JPH01139966A - Protective device for refrigerator - Google Patents

Protective device for refrigerator

Info

Publication number
JPH01139966A
JPH01139966A JP29819887A JP29819887A JPH01139966A JP H01139966 A JPH01139966 A JP H01139966A JP 29819887 A JP29819887 A JP 29819887A JP 29819887 A JP29819887 A JP 29819887A JP H01139966 A JPH01139966 A JP H01139966A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
capacity
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29819887A
Other languages
Japanese (ja)
Other versions
JPH06100396B2 (en
Inventor
Osamu Tanaka
修 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP29819887A priority Critical patent/JPH06100396B2/en
Publication of JPH01139966A publication Critical patent/JPH01139966A/en
Publication of JPH06100396B2 publication Critical patent/JPH06100396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To reduce heat generation of a compressor correcting a preset value of refrigerant condensation temperature to a low level if the refrigerant evaporation temperature drops extremely when the capacity of the compressor is controlled to the preset level constantly during operation thereby suppressing increase of compression ratio incident to increase of compressor capacity. CONSTITUTION: The protector comprises means 50 for detecting the condensation temperature of refrigerant in a refrigerant circulation system Z, means 51 for controlling the capacity of a compressor 1 to keep the condensation temperature of refrigerant at a preset level based on the output from the means 50, means 52 for detecting the evaporation temperature of refrigerant, and means 53 for correcting the set condensation temperature of refrigerant at the means 51 to a low level when the evaporation temperature detected by means 52 is lower than a lower limit corresponding to a situation causing insufficient lubrication of the compressor 1. According to the arrangement, circulation of refrigerant is increased by enhancing volume efficient of the compressor 1 and reliability of the compressor 1 can be enhanced by suppressing temperature rise of lubricant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置における圧縮機の潤滑不良に対して
圧縮機を保護するようにした冷凍装置の保護装置の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a protection device for a refrigeration system that protects a compressor from poor lubrication of the compressor in the refrigeration system.

(従来の技術) 本出願人は、先に、例えば特願昭62−5675号等の
明細書及び図面において、−台の室外ユニットに対して
複数台の室内ユニットを並列に接続した。いわゆるマル
チ形式の冷凍装置に対し、室外ユニットに内蔵する圧縮
機の容量制御を、通常の如く室内ユニットの運転台数に
応じては行わず、代りに冷媒の凝縮温度を予め固定設定
した設定値にするよう容量制御して、冷凍性能の向上を
図るようにしたものを提案している。
(Prior Art) The present applicant previously connected a plurality of indoor units in parallel to - outdoor units in the specification and drawings of, for example, Japanese Patent Application No. 62-5675. For so-called multi-type refrigeration systems, the capacity of the compressor built into the outdoor unit is not controlled according to the number of operating indoor units as usual, but instead the condensation temperature of the refrigerant is set to a preset value. We are proposing a system that controls capacity to improve refrigeration performance.

(発明が解決しようとする問題点) ところで、上記の如き圧縮機の容量制御において、外気
温度が低い状況での運転時には、低外気温度に伴い冷媒
の蒸発温度が低下し、それに伴い冷媒の凝縮温度も設定
値未満に低下するため、この凝縮温度を設定値にまで上
昇させるべく、圧縮機の容量は上記の容量制御により増
大調整されることになる。
(Problems to be Solved by the Invention) By the way, in the capacity control of the compressor as described above, when operating in a situation where the outside air temperature is low, the evaporation temperature of the refrigerant decreases due to the low outside air temperature, and as a result, the refrigerant condenses. Since the temperature also falls below the set value, the capacity of the compressor is increased by the above-mentioned capacity control in order to raise the condensation temperature to the set value.

しかるに、外気温度の低下が極端な場合には、冷媒の凝
縮温度は圧縮機の容量の増大制御に伴い上昇して設定値
に保持されるものの、冷媒の蒸発温度は更に低下して、
凝縮温度と蒸発温度との間の温度差が大きくなり、圧縮
比の大きな状態になる。このことに伴い圧縮機では体積
効率が低下して冷媒循環量が減少し、密閉型の圧縮機等
では、特に冷媒で圧縮機モータの冷却を行うものでは、
その吐出ガス温度が上昇すると共に、これに含まれる圧
縮機の潤滑油の油温も上昇する。また、上記の大きな圧
縮比により圧縮機の圧縮効率p(低下して発熱量が増大
し、上記潤滑油の油温の上昇を顕著にする傾向となる。
However, when the outside temperature decreases to an extreme degree, the condensing temperature of the refrigerant increases as the compressor capacity is increased and is maintained at the set value, but the evaporation temperature of the refrigerant further decreases.
The temperature difference between the condensation temperature and the evaporation temperature increases, resulting in a state of high compression ratio. As a result, the volumetric efficiency of the compressor decreases and the amount of refrigerant circulated decreases, and in hermetic compressors, especially those that cool the compressor motor with refrigerant,
As the temperature of the discharged gas rises, the temperature of the lubricating oil for the compressor contained therein also rises. Further, due to the above-mentioned large compression ratio, the compression efficiency (p) of the compressor decreases, the calorific value increases, and the oil temperature of the above-mentioned lubricating oil tends to rise significantly.

その結果、この潤滑油による圧縮機の潤滑性能が低下し
て、圧縮機の磨耗や軸受は部分の焼付き、破損を招くこ
とがあり、圧縮機の信頼性が低下することになる。
As a result, the lubricating performance of the compressor by this lubricating oil is reduced, which may cause wear of the compressor, seizure of bearing parts, and damage, resulting in a decrease in the reliability of the compressor.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、マルチ形式の冷凍装置において冷媒の凝縮温度を
設定値に一定保持する場合、上記の如く圧縮機の潤滑性
能の低下を招くほどの外気温度の極端な低下時には、上
記凝縮温度を一定保持すべき設定値を適宜補正すること
により、冷媒の凝縮温度と蒸発温度との差を狭めて圧縮
比番小さくし、よって圧縮機での体積効率を高めて冷媒
循環量の増大を図ると共に、圧縮機での圧縮効率を良好
にして発熱量の減少を図り、最終的に潤滑油の油温の上
昇を有効に抑制して、圧縮機の潤滑性能を良好に保持し
、圧縮機の信頼性の向上を図ることにある。
The present invention has been made in view of the above, and its purpose is to solve the problem that, when the condensing temperature of the refrigerant is kept constant at a set value in a multi-type refrigeration system, the lubrication performance of the compressor deteriorates as described above. When the outside air temperature drops to such an extreme degree, by appropriately correcting the setting value for keeping the condensing temperature constant, the difference between the condensing temperature and the evaporating temperature of the refrigerant is narrowed and the compression ratio is reduced. In addition to increasing the volumetric efficiency of the refrigerant and increasing the amount of refrigerant circulated, we also aim to improve the compression efficiency of the compressor to reduce the amount of heat generated.Finally, we effectively suppress the rise in lubricating oil temperature and improve compression. The purpose is to maintain good lubrication performance of the machine and improve the reliability of the compressor.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、第1
図に示すように、複数段の容量段階に調整される圧縮機
(1)を有する室外ユニット(A)に対して、複数台の
室内ユニット(B)〜(P)を並列に接続してなる冷媒
循環系統(Z)を備えたマルチ形式の冷凍装置を前提と
する。そして、上記冷媒循環系統(Z)における冷媒の
凝縮温度を検出する凝縮温度検出手段(50)と、該凝
縮温度検出手段(50)の出力を受け、冷媒の凝縮温度
を予め固定設定された設定値に保持するよう上記圧縮機
(1)を容量制御する容量制御手段(51)とを設ける
とともに、冷媒の蒸発温度を検出する蒸発温度検出手段
(52)と、該蒸発温度検出手段(52)の出力を受け
、蒸発温度が上記圧縮機(1)の潤滑油による潤滑不良
を招く状況に相当する下限温度値以下のとき、上記容量
制御手段(51)での凝縮温度の設定値を低く補正する
設定値補正手段(53)とを設ける構成としたものであ
る。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention is as follows:
As shown in the figure, a plurality of indoor units (B) to (P) are connected in parallel to an outdoor unit (A) that has a compressor (1) that is adjusted to multiple capacity levels. A multi-type refrigeration system equipped with a refrigerant circulation system (Z) is assumed. and a condensing temperature detecting means (50) for detecting the condensing temperature of the refrigerant in the refrigerant circulation system (Z); capacity control means (51) for controlling the capacity of the compressor (1) so as to maintain the same value; evaporation temperature detection means (52) for detecting the evaporation temperature of the refrigerant; and the evaporation temperature detection means (52). In response to the output of The configuration includes a set value correction means (53) for correcting the set value.

(作用) 以上の構成により、本発明では、冷凍運転時には、冷媒
循環系統(Z)における冷媒の凝縮温度が凝縮温度検出
手段(50)で検出され、この検出゛された冷媒の凝縮
温度を設定値に保持するよう圧縮機(1)の容量が容量
制御手段(51)で増減制御されて、具体的に凝縮温度
が設定値未満のときには圧縮機の容量は大きくなり、逆
に凝縮温度が設定値を越えるときには圧縮機の容量は小
さくなる。
(Function) With the above configuration, in the present invention, during refrigeration operation, the condensation temperature of the refrigerant in the refrigerant circulation system (Z) is detected by the condensation temperature detection means (50), and the detected condensation temperature of the refrigerant is set. The capacity of the compressor (1) is controlled to be increased or decreased by the capacity control means (51) so as to maintain the same value, and specifically, when the condensing temperature is less than the set value, the capacity of the compressor increases, and conversely, the condensing temperature is lower than the set value. When the value is exceeded, the capacity of the compressor becomes smaller.

而して、外気温度が極端に低い状況(圧縮機(1)の潤
滑油による潤滑不良を招く状況)では、冷媒循環系統(
Z)における冷媒の蒸発温度が下がり、冷媒の凝縮温度
もそれに応じて設定値未満に下がる。そのため、圧縮機
の容量は、凝縮温度を上昇させるべく、容量制御手段(
51)で増大側に制御され、そのため、冷媒の凝縮温度
は上昇して設定値に保持される一方で、冷媒の蒸発温度
は更に低下して圧縮比が大きくなり、圧縮機(1)では
体積効率の低下に伴い冷媒循環量が減少する。その結果
、例えば密閉型で冷媒で圧縮機モータの冷却を行うもの
では、吐出ガス温度の上昇と共に潤滑油の油温が上昇す
るとともに、圧縮機での圧縮効率が低下して発熱量が増
大し、上記潤滑油の油温の上昇が顕著になる状況となる
Therefore, in situations where the outside air temperature is extremely low (a situation that leads to poor lubrication due to the lubricating oil of the compressor (1)), the refrigerant circulation system (
The evaporation temperature of the refrigerant in Z) decreases and the condensation temperature of the refrigerant decreases accordingly below the set value. Therefore, the capacity of the compressor is controlled by capacity control means (
51) on the increasing side, and as a result, the condensing temperature of the refrigerant increases and is maintained at the set value, while the evaporation temperature of the refrigerant further decreases and the compression ratio increases, causing the compressor (1) to increase the volume. As efficiency decreases, the amount of refrigerant circulated decreases. As a result, for example, in a closed-type compressor motor that uses refrigerant to cool the compressor motor, the temperature of the lubricating oil increases as the discharge gas temperature increases, and the compression efficiency of the compressor decreases, resulting in an increase in calorific value. , a situation arises in which the temperature of the lubricating oil increases significantly.

しかし、その際には、上記容量制御手段(51)での凝
縮温度の設定値が設定値補正手段(53)により低く補
正されるので、冷媒の凝縮温度がこの低い設定値に保持
されて蒸発温度との差が縮まり、圧縮比が小さくなる。
However, in that case, the set value of the condensing temperature in the capacity control means (51) is corrected to a lower value by the set value correcting means (53), so the condensing temperature of the refrigerant is maintained at this low set value and evaporates. The difference between the temperature and the temperature decreases, and the compression ratio decreases.

その結果、圧縮機(1)での体積効率が良くなってその
分、冷媒循環量が増大すると共に、圧縮機での圧縮効率
が向上して発熱量が減少し、潤滑油の油温は低下するこ
とになる。
As a result, the volumetric efficiency of the compressor (1) improves, and the amount of refrigerant circulated increases accordingly.The compression efficiency of the compressor also improves, the amount of heat generated decreases, and the temperature of the lubricating oil decreases. I will do it.

よって、圧縮機の軸受は部の磨耗や焼付き、破損が防止
されて、圧縮機の信頼性が向上することになる。
Therefore, wear, seizure, and damage to the bearings of the compressor are prevented, and the reliability of the compressor is improved.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて説
明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明をマルチ型式の空気調和装置に適用した
実施例を示し、(A)は室外ユニット、(B)〜(P)
は該室外ユニット(A)に並列に接続された室内ユニッ
トである。上記室外ユニット(A)には、圧縮機(1)
と、上記圧縮機(1)から吐出されるガス中の油を分離
する油分離器(4)と、暖房運転時には図中実線の如く
切換わり冷房運転時には図中破線の如く切換わる四路切
換弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸発
器となる室外熱交換器(B)およびそのファン(6a)
と、過冷却コイル(7)と、冷房運転時には冷媒流量を
調節し、暖房運転時には冷媒の絞り作用を行う室外電動
膨張弁(8)と、液化した冷媒を貯蔵するレシーバ(9
)と、アキュムレータ(lO)とが主要機器として内蔵
されていて、該各機器(1)〜(10)は各々冷媒の連
絡配管(11)を介して冷媒の流通可能に接続されてい
る。
FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, in which (A) is an outdoor unit, (B) to (P)
is an indoor unit connected in parallel to the outdoor unit (A). The outdoor unit (A) has a compressor (1)
, an oil separator (4) that separates oil from the gas discharged from the compressor (1), and a four-way switch that switches as shown in the solid line in the figure during heating operation and as shown in the broken line in the figure during cooling operation. A valve (5), an outdoor heat exchanger (B) that serves as a condenser during cooling operation and an evaporator during heating operation, and its fan (6a)
, a subcooling coil (7), an outdoor motorized expansion valve (8) that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and a receiver (9) that stores the liquefied refrigerant.
) and an accumulator (lO) are built in as main equipment, and each of the equipment (1) to (10) is connected to each other via a refrigerant communication pipe (11) so that refrigerant can flow therethrough.

そして、上記圧縮機(1)には、該圧縮機(1)の運転
周波数(つまり容量段階)を複数段階(例えば5段階)
に可変に調整するインバータ(2a)が備えられている
と共に、パイロット圧の高低に応じて圧縮機(1)の容
量を、容量100%のフルロード状態と、容量50%の
アンロード状態との2段階に調節するアンロード機構(
2b)と、該アンロード機構(2b)のパイロット管(
図示せず)へのパイロット圧を圧縮機(1)の吐出管(
tin)側(高圧側)または吸入管(Llq)側(低圧
側)に切換える電磁弁(2c)とが付設されており、該
電磁弁(2C)が高圧側に切換えられると、圧縮機(1
)の運転容量が100%のフルロード状態に切換られる
一方、電磁弁(2C)が低圧側に切換えられると、圧縮
機(1)の運転容量が50%のアンロード状態に切換ら
れるように構成されている。
The compressor (1) has a plurality of operating frequencies (that is, capacity stages) (for example, five stages).
The compressor (1) is equipped with an inverter (2a) that variably adjusts the capacity of the compressor (1) depending on the level of the pilot pressure, and changes the capacity of the compressor (1) between a full load state of 100% capacity and an unload state of 50% capacity. Unloading mechanism that adjusts in two stages (
2b) and the pilot pipe (2b) of the unloading mechanism (2b).
pilot pressure to the compressor (1) discharge pipe (not shown)
A solenoid valve (2c) that switches to the tin) side (high pressure side) or the intake pipe (Llq) side (low pressure side) is attached.
) is switched to a full load state of 100%, while when the solenoid valve (2C) is switched to the low pressure side, the operating capacity of the compressor (1) is switched to an unload state of 50%. has been done.

また、上記室内ユニット(B)〜(P)は同一構成であ
り、各々その内部には、冷房運転時には蒸発器、暖房運
転時には凝縮器となる室内熱交換器(12)・・・及び
その送風ファン(12a)・・・と、液冷媒分岐管(l
la)・・・に介設されて冷媒流量を調節し、冷房運転
時に冷媒の絞り作用を行う室内電動膨張弁(13)・・
・が備えられ、該各機器(12)、 (13)は手動閉
鎖弁(17)を配した連絡配管(llb)を介して室外
ユニット(A)に接続されて、冷媒を室外ユニット(A
)と複数台(5台)の室内ユニット(B)〜(P)に循
環させる冷媒循環系統(Z)が形成されている。
In addition, the above indoor units (B) to (P) have the same configuration, and each includes an indoor heat exchanger (12) that serves as an evaporator during cooling operation and a condenser during heating operation, and its air blower. Fan (12a)... and liquid refrigerant branch pipe (l
la)... An indoor electric expansion valve (13) that adjusts the refrigerant flow rate and throttles the refrigerant during cooling operation.
Each of the devices (12) and (13) is connected to the outdoor unit (A) via a connecting pipe (llb) equipped with a manual shutoff valve (17), and the refrigerant is supplied to the outdoor unit (A).
) and a refrigerant circulation system (Z) that circulates among a plurality of (5) indoor units (B) to (P).

また、各室内ユニット(B)〜(F)内において、(T
HI)・・・は各室内温度を検出する室温センサ、(T
H2)・・・および(THI3)・・・は各々室内熱交
換器(12)・・・の波調およびガス側配管の温度を検
出する温度センサである。また、室外ユニット(A)に
おいて、(TH4)は圧縮機(1)の吐出管′の温度を
検出する温度センサ、(TH5)は暖房運転時に室外熱
交換器(B)における冷媒の蒸発温度を検出する蒸発温
度検出手段(52)としての蒸発温度センサ、(T11
6)は圧縮機(1)の吸入ガス温度を検出する吸入ガス
温度センサ、(Pl)は暖房運転時には吐出ガスの圧力
、冷房運転時には吸入ガスの圧力を検知する圧力センサ
である。而して、上記蒸発温度センサ(TH5)で検出
する蒸発温度は、外気温度に対して比例関係にあり、外
気温度の低下に応じて低下する特性を有する。
In addition, in each indoor unit (B) to (F), (T
HI)... is a room temperature sensor that detects each room temperature, (T
H2)... and (THI3)... are temperature sensors that detect the wave harmonics of the indoor heat exchanger (12) and the temperature of the gas side piping, respectively. In the outdoor unit (A), (TH4) is a temperature sensor that detects the temperature of the discharge pipe of the compressor (1), and (TH5) is a temperature sensor that detects the evaporation temperature of the refrigerant in the outdoor heat exchanger (B) during heating operation. An evaporation temperature sensor (T11) as an evaporation temperature detection means (52) to detect
6) is a suction gas temperature sensor that detects the suction gas temperature of the compressor (1), and (Pl) is a pressure sensor that detects the pressure of discharge gas during heating operation and the pressure of suction gas during cooling operation. The evaporation temperature detected by the evaporation temperature sensor (TH5) is proportional to the outside air temperature, and has a characteristic that it decreases as the outside air temperature decreases.

尚、第2図において上記各主要機器以外に補助用の諸機
器が設けられている。(1h)は油分離器(4)から圧
縮機(1)に潤滑油を戻す油戻し配管(flu)に介設
され、返油量をコントロールするキャピラリーチューブ
、(21)は吐出管と吸入管とを接続する均圧ホラ下ガ
スバイパス回路(lid)に介設され、デフロスト時等
に開作動するホットガス用電磁弁である。また、(ll
e)は暖房過負荷制御用バイパス回路であって、該バイ
パス回路(lie)には、補助コンデンサ(22)、第
1逆止弁(23)、暖房運転時に室内熱交換器(12)
 (凝縮器)が低負荷時のとき開作動する高圧制御弁(
24)および第2逆止弁(25)が順次直列に接続され
ており、その一部には運転停止時に液封を防止するため
の液封防止バイパス回路(114)が第3逆止弁(27
)およびキャピラリーチューブ(CF2)を介して設け
られている。さらに、(l1g)は上記暖房過負荷制御
用バイパス回路(lle)の液冷媒側配管と主配管の吸
入ガス管との間を接続し、冷暖房運転時に吸入ガスの過
熱度を調節するためのリキッドインジェクションバイパ
ス回路であって、該リキッドインジェクションバイパス
回路(l1g)には圧縮機(1)のオン・オフと連動し
て開閉するインジェクション用電磁弁(29)と、感温
筒(TPI)により検出される吸入ガスの過熱度に応じ
て開度調節される自動膨張弁(30)とが介設されてい
る。
Incidentally, in FIG. 2, various auxiliary devices are provided in addition to the above-mentioned main devices. (1h) is a capillary tube installed in the oil return pipe (flu) that returns lubricating oil from the oil separator (4) to the compressor (1) and controls the amount of oil returned, and (21) is the discharge pipe and suction pipe. This is a hot gas solenoid valve that is installed in the pressure-equalizing hollow gas bypass circuit (lid) that connects the hot gas valve and opens during defrosting. Also, (ll
e) is a bypass circuit for heating overload control, and the bypass circuit (lie) includes an auxiliary capacitor (22), a first check valve (23), and an indoor heat exchanger (12) during heating operation.
High pressure control valve (condenser) that opens when the load is low (
24) and a second check valve (25) are sequentially connected in series, and a part of them includes a liquid seal prevention bypass circuit (114) for preventing liquid seal when the operation is stopped. 27
) and a capillary tube (CF2). Furthermore, (l1g) is a liquid that connects between the liquid refrigerant side piping of the heating overload control bypass circuit (lle) and the suction gas pipe of the main piping to adjust the degree of superheating of the suction gas during heating and cooling operation. The liquid injection bypass circuit (l1g) includes an injection solenoid valve (29) that opens and closes in conjunction with the on/off of the compressor (1), and a temperature sensing cylinder (TPI) to detect the liquid injection bypass circuit (l1g). An automatic expansion valve (30) whose opening degree is adjusted according to the degree of superheating of the intake gas is provided.

また、第2図中、(PL)〜(FB)は冷媒回路あるい
は油戻し管中に介設された液浄化用フィルタ、(HPS
)は圧縮機保護用の高圧圧力開閉器、(sp)はサービ
スポートである。
In Fig. 2, (PL) to (FB) are liquid purification filters (HPS) installed in the refrigerant circuit or oil return pipe.
) is a high-pressure switch for compressor protection, and (sp) is a service port.

次に、上記圧縮機(1)の運転容量の制御を暖房運転時
を例に挙げて第3図の制御フローに基いて説明する。尚
、この容量制御は室外ユニット(A)に接続した室外制
御装置(15)により行われる。
Next, control of the operating capacity of the compressor (1) will be explained based on the control flow shown in FIG. 3, taking heating operation as an example. Note that this capacity control is performed by an outdoor control device (15) connected to the outdoor unit (A).

第3図において、スタートして、ステップS1で圧力セ
ンサ(PI)により検出した吸入ガス圧力を相当飽和温
度に換算して得られる冷媒温度テc、つまり冷媒循環系
統(Z)における冷媒の凝縮温度を検出した後、ステッ
プS2で蒸発温度センサ(T115)からの蒸発温度T
eを把握し、この蒸発温度 。
In Fig. 3, the refrigerant temperature Tec obtained by converting the suction gas pressure detected by the pressure sensor (PI) in step S1 to the equivalent saturation temperature after starting, that is, the condensation temperature of the refrigerant in the refrigerant circulation system (Z). After detecting the evaporation temperature T from the evaporation temperature sensor (T115) in step S2
Figure out e and this evaporation temperature.

Toが、第4図に示す如く、圧縮機(1)の最低容量段
階(運転周波数−40Hz)での潤滑油による圧縮機(
1)の潤滑不良を招く状況に相当する下限温度値(例え
ば−10℃)以下のとき、つまり外気温度Ta1rでは
Ta1r −−5℃以下か否かを判別する。そして、T
a1r >−5℃のときには、潤滑性能の良好時と判断
して、ステップS3で凝縮温度Tcを一定に保持すべき
設定値Tcsを所定値TO(例えば46℃)に固定設定
する。また、Ta1rく一5℃のときには、潤滑不良を
招く状況時と判断して、ステップS4で設定値Tcsを
、上記第4図に示す如く、蒸発温度Te(外気温度Ta
1r )の低下に応じて低下する潤滑性能の限界線の傾
きに近似した傾きkと、その時の蒸発温度Teとの積に
−Teを上記設定値Tc5(−48’C)から減算した
値に低く補正することとする。
As shown in FIG. 4, To is the compressor (
When the temperature is below the lower limit temperature value (for example -10°C) corresponding to the situation causing poor lubrication in 1), that is, when the outside air temperature Ta1r is below Ta1r - -5°C, it is determined whether it is below. And T
When a1r>-5°C, it is determined that the lubrication performance is good, and in step S3, the set value Tcs for keeping the condensing temperature Tc constant is fixed to a predetermined value TO (for example, 46°C). Further, when Ta1r is 5°C, it is determined that the situation is causing poor lubrication, and the set value Tcs is changed in step S4 to the evaporation temperature Te (outside air temperature Ta) as shown in FIG.
The value obtained by subtracting -Te from the above set value Tc5 (-48'C) is the product of the slope k, which approximates the slope of the limit line of lubrication performance that decreases in accordance with the decrease in 1r), and the evaporation temperature Te at that time. We will correct it to a lower value.

しかる後、凝縮温度Tcを上記で設定した設定値Tcs
に固定保持するよう、圧縮機(1)の運転容量のフィー
ドバック制御としてPI制御(比例−積分制御)を行う
こととし、ステップS5で圧縮機(1)の目標容量L1
を、上記凝縮温度Tcと設定値Tcsとの偏差の、今回
と前回の値e(t)、e(t−Δt)に基いて、凝縮温
度Tcが設定値Tcsになるよう下記式 %式%) LO,現在の運転容量 Kc 、ゲイン(定数) Tl ;積分定数   “ Δt ;サンプリング時間 で演算して、冷媒の凝縮温度Tcが設定値Tcsを越え
るときには、圧縮機(1)の容量段階を低くする一方、
逆に凝縮温度Tcが設定値Tcs未満のときには、圧縮
機(1)の容量段階を高くすることとする。
After that, the condensing temperature Tc is set to the set value Tcs set above.
PI control (proportional-integral control) is performed as feedback control of the operating capacity of the compressor (1) so that the target capacity L1 of the compressor (1) is held fixed at
Based on the current and previous values e(t) and e(t-Δt) of the deviation between the condensing temperature Tc and the set value Tcs, the following formula % formula % is used to make the condensing temperature Tc become the set value Tcs. ) LO, current operating capacity Kc, gain (constant) Tl; integral constant "Δt; Calculated using sampling time, and when the refrigerant condensation temperature Tc exceeds the set value Tcs, the capacity stage of the compressor (1) is lowered. On the other hand,
Conversely, when the condensing temperature Tc is less than the set value Tcs, the capacity level of the compressor (1) is increased.

しかる後、ステップS6で予め設定された容量マツプに
基いて上記目標容量 L +に対応した圧縮機(1)の
運転容量を把握して、この運転容量になるよう、圧縮機
(1)の実際の運転容量をインバータ(2a)及びアン
ロード機構(2b)で制御する。そして、ステップS7
でサンプリング時間Δtの経過を待って以上の動作を繰
返して、冷媒循環系統(2)における冷媒の凝縮温度T
eを設定値Tcsに保持するよう圧縮機(1)を容量制
御するようにしている。
Thereafter, in step S6, the operating capacity of the compressor (1) corresponding to the target capacity L + is determined based on the capacity map set in advance, and the actual operating capacity of the compressor (1) is adjusted to achieve this operating capacity. The operating capacity is controlled by an inverter (2a) and an unloading mechanism (2b). And step S7
Wait for the sampling time Δt to elapse and repeat the above operation to determine the condensation temperature T of the refrigerant in the refrigerant circulation system (2).
The capacity of the compressor (1) is controlled to maintain e at the set value Tcs.

よって、上記第3図の制御フローにおいて、ステップS
lにより、圧力センサ(Pi)により検出した吸入ガス
圧力に基いて冷媒循環系統(Z)における冷媒の凝縮温
度Tcを検出するようにした凝縮温度検出手段(50)
を構成していると共に、ステップS2 、S3 、S5
〜S7により、上記凝縮温度検出手段(50)の出力を
受け、冷媒の凝縮温度を予め固定設定された設定値Tc
5(−46℃)に保持するよう上記圧縮機(1)を容量
制御するようにした容量制御手段(51)を構成してい
る。
Therefore, in the control flow of FIG. 3 above, step S
condensation temperature detection means (50) configured to detect the condensation temperature Tc of the refrigerant in the refrigerant circulation system (Z) based on the suction gas pressure detected by the pressure sensor (Pi);
and steps S2, S3, S5
~S7 receives the output of the condensation temperature detection means (50) and sets the condensation temperature of the refrigerant to a preset fixed value Tc.
A capacity control means (51) is configured to control the capacity of the compressor (1) so as to maintain the compressor (1) at a temperature of 5 (-46°C).

また、ステップS2、S4により、上記蒸発温度センサ
(TI+5)の出力を受け、蒸発温度Teが上記圧縮機
(1)の潤滑油による潤滑の不良を招く状況に相当する
下限温度値(−10℃)以下のとき、上記容ffi@御
手段(51)の凝縮温度の設定fmTcs(48℃)を
、蒸発温度Teの低下に応じて低く補正するようにした
設定値補正手段(53)を構成している。
Further, in steps S2 and S4, the output of the evaporation temperature sensor (TI+5) is received, and the evaporation temperature Te is the lower limit temperature value (-10°C ) In the following cases, the set value correction means (53) is configured to correct the condensation temperature setting fmTcs (48° C.) of the above-mentioned volume ffi@ control means (51) to a lower value in accordance with the decrease in the evaporation temperature Te. ing.

したがって、上記実施例においては、暖房運転時、蒸発
温度Teが下限温度値(−1θ℃)を越える通常のとき
には、冷媒の凝縮温度Tcを一定値に保持すべき設定値
Tcsが所定値T□ (4B ’C)に設定され、この
設定値Tc5(4B ”C)に凝縮温度Tcを固定保持
するようインバータ(2a)及びアンロード機構(2b
)が容量制御手段(51)で制御されて、圧縮機(1)
の容量が増減変化し、例えば凝縮温度TCが設定値Tc
5(48℃)未満のときには、圧縮機(1)の容量が増
大して、冷媒の凝縮温度Tcが設定値Tc5(46℃)
に向かって上昇する一方、逆に凝縮温度Tcが設定値T
 cs (48℃)を越えるときには、圧縮機(1)の
容量が低下して、冷媒の凝縮温度Tcが設定値Tea(
46℃)に向かって低下し、凝縮温度Tcは設定値Tc
5(46℃)に良好に固定保持される。
Therefore, in the above embodiment, during heating operation, when the evaporation temperature Te normally exceeds the lower limit temperature value (-1θ°C), the set value Tcs for maintaining the refrigerant condensation temperature Tc at a constant value is set to the predetermined value T□ (4B 'C), and the inverter (2a) and unload mechanism (2b
) is controlled by the capacity control means (51), and the compressor (1)
For example, the condensing temperature TC changes to the set value Tc.
5 (48°C), the capacity of the compressor (1) increases and the refrigerant condensation temperature Tc reaches the set value Tc5 (46°C).
On the other hand, the condensing temperature Tc rises towards the set value T.
cs (48°C), the capacity of the compressor (1) decreases and the refrigerant condensation temperature Tc reaches the set value Tea (
46℃), and the condensing temperature Tc decreases to the set value Tc
5 (46°C).

而して、暖房運転時に、外気温度Ta1rが下限温度値
(−5℃)以下に極端に低下した低外気温度時には、冷
媒の蒸発温度Toも下限温度値(−to”c)以下に下
がり、これに伴い凝縮温度Tcも設定値Tc5(48℃
)未満に低下するため、通常の制御では、圧縮機(1)
の容量は、上記容量制御手段(5I)の容量制御によっ
て増大制御されて、凝縮温度Tcは設定値Tc5(46
℃)に保持されることになるが、この場合には、圧縮機
(1)の容量の増大に伴い冷媒の蒸発温度Teが更に下
がって、凝縮温度Tcと蒸発温度eとの差が顕著になり
、圧縮比が大きくなる。その結果、圧縮機(1)の体積
効率が低下して冷媒循環系統(Z)の冷媒循環量が減少
し、特に圧縮機(1)が密閉型で圧縮機モータの冷却を
冷媒で行う形式のものでは、圧縮機<1)からの吐出ガ
ス温度が上昇すると共に、これに含まれる圧縮機(1)
の潤滑油の油温も顕著に上昇する。
Therefore, during heating operation, when the outside air temperature Ta1r is extremely low and falls below the lower limit temperature value (-5°C), the evaporation temperature To of the refrigerant also falls below the lower limit temperature value (-to''c), Along with this, the condensing temperature Tc is also set to Tc5 (48℃
), so under normal control, the compressor (1)
The capacity of is controlled to increase by the capacity control of the capacity control means (5I), and the condensing temperature Tc is set to the set value Tc5 (46
℃), but in this case, as the capacity of the compressor (1) increases, the evaporation temperature Te of the refrigerant further decreases, and the difference between the condensation temperature Tc and the evaporation temperature e becomes remarkable. This increases the compression ratio. As a result, the volumetric efficiency of the compressor (1) decreases and the amount of refrigerant circulated in the refrigerant circulation system (Z) decreases. In some cases, the discharge gas temperature from the compressor <1) increases, and the compressor (1) included in this increases.
The temperature of the lubricating oil also rises significantly.

また、上記大きな圧縮比により圧縮機(1)の圧縮効率
が低下して発熱量が増大し、上記潤滑油の油温の上昇は
著しくなり、圧縮機(1)の潤滑不良を招く状況となる
Furthermore, due to the large compression ratio, the compression efficiency of the compressor (1) decreases and the amount of heat generated increases, resulting in a significant rise in the temperature of the lubricating oil, leading to poor lubrication of the compressor (1). .

しかし、本発明では、凝縮温度Tcの設定値Tcs (
46℃)が設定値補正手段(53)により補正されて、
第4図に示す如く、圧縮機(1)の潤滑性能を良好に保
持できる限界線の傾きに応じて、蒸発温度の低下に対し
上記の通常値(4B’C)よりも漸次低くなる値になる
ので、凝縮温度Tcがこの低下補正後の設定値Tcsに
容量制御手段(51)で保持されると、この凝縮温度T
cと蒸発温度Toとの差が縮まって、圧縮比が小さくな
る。その結果、圧縮機(1)の体積効率は良好に保持さ
れて冷媒循環量はほぼ通常通りに確保されると共に、圧
縮機(1)の圧縮効率が向上して発熱量が少なくなり、
圧縮機(1)の潤滑油の油温の上昇はを効に抑制される
ことになる。よって、潤滑油による圧縮11(1)の潤
滑性能を良好に維持して、圧縮機の磨耗や軸受は部分の
焼付き、破損を有効に防止することができ、圧縮機(1
)の信頼性の向上を図ることができる。
However, in the present invention, the set value Tcs (
46°C) is corrected by the set value correction means (53),
As shown in Figure 4, depending on the slope of the limit line that can maintain good lubrication performance of the compressor (1), the value gradually becomes lower than the normal value (4B'C) as the evaporation temperature decreases. Therefore, when the condensing temperature Tc is maintained at the set value Tcs after this reduction correction by the capacity control means (51), this condensing temperature T
The difference between c and the evaporation temperature To decreases, and the compression ratio decreases. As a result, the volumetric efficiency of the compressor (1) is maintained well and the amount of refrigerant circulated is maintained almost as usual, while the compression efficiency of the compressor (1) is improved and the amount of heat generated is reduced.
The rise in the temperature of the lubricating oil in the compressor (1) is effectively suppressed. Therefore, it is possible to maintain good lubrication performance of the compressor 11 (1) with lubricating oil, effectively prevent wear of the compressor, seizure of bearing parts, and damage.
) reliability can be improved.

尚、上記実施例では、圧縮機(1)の容量をインバータ
(2a)及びアンロード機構(2b)の双方で制御した
が、インバータ(2a)のみで容量制御する場合等にも
同様に適用できるのは勿論である。また、蒸発温度検出
手段(52)を蒸発温度センサ(T1+5)で構成した
が、その他、外気温度を検出する外気温度センサ等で構
成してもよい。
In the above embodiment, the capacity of the compressor (1) is controlled by both the inverter (2a) and the unloading mechanism (2b), but the present invention can be similarly applied to a case where the capacity is controlled only by the inverter (2a). Of course. Further, although the evaporation temperature detection means (52) is configured with the evaporation temperature sensor (T1+5), it may also be configured with an outside air temperature sensor that detects the outside air temperature.

(発明の効果) 以上説明したように、本発明によれば、マルチ形式の冷
凍装置において、運転時に冷媒の凝縮温度を予め一定値
に固定設定した設定値に保持するよう圧縮機を容量制御
する場合、冷媒の蒸発温度の極端な低下時には、上記設
定値を低く補正して、圧縮機の容量の増大に伴う圧縮比
の増大を抑制したので、圧縮機での体積効率や圧縮機効
率を良好に維持して、冷媒循環量を通常通り確保すると
共に圧縮機での発熱量を少なくして、圧縮機の潤滑油の
油温の上昇を有効に抑制でき、圧縮機の潤滑性能を維持
して、圧縮機の信頼性の向上を図ることができる。
(Effects of the Invention) As explained above, according to the present invention, in a multi-type refrigeration system, the capacity of the compressor is controlled so as to maintain the condensation temperature of the refrigerant at a preset fixed value during operation. In this case, when the evaporation temperature of the refrigerant is extremely low, the above set value is corrected to a lower value to suppress the increase in compression ratio due to the increase in compressor capacity, thereby improving the volumetric efficiency and compressor efficiency of the compressor. This maintains the refrigerant circulation amount as usual, reduces the amount of heat generated in the compressor, effectively suppresses the rise in the temperature of the lubricating oil in the compressor, and maintains the lubricating performance of the compressor. , the reliability of the compressor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第4図は本発明の実施例を示し、第2図は
空気調和機に適用した冷媒配管系統図、第3図は室外制
御装置による容量制御を示すフローチャート図、第4図
は凝縮温度の設定値の補正を示す説明図である。 (A)・・・室外ユニット、(B)〜(F)・・・室内
ユニット、(1)・・・圧縮機、(2a)・・・インバ
ータ、(2b)・・・アンロード機構、(TI+5)・
・・蒸発温度センサ、(Z)・・・冷媒循環系統、(5
0)・・・凝縮温度検出手段、(51)・・・容量制御
手段、(52)・・・蒸発温度検出手段、(53)・・
・設定値補正手段。 特許出願人 ダイキン工業 株式会社 。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 show embodiments of the present invention, FIG. 2 is a refrigerant piping system diagram applied to an air conditioner, FIG. 3 is a flowchart showing capacity control by an outdoor control device, and FIG. It is an explanatory view showing correction of a set value of condensation temperature. (A)...Outdoor unit, (B)-(F)...Indoor unit, (1)...Compressor, (2a)...Inverter, (2b)...Unloading mechanism, ( TI+5)・
... Evaporation temperature sensor, (Z) ... Refrigerant circulation system, (5
0)... Condensation temperature detection means, (51)... Capacity control means, (52)... Evaporation temperature detection means, (53)...
- Setting value correction means. Patent applicant: Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)複数段の容量段階に調整される圧縮機(1)を有
する室外ユニット(A)に対して、複数台の室内ユニッ
ト(B)〜(F)を並列に接続してなる冷媒循環系統(
Z)を備えたマルチ形式の冷凍装置において、上記冷媒
循環系統(Z)における冷媒の凝縮温度を検出する凝縮
温度検出手段(50)と、該凝縮温度検出手段(50)
の出力を受け、冷媒の凝縮温度を予め固定設定された設
定値に保持するよう上記圧縮機(1)を容量制御する容
量制御手段(51)とを備えるとともに、冷媒の蒸発温
度又はこれに相当する信号を検出する蒸発温度検出手段
(52)と、該蒸発温度検出手段(52)の出力を受け
、蒸発温度が上記圧縮機(1)の潤滑油による潤滑不良
を招く状況に相当する下限温度値以下のとき、上記容量
制御手段(51)での凝縮温度の設定値を低く補正する
設定値補正手段(53)とを備えたことを特徴とする冷
凍装置の保護装置。
(1) A refrigerant circulation system in which a plurality of indoor units (B) to (F) are connected in parallel to an outdoor unit (A) having a compressor (1) whose capacity is adjusted to multiple stages. (
In a multi-type refrigeration apparatus equipped with a refrigerant circulation system (Z), a condensing temperature detecting means (50) for detecting the condensing temperature of the refrigerant in the refrigerant circulation system (Z), and the condensing temperature detecting means (50)
capacity control means (51) that receives the output of the refrigerant and controls the capacity of the compressor (1) so as to maintain the condensation temperature of the refrigerant at a preset fixed value, and the evaporation temperature of the refrigerant or an equivalent thereof. and an evaporation temperature detection means (52) for detecting a signal, and a lower limit temperature corresponding to a situation where the evaporation temperature causes poor lubrication by the lubricating oil of the compressor (1), based on the output of the evaporation temperature detection means (52). 1. A protection device for a refrigeration system, comprising: set value correcting means (53) for correcting the set value of the condensing temperature in the capacity controlling means (51) to a lower value when the value is below the set value.
JP29819887A 1987-11-26 1987-11-26 Refrigerator protection device Expired - Lifetime JPH06100396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29819887A JPH06100396B2 (en) 1987-11-26 1987-11-26 Refrigerator protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29819887A JPH06100396B2 (en) 1987-11-26 1987-11-26 Refrigerator protection device

Publications (2)

Publication Number Publication Date
JPH01139966A true JPH01139966A (en) 1989-06-01
JPH06100396B2 JPH06100396B2 (en) 1994-12-12

Family

ID=17856485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29819887A Expired - Lifetime JPH06100396B2 (en) 1987-11-26 1987-11-26 Refrigerator protection device

Country Status (1)

Country Link
JP (1) JPH06100396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170085A (en) * 1996-12-04 1998-06-26 Toshiba Ave Corp Air conditioner
JP2007163101A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170085A (en) * 1996-12-04 1998-06-26 Toshiba Ave Corp Air conditioner
JP2007163101A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner

Also Published As

Publication number Publication date
JPH06100396B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US8572995B2 (en) Refrigeration system
JP2006071268A (en) Refrigerating plant
JP2012072920A (en) Refrigeration apparatus
KR101802107B1 (en) Refrigeration system
JP4475660B2 (en) Refrigeration equipment
JP5735441B2 (en) Refrigeration equipment
JP6785982B2 (en) Refrigeration equipment
JP3334601B2 (en) Air conditioner with natural circulation
JP4730318B2 (en) Refrigeration equipment
JPH07180933A (en) Refrigerating cycle device
JPH01139966A (en) Protective device for refrigerator
JPH01139965A (en) Operation controller for refrigerator
JPH0814435B2 (en) Refrigerator protection device
JP3481274B2 (en) Separate type air conditioner
JPH04222341A (en) Operation controller for air conditioner
JP2504161B2 (en) Defrost operation controller for air conditioner
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
KR100941470B1 (en) A heat pump system and an operating control method for the same
JPH01139967A (en) Protective device for refrigerator
JP6837843B2 (en) Refrigeration equipment
JPH01225852A (en) High pressure controller for air conditioner
JP5538064B2 (en) Refrigeration equipment
JPH06272971A (en) Air conditioner
JP2638366B2 (en) Operation control device for refrigeration equipment
JPH03186157A (en) Delivery pipe temperature controller of compressor