとポリテトラフ
ルオルエチレンとの混線物、或いはフェノール樹脂布な
どが用いられる。2は燃料極購材2aと燃料惨触媒鳩2
bよシなる燃料極、3は酸化剤極基材3aと改化剤俤触
媒+173bよりなる酸化剤極である。このマトリック
ス1と燃料極2および酸化剤極3とよシなる単電池がセ
パレータ4を介して必要数i*1−される。
This embodiment relates to a phosphoric acid fuel cell using a hydrogen-rich gas as a fuel, oxygen in the air as an oxidizing agent, and a phosphoric acid type electrolyte. FIG. 1 is a partial sectional view, and FIGS. 2 and 3 are respectively Plan views of different wall sections are shown. In this diagram, 1
The matrix is a mixture of silicon carbide and polytetrafluoroethylene, or phenol resin cloth. 2 is fuel electrode purchasing material 2a and fuel catalyst pigeon 2
3 is an oxidizer electrode consisting of an oxidizer electrode base material 3a and a modifier catalyst + 173b. A required number i*1- of unit cells consisting of the matrix 1, the fuel electrode 2, and the oxidizer electrode 3 are formed through the separator 4.

セパレータ4は燃料極2側には燃料供給用ガス路5およ
び電解質供給用溝6が、また、酸化剤極3側には酸化剤
供給用ガス路7および′I!屏質溜8がそれぞれ設けら
れ、電解質量8と電解質供給用溝6とは′lf解賀が連
通する構造となっている。9は種層′岨池の縁部に設け
られ、積層電池をiX通ずる電解質通路で、電池積層後
に電解質を各電池へ供給するための通路となる。10は
セパレータ4に設けられている電解質供給用溝6とマト
リックス1との間で#IL;解質を連通させるだめ燃料
極2に設けられている電解質連通孔11はシールである
The separator 4 has a fuel supply gas passage 5 and an electrolyte supply groove 6 on the fuel electrode 2 side, and an oxidizer supply gas passage 7 and 'I!' on the oxidizer electrode 3 side. A laminate reservoir 8 is provided, and the electrolyte mass 8 and the electrolyte supply groove 6 have a structure in which the 'lf opening communicates with each other. Reference numeral 9 denotes an electrolyte passage provided at the edge of the seed layer's pond, which passes through the stacked batteries through iX, and serves as a passage for supplying electrolyte to each battery after the batteries are stacked. 10 is #IL between the electrolyte supply groove 6 provided in the separator 4 and the matrix 1; the electrolyte communication hole 11 provided in the fuel electrode 2 is a seal for communicating the electrolyte.

このような構成の燃料電池において、電解質を供給する
場合には、電解質通路9に電解質を満たし、各′電池の
゛岨解質溜8に溢れさせ、電解質量8に′を解質を満た
す。岨解質溜8を満たした電解質は、電解質供給用@6
に入シ、電解質連通孔10を通してマトリックス1に供
給される。この場合、電解質が燃料極基材2aを湿潤す
るのを防ぐためには、燃料極基材2aに、例えば、ポリ
テトラフルオルエチレンを塗布して撥水化すればよい。
In a fuel cell having such a structure, when an electrolyte is supplied, the electrolyte passage 9 is filled with the electrolyte, and the electrolyte reservoir 8 of each cell is overflowed, so that the electrolyte mass 8 is filled with the electrolyte. The electrolyte filling the electrolyte reservoir 8 is used for electrolyte supply @6
The electrolyte is then supplied to the matrix 1 through the electrolyte communication hole 10. In this case, in order to prevent the electrolyte from wetting the fuel electrode base material 2a, the fuel electrode base material 2a may be made water repellent by applying, for example, polytetrafluoroethylene.

さらに電解質補給圧力によシ燃料極基材2aに電解質が
入る場合、電解質補給単位となる電池積層数を少なくし
電解質補給圧力を下げればよい。そして、電解質を電解
質供給用溝6に充満させた後、電解jJ7i通路9から
電解質を除去し、電解質による液短絡を防ぐ、この時、
電解質量8からも電解質(9) が除去されるが、性能に影餐を及ぼすことはない。
Furthermore, when electrolyte enters the fuel electrode base material 2a due to electrolyte replenishment pressure, the electrolyte replenishment pressure may be lowered by reducing the number of stacked cells forming an electrolyte replenishment unit. After filling the electrolyte supply groove 6 with electrolyte, the electrolyte is removed from the electrolyte jJ7i passage 9 to prevent a liquid short circuit caused by the electrolyte.
Electrolyte (9) is also removed from electrolyte mass 8, but this does not affect performance.

以上のように構成された燃料電池においては、吸湿によ
シマ) IJソックス内の電解質量が増加した場合、余
剰分は電解質連通孔10を通して、電解質供給用溝6に
溢れ、さらに、゛亀鱗簀涌8に溢れ、亀#質溜8内に貯
蔵される。また、蒸発によシマトリックス1内の′電解
質が不足する揚付は、不足分は’IILM質連通孔10
を通して電解質供給用溝6より補給される。従って、マ
トリックス1内の電解質量は常に一足に保たれ、電池性
能を安定化するとともに、吸湿時の余剰の電解jxを貯
蔵するようになっているので、燃料極触媒NjI2bお
よび酸化剤極触媒#3bを過剰に濡らすことがなくなり
、電極性能を安定化する。さらに、電解質供給用溝6内
の電解質が減少した場合、電解質通路9全通して電解質
を補充すればよく、電解質不足による電池性能低下はな
くなる。しかも、′電解質連通孔10は、マトリックス
1の電解質吸込み能力に応じて位置を決定できるので、
電′ps質のマトリックスへの浸透は充分な速度で行な
うことができ(10) る。また’、11f解質供給用#6を設け、セパレータ
4内の電解質供給路を限定したので、電解質供給路に電
極基材が濡らされることがなく、ガスの拡散が妨げられ
ることがないなどの効果がある。
In the fuel cell configured as described above, when the amount of electrolyte in the IJ sock increases due to moisture absorption, the surplus overflows into the electrolyte supply groove 6 through the electrolyte communication hole 10, and It overflows into the water tank 8 and is stored in the turtle water tank 8. In addition, when the electrolyte in the matrix 1 is insufficient due to evaporation, the insufficient amount is removed from the electrolyte communicating hole 10.
The electrolyte is supplied through the electrolyte supply groove 6. Therefore, the amount of electrolyte in the matrix 1 is always kept at a certain level, which stabilizes the battery performance and stores excess electrolyte jx during moisture absorption. 3b will not be excessively wetted, and the electrode performance will be stabilized. Furthermore, when the electrolyte in the electrolyte supply groove 6 decreases, it is sufficient to replenish the electrolyte through the entire electrolyte passage 9, thereby eliminating deterioration in battery performance due to lack of electrolyte. Furthermore, the position of the electrolyte communication hole 10 can be determined according to the electrolyte suction ability of the matrix 1.
Penetration of the electrolyte into the matrix can occur at a sufficient rate (10). In addition, 11f electrolyte supply #6 is provided to limit the electrolyte supply path in the separator 4, so the electrode base material will not be wetted by the electrolyte supply path and gas diffusion will not be hindered. effective.

第4図は、他の実施例の断面を示すもので、との冥施例
は、を解質溜8、′a電解質供給用溝および電解質連通
孔10内に繊維12を充填しである点が第1図の実施例
と異なっている。この繊維12は、その毛管力によシ亀
解質の含浸速度を向上させるとともに、%解質の分布を
一様ならしめる効果がある。
FIG. 4 shows a cross section of another embodiment, in which the electrolyte reservoir 8, the electrolyte supply groove 'a and the electrolyte communication hole 10 are filled with fibers 12. is different from the embodiment shown in FIG. The fibers 12 have the effect of improving the rate of impregnation of the solute by their capillary force and making the distribution of % solute uniform.

そして、ここで用いる繊維12には、シリコンカーバイ
ト繊維、カーボン繊維、ガラス繊維、フェノール樹脂繊
維などが用いられる。また、繊維の代りに、他の親水性
材料、例えば、シリコンカーバイド粉末、カーボン粉末
を結着剤、例えば、ボIJ fドラフルオルエチレン、
ポリイミドで結着したものを用いることもでき、同等の
効果を得ることができる。さらに、例えば、カーボンシ
ート。
The fibers 12 used here include silicon carbide fibers, carbon fibers, glass fibers, phenol resin fibers, and the like. Also, instead of fibers, other hydrophilic materials such as silicon carbide powder, carbon powder can be used as a binder, such as bo-IJ f-Drafluoroethylene,
It is also possible to use one bound with polyimide, and the same effect can be obtained. Additionally, for example, carbon sheets.

シリコンカーバイド焼結体のような多孔性シート(11
) を用いてもよい。また、さらに、マトリックス材料と同
一材料を用いてもよいが、この場合には、マトリックス
1、電解質連1PU孔10、′!1f、屏質洪給用溝6
、および、亀s質溜8中で用いる材料の小孔の間に、マ
トリックス1中で用いる材料の小孔を最小とし、菫m質
遵通孔10、電解質供給用溝6、奄解質溜8の順に大き
くなっている関係がある場合が望ましい。すなわち、こ
のようにすることによって、毛管力に差がつけられると
、この毛管力の差により、マ) IJラックス内の1!
解質量はよ多安定に保たれることになる。また、電解質
量8および′亀解買供耐用溝6の繊維12は、毛管力が
前述の範囲であれば省略可能である。
A porous sheet such as a silicon carbide sintered body (11
) may be used. Further, the same material as the matrix material may be used, but in this case, the matrix 1, electrolyte connection 1 PU hole 10,'! 1f, platelet feeding groove 6
, and between the small pores of the material used in the phlegm reservoir 8, the pores of the material used in the matrix 1 are minimized, and the violet through hole 10, the electrolyte supply groove 6, and the phlegm reservoir 8 are arranged. It is desirable that the relationship increases in the order of 8. In other words, by doing this, if a difference is made in the capillary force, then due to this difference in capillary force, 1!
The solution mass will be kept more multistable. Further, the electrolyte mass 8 and the fibers 12 of the ``capillary supply groove 6'' can be omitted if the capillary force is within the above-mentioned range.

第5図は、他の実施例の断面を示すもので、この実施例
が第1図の夾/iり0と異なるところは、電解質通路9
(9a、9b)および篭屏宵溜8が、電池の両縁部に設
けられている点である。このように構成されている場合
には、′醒薯質補給速度を大きくすることができるとと
もに、最初の充填時に、一方の電解質通路9aから供給
し、他方の電(12) 解質通路9bから溢れ出させるようにすれば、電解質の
充填を確実に行なうことができる。
FIG. 5 shows a cross section of another embodiment, and the difference between this embodiment and that of FIG. 1 is that the electrolyte passage 9
(9a, 9b) and the cage 8 are provided at both edges of the battery. With this configuration, it is possible to increase the replenishment rate of electrolyte, and at the time of initial filling, the electrolyte is supplied from one electrolyte passage 9a, and the electrolyte is supplied from the other electrolyte passage 9b. By allowing it to overflow, filling of the electrolyte can be ensured.

以上の第1〜第5図の実施例においては、燃料極に’i
[解質供給用溝を設けた場合について説明したが、酸化
剤極に設けてもよく、さらに、燃料極、酸化剤極の両方
に設けてもよい。
In the embodiments shown in FIGS. 1 to 5 above, 'i' is attached to the fuel electrode.
[Although the case where the solute supply groove is provided has been described, it may be provided at the oxidizer electrode, or may be provided at both the fuel electrode and the oxidizer electrode.

以上の如く、本発明は、電池外部よりマトリックスに電
解質を容易に供給することができ、安定な性能と長寿命
を有する燃料電池の提供を可能とするもので、産業上の
効果の大なるものである。
As described above, the present invention makes it possible to easily supply an electrolyte to the matrix from outside the cell, and to provide a fuel cell with stable performance and long life, and has great industrial effects. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池の一実施例の要部断面図、第
2図および第3図は、第1図のそれぞれ異なる要部の平
面図、第4図および第5図は、それぞれ異なる他の実施
例の要部断面図である。 1・・・マトリックス、2・・・燃料極、3・・・酸化
剤極、4・・・セパレータ、5・・・燃料供給用ガス路
、6・・・電解質供給用溝、7・・・酸化剤供給用ガス
路、訃・・電解質部、9・・・電解質通路、10.10
a、IQb冶 1 図
FIG. 1 is a sectional view of a main part of an embodiment of the fuel cell of the present invention, FIGS. 2 and 3 are plan views of different main parts from FIG. 1, and FIGS. 4 and 5 are respectively FIG. 7 is a sectional view of a main part of another different embodiment. DESCRIPTION OF SYMBOLS 1... Matrix, 2... Fuel electrode, 3... Oxidizer electrode, 4... Separator, 5... Gas path for fuel supply, 6... Groove for electrolyte supply, 7... Oxidizing agent supply gas path, end...electrolyte section, 9...electrolyte passage, 10.10
a, IQb 1 figure

Claims (1)

【特許請求の範囲】 1゜燃料極と酸化剤極の一対の電極の間に電解質を保持
するマトリックスを配設して構成されている単電池を、
前記一対の電極に燃料ガスおよび酸化剤ガスを供給する
流路を肩するセパレータを介して積層してなる燃料′電
池において、前記セパレータの燃料極側および酸化剤極
側の少なくとも一方に電解質供給用溝を設け、該電解質
供給用溝と前記マトリックスとを電極内に位置する電解
質連通孔を介して連通させ、前記電解液連通孔および前
記電解質供給用溝の前記電極に対する面に倣水性層が設
けであることを特徴とする燃料電池。 2、前記′fItL屏質供給剛質供給用溝錦の内部に親
水性繊維、親水性粉末と結着剤との混線物、多孔性シー
トおよびマトリックス材料の倒れかを充填されている%
肝趙求の範囲第1項記載の燃料′畦池。 3、前記電解質連通孔が、その内部に、親水性拐料およ
びマトリックス材料の倒れかを充填されている特許請求
の範囲第1項または第2項記載の燃料電池。 4゜前記電解質連通孔が、その内部に、親水性材料粉末
と結着剤との混線物を充填されている特許請求の範囲第
1項または第2項記載の燃料電池。 5、燃料極と酸化剤極の一対の電極の間に電解質を保持
するマトリックスを配設して構成されている単電池を前
記一対の電極に燃料ガスおよび酸化剤ガスを供給する流
路を有するセパレータを介して積層してなる燃料電池に
おいて、前記セパレータの燃料極側および酸化剤極側の
少なくとも一方に電解質供給用溝を設け、該電解質供給
用溝と前記マ) IJラックスを電極内に位置する電解
質連通孔を介して連通させ、かつ該電解質連通孔を前記
燃料極、前記マ) IJソックス前記酸化剤極および前
記セパレータを連通して設けられている電解質通路を介
して前記セパレータに設けられた篭解質溜に連通させ、
前記電解液連通孔および前記電解質供給用溝の前記電極
に対する面に撥水性j−が設けであることを特徴とする
燃料電池。 6、前記電解質供給用溝が、その溝の内部に親水性繊維
、親水性粉末と結着剤との混線物、多孔性シートおよび
マトリックス材料の何れかを充填されている特許請求の
範囲第5項記載の燃料電池。 7、前記電解質連通孔が、その内部に、親水性材料およ
びマトリックス材料の何れかを充填されている特許請求
の範囲第5項または第6項記載の燃料11池。 8、前記電解質連通孔が、その内部に、親水性材料粉末
と結着剤との混線物を充填されている特許請求の範囲第
5項または第6項記載の燃料電池。 9、前記電解質部が、その内部に親水性繊維、親水性粉
末と結着剤との混線物、多孔性シートおよびマトリック
ス材料の何れかを充填されている特許請求の範囲第5項
から第8項までの何れか一項記載の燃料電池。 10、前記マトリックス、前記電解質連通孔、前記電解
質供給用溝、前記電解質部の電解質保持力が、マトリッ
クスが最大で、電解質連通孔、電解質供給用溝、電解質
部の順に小さくなっている特許請求の範囲第5項から第
9項までの倒れが一項記載の燃料電池。
[Claims] 1゜A unit cell configured by disposing a matrix that holds an electrolyte between a pair of electrodes, a fuel electrode and an oxidizer electrode,
In a fuel cell formed by stacking layers with separators interposing flow paths for supplying fuel gas and oxidant gas to the pair of electrodes, at least one of the fuel electrode side and the oxidizer electrode side of the separator is provided with an electrolyte for supplying an electrolyte. a groove is provided, the electrolyte supply groove and the matrix are communicated through an electrolyte communication hole located in the electrode, and an imitation aqueous layer is provided on a surface of the electrolyte communication hole and the electrolyte supply groove that faces the electrode. A fuel cell characterized by: 2. The inside of the 'fItL rigid supply groove brocade is filled with hydrophilic fibers, a mixture of hydrophilic powder and a binder, a porous sheet, and a matrix material.
The fuel pond as described in item 1 of the scope of liver choquing. 3. The fuel cell according to claim 1 or 2, wherein the electrolyte communication hole is filled with a hydrophilic filler and a matrix material. 4. The fuel cell according to claim 1 or 2, wherein the electrolyte communication hole is filled with a mixture of a hydrophilic material powder and a binder. 5. A unit cell configured by disposing a matrix that holds an electrolyte between a pair of electrodes, a fuel electrode and an oxidant electrode, has a flow path for supplying fuel gas and oxidant gas to the pair of electrodes. In a fuel cell stacked with a separator in between, an electrolyte supply groove is provided on at least one of the fuel electrode side and the oxidizer electrode side of the separator, and the electrolyte supply groove and the IJ rack are located within the electrode. The oxidizer electrode and the separator are connected to each other through an electrolyte communication hole, and the electrolyte communication hole is connected to the fuel electrode, the oxidizer electrode, and the separator through an electrolyte passage provided in communication with the oxidizer electrode and the separator. It communicates with the tago solute reservoir,
A fuel cell characterized in that a surface of the electrolyte communication hole and the electrolyte supply groove facing the electrode is provided with water repellency. 6. Claim 5, wherein the electrolyte supply groove is filled with any one of hydrophilic fibers, a mixture of hydrophilic powder and a binder, a porous sheet, and a matrix material. Fuel cell as described in Section. 7. The fuel pond according to claim 5 or 6, wherein the electrolyte communication hole is filled with either a hydrophilic material or a matrix material. 8. The fuel cell according to claim 5 or 6, wherein the electrolyte communication hole is filled with a mixture of a hydrophilic material powder and a binder. 9. Claims 5 to 8, wherein the electrolyte portion is filled with any one of a hydrophilic fiber, a mixture of hydrophilic powder and a binder, a porous sheet, and a matrix material. The fuel cell described in any one of the preceding paragraphs. 10. The electrolyte holding power of the matrix, the electrolyte communication hole, the electrolyte supply groove, and the electrolyte part is the largest in the matrix, and decreases in the order of the electrolyte communication hole, the electrolyte supply groove, and the electrolyte part. A fuel cell according to one item having a fall within the range from item 5 to item 9.
JP56201626A 1981-12-16 1981-12-16 Fuel cell Pending JPS58103784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201626A JPS58103784A (en) 1981-12-16 1981-12-16 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201626A JPS58103784A (en) 1981-12-16 1981-12-16 Fuel cell

Publications (1)

Publication Number Publication Date
JPS58103784A true JPS58103784A (en) 1983-06-20

Family

ID=16444179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201626A Pending JPS58103784A (en) 1981-12-16 1981-12-16 Fuel cell

Country Status (1)

Country Link
JP (1) JPS58103784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163180A (en) * 1982-03-23 1983-09-27 Mitsubishi Electric Corp Layer-built fuel cell
JPS62180964A (en) * 1986-02-03 1987-08-08 Toshiba Corp Fuel cell
JPS63155562A (en) * 1986-12-10 1988-06-28 エンバイロンメンタル・エナジー・システムズ・インコーポレイテッド Fuel battery laminate construction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163180A (en) * 1982-03-23 1983-09-27 Mitsubishi Electric Corp Layer-built fuel cell
JPS62180964A (en) * 1986-02-03 1987-08-08 Toshiba Corp Fuel cell
JPS63155562A (en) * 1986-12-10 1988-06-28 エンバイロンメンタル・エナジー・システムズ・インコーポレイテッド Fuel battery laminate construction
EP0274003A2 (en) * 1986-12-10 1988-07-13 Westinghouse Electric Corporation Improved internal electrolyte supply system for reliable transport throughout fuel cell stack

Similar Documents

Publication Publication Date Title
CN110112425B (en) Gas diffusion layer of proton exchange membrane fuel cell
EP0100530B1 (en) Fuel cell using organic high-molecular electrolyte
JP2922132B2 (en) Polymer electrolyte fuel cell
ES461985A1 (en) Electrolyte reservoir for a fuel cell
JPH05283094A (en) Fuel cell
US4463067A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
US20030186107A1 (en) High performance fuel cells
JP3502508B2 (en) Direct methanol fuel cell
JPH0756807B2 (en) Fuel cell
JPS58103784A (en) Fuel cell
JPS5848366A (en) Fuel cell
US20170092968A1 (en) Device and Method for Extending the Service Life of HT-PEM Fuel Cells
JPS624831B2 (en)
CN102569847A (en) Fuel distribution structure and fuel cell
US4751062A (en) Fuel cell with electrolyte matrix assembly
JP4321040B2 (en) Polymer electrolyte fuel cell
JPS6250946B2 (en)
JPS58166636A (en) Fuel cell
JPH0414469B2 (en)
JPS58161267A (en) Matrix type fuel cell
JPS58161261A (en) Fuel cell
JPH0129028B2 (en)
JPS58103785A (en) Fuel cell
JPS62180965A (en) Fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly