JPH01139967A - Protective device for refrigerator - Google Patents

Protective device for refrigerator

Info

Publication number
JPH01139967A
JPH01139967A JP29819987A JP29819987A JPH01139967A JP H01139967 A JPH01139967 A JP H01139967A JP 29819987 A JP29819987 A JP 29819987A JP 29819987 A JP29819987 A JP 29819987A JP H01139967 A JPH01139967 A JP H01139967A
Authority
JP
Japan
Prior art keywords
compressor
capacity
refrigerant
temperature
lowest stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29819987A
Other languages
Japanese (ja)
Inventor
Osamu Tanaka
修 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP29819987A priority Critical patent/JPH01139967A/en
Publication of JPH01139967A publication Critical patent/JPH01139967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To widen the operating range of a compressor by regulating the lowest stage capacity of a compressor at a high level under such a situation as the compressor is operated in the vicinity of lowest stage when the refrigerant evaporation temperature is extremely low at the time of multistage capacity control of the pressor. CONSTITUTION: The protector comprises means 50 for regulating the refrigerating capacity by controlling the capacity of a compressor 1, means 51 for detecting the condensation temperature of refrigerant in a refrigerant circulation system Z, means TH7 for detecting the evaporation temperature of refrigerant or a signal corresponding thereto, and means 52 for regulating the lowest stage in the capacity control of the compressor 1 through the means 50 depending on the condensation and evaporation temperatures of refrigerant. Since the lowest stage capacity of the compressor 1 can be regulated to a high level when the outer air temperature is extremely low and the condensation temperature of refrigerant 15 high, circulation of refrigerant is increased in the system Z and temperature rise of the coil and lubricant in the compressor 1 is suppressed. Consequently, the plant can be operated continuously without triggering a protector.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置における圧縮機のコイル温度の過昇
や潤滑不良に対して圧縮機を保護するようにした冷凍装
置の保護装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is an improvement in a protection device for a refrigeration system that protects a compressor from an excessive rise in the coil temperature of the compressor and poor lubrication. Regarding.

(従来の技術) 従来より、冷凍装置として、例えば特開昭62−196
542号公報等に開示されるように、多段階の容量段階
に調整可能な圧縮機及び室外熱交換器を内蔵する一台の
室外ユニットに対して、室内熱交換器を内蔵する複数台
の室内ユニットを並列に接続して冷媒循環系統を形成し
た。いわゆるマルチ形式のものは知られている。
(Prior art) Conventionally, as a refrigeration device, for example,
As disclosed in Publication No. 542, etc., one outdoor unit has a built-in compressor and an outdoor heat exchanger that can be adjusted to multiple capacity levels, while multiple indoor units have built-in indoor heat exchangers. The units were connected in parallel to form a refrigerant circulation system. So-called multi-format ones are known.

(発明が解決しようとする問題点) ところで、上記の如きマルチ形式の冷凍装置において、
室内ユニットの運転台数が少ない場合には、圧縮機は最
低段の容量近傍で運転されるが、それに伴い冷媒循環系
統の冷媒循環量は減少する。
(Problems to be Solved by the Invention) By the way, in the above-mentioned multi-type refrigeration equipment,
When the number of operating indoor units is small, the compressor is operated near the capacity of the lowest stage, but the amount of refrigerant circulated in the refrigerant circulation system decreases accordingly.

そのため、例えば圧縮機の形式が密閉型で圧縮機モータ
の冷却を冷媒で行う形式のもの等では、圧縮機のコイル
の温度や冷媒中に含む圧縮機用潤滑油の油温が上昇する
とともに、インバータで容量制御を行うものではその効
率が低下して発熱量が増大するため、上記コイル温度や
潤滑油の油温上昇は顕著になる。
Therefore, for example, if the compressor is a hermetic type and the compressor motor is cooled by refrigerant, the temperature of the compressor coil and the temperature of the compressor lubricating oil contained in the refrigerant will rise. If the capacity is controlled using an inverter, its efficiency decreases and the amount of heat generated increases, so the coil temperature and lubricating oil temperature increase significantly.

その場合、特に暖房運転時において、外気温度が低いと
きには、それに伴い蒸発温度も低下して圧縮比が大きく
なり、そのため圧縮機の体積効率が低下して冷媒循環量
が一層減少するから、コイル温度等の温度上昇は一層顕
著になる。その際、コイル温度等から制限される圧縮機
の使用限界は、第4図に示す如く、その時の容量段階で
の圧縮機の使用限界線を越える領域、つまり低外気温度
下(低蒸発温度下)で且つ室内温度の高い過負荷時(凝
縮温度の高い時)の領域であるが、上記マルチ形式の冷
凍装置では、この低外気温度時(低蒸発温度の時)には
、圧縮機の低容量運転の下で運転中の室内熱交換器の合
計容量が室外熱交換器の容量に対して容量比が小さいた
めに凝縮温度は低くならずに高く留まる傾向にあるから
、上記圧縮機の使用限界線を越えてしまい、コイル温度
の過昇等に対する保護装置の作動を招き、装置の連続運
転が不可能になることがある欠点が生じる。
In that case, especially during heating operation, when the outside air temperature is low, the evaporation temperature also decreases and the compression ratio increases, which reduces the volumetric efficiency of the compressor and further reduces the amount of refrigerant circulation. etc., the temperature rise becomes even more noticeable. At that time, the usage limit of the compressor, which is limited by the coil temperature, etc., is the area that exceeds the usage limit line of the compressor at that capacity stage, that is, under low outside air temperature (low evaporation temperature), as shown in Figure 4. ) and when the indoor temperature is high and the overload is high (when the condensing temperature is high). Because the total capacity of the indoor heat exchanger operating under capacity operation has a small capacity ratio with respect to the capacity of the outdoor heat exchanger, the condensing temperature tends to remain high instead of decreasing, so the above compressor is not used. If the limit line is exceeded, a protection device against an excessive rise in coil temperature may be activated, resulting in a drawback that continuous operation of the device may become impossible.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、マルチ形式の冷凍装置において、圧縮機の容量を
多段階に制御する場合、蒸発温度の極端な低下時に圧縮
機が最低段近傍の容量で運転する状況のときには、その
運転し得る最低段の容量を高く規制することにより、こ
の極端な底蒸発温度時には、冷媒循環量を多くして、コ
イル温度や圧縮機用の潤滑油の油温上界を有効に抑え、
よってその時の容量段階での圧縮機の使用限界線を越え
るのを防止して、保護装置の作動を招くことなく装置の
連続運転を可能にすることにある。
The present invention has been made in view of the above points, and its purpose is to control the capacity of the compressor in multiple stages in a multi-type refrigeration system, so that when the evaporation temperature is extremely low, the compressor reaches the lowest stage. When operating at a nearby capacity, the capacity of the lowest stage that can be operated is regulated to a high level, and at extreme bottom evaporation temperatures, the amount of refrigerant circulation is increased to reduce coil temperature and compressor lubricating oil. Effectively suppresses the oil temperature upper limit of
Therefore, the purpose is to prevent the compressor from exceeding its service limit at the current capacity level, and to enable continuous operation of the device without activating the protective device.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、第1
図に示すように、多段階の容量段階に調整される圧縮機
(1)を有する室外ユニット(A)に対して、複数台の
室内ユニット(B)〜(F)を並列に接続してなる冷媒
循環系統(Z)を備えたマルチ形式の冷凍装置をrR提
とする。そして、上記圧縮機(1)の容量を制御して冷
凍能力を調整する容量制御手段(50)を設けるととも
に、上記冷媒循環系統(Z)における冷媒の凝縮温度を
検出する凝縮温度検出手段(51)と、冷媒の蒸発温度
又はこれに相当する信号を検出する蒸発温度検出手段(
TH17)と、該両検出手段(51) 、 (TH7)
の出力を受け、冷媒の凝縮温度と蒸発温度とに応じて上
記容量制御手段(50)による圧縮機(1)の容量制御
の最低段を規制する最低段規制手段(52)とを設ける
構成としたものである。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention is as follows:
As shown in the figure, a plurality of indoor units (B) to (F) are connected in parallel to an outdoor unit (A) having a compressor (1) whose capacity is adjusted in multiple stages. A multi-type refrigeration system equipped with a refrigerant circulation system (Z) is assumed to be rR. A capacity control means (50) is provided for controlling the capacity of the compressor (1) to adjust the refrigerating capacity, and a condensation temperature detection means (51) for detecting the condensation temperature of the refrigerant in the refrigerant circulation system (Z) is provided. ), and evaporation temperature detection means (
TH17) and both detection means (51), (TH7)
and a lowest stage regulating means (52) for regulating the lowest stage of capacity control of the compressor (1) by the capacity controlling means (50) according to the condensing temperature and evaporation temperature of the refrigerant. This is what I did.

(作用) 以上の構成により、本発明では、暖房運転時には、圧縮
機(1)の容量が容量制御手段(50)で増減制御され
て、室内ユニット(B)〜(P)の運転台数が多いとき
には、高容量段階に調整される一方、運転台数が少ない
ときには、低容量段階に調整される。
(Function) With the above configuration, in the present invention, during heating operation, the capacity of the compressor (1) is controlled to increase or decrease by the capacity control means (50), so that a large number of indoor units (B) to (P) are operated. Sometimes it is adjusted to a high capacity stage, while when the number of vehicles in operation is small, it is adjusted to a low capacity stage.

而して、室内ユニット(B)〜(P)の運転台数が少な
い状況で圧縮機(1)が最低段近傍の容量で運転する場
合において、外気温度が極端に低いときには、それに伴
い冷媒の蒸発温度が低下すると共に、運転中の室内熱交
換器の合計容量が室外熱交換器の容量に対して容量比が
小さいために、冷媒の凝縮温度が高く保持されて、第4
図に示すように、その時の容量段階に対応した圧縮機(
1)の使用限界線を越えて、保護装置の作動する状況と
なる。
Therefore, when the compressor (1) is operated at a capacity near the lowest stage in a situation where the number of operating indoor units (B) to (P) is small, when the outside air temperature is extremely low, the refrigerant evaporates accordingly. As the temperature decreases, the condensation temperature of the refrigerant is kept high due to the small capacity ratio of the total capacity of the indoor heat exchanger during operation to the capacity of the outdoor heat exchanger,
As shown in the figure, the compressor (
If the service limit line (1) is exceeded, the protective device will be activated.

しかし、その場合には、圧縮機(1)の容量制御の最低
段が最低段規制手段(52)により、冷媒の凝縮温度と
蒸発温度とに応じて規制され、外気温度(蒸発温度)の
極端に低い状況で冷媒の凝縮温度が高いときには、規制
すべき圧縮機(1)の最低段の容量を高く規制できるの
で、その分、冷媒循環系統(Z)の冷媒循環量を多くし
て、圧縮機(1)のコイル温度や潤滑油の油温の上昇を
を効に抑えて、その時点の容量段階での圧縮機(1)の
使用限界線内の領域で運転することができる。よって、
コイル温度の過昇等に対する保護装置の作動を招くこと
なく、装置の連続運転を可能にできる。
However, in that case, the lowest stage of capacity control of the compressor (1) is regulated by the lowest stage regulating means (52) according to the condensation temperature and evaporation temperature of the refrigerant, and the extremes of the outside air temperature (evaporation temperature) When the condensation temperature of the refrigerant is high under conditions where the temperature is low, the capacity of the lowest stage of the compressor (1) that should be regulated can be regulated high, so the amount of refrigerant circulated in the refrigerant circulation system (Z) is increased accordingly, and the compression It is possible to effectively suppress increases in the coil temperature of the compressor (1) and the temperature of the lubricating oil, and to operate within the service limit line of the compressor (1) at the current capacity stage. Therefore,
The device can be operated continuously without activating the protection device against excessive rise in coil temperature.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明をマルチ型式の空気調和装置に適用した
実施例を示し、(A)は室外ユニット、(B)〜(P)
は我室外ユニット(A)に並列に接続された室内ユニッ
トである。上記室外ユニット(A)には、圧縮機(1)
と、上記圧縮機(1)から吐出されるガス中の油を分離
する油分離器(4)と、暖房運転時には図中実線の如く
切換わり冷房運転時には図中破線の如く切換わる四路切
換弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸発
器となる室外熱交換器(6)およびそのファン(6a)
と、過冷却コイル(7)と、冷房運転時には冷媒流量を
調節し、暖房運転時には冷媒の絞り作用を行う室外電動
膨張弁(8)と、液化した冷媒を貯蔵するレシーバ(9
)と、アキュムレータ(10)とが主要機器として内蔵
されていて、該各機器(1)〜(lO)は各々冷媒の連
絡配管(11)を介して冷媒の流通可能に接続されてい
る。
FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, in which (A) is an outdoor unit, (B) to (P)
is an indoor unit connected in parallel to the outdoor unit (A). The outdoor unit (A) has a compressor (1)
, an oil separator (4) that separates oil from the gas discharged from the compressor (1), and a four-way switch that switches as shown in the solid line in the figure during heating operation and as shown in the broken line in the figure during cooling operation. A valve (5), an outdoor heat exchanger (6) that serves as a condenser during cooling operation and an evaporator during heating operation, and its fan (6a)
, a subcooling coil (7), an outdoor motorized expansion valve (8) that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and a receiver (9) that stores the liquefied refrigerant.
) and an accumulator (10) are built in as main equipment, and each of the equipment (1) to (lO) is connected to each other via a refrigerant communication pipe (11) so that refrigerant can flow therethrough.

そして、上記圧縮機(1)には、該圧縮機(1)の運転
周波数(つまり容量段階)を複数段階(例えば0.50
.80.70,80,90,100,110.120H
zの9段階)に可変に調整するインバータ(2a)が備
えられていると共に、パイロット圧の高低に応じて圧縮
機(1)の容量を、容量100%のフルロード状態と、
容量50%のアンロード状態との2段階に調節するアン
ロード機構(2b)と、該アンロード機構(2b)のパ
イロット管(図示せず)へのパイロット圧萎圧縮機(1
)の吐出管(tin)側(高圧側)または吸入管(ll
q)側(低圧側)に切換える電磁弁(2c)とが付設さ
れており、該電磁弁(2c)が高圧側に切換えられると
、圧縮機(1)の運転容量が100%のフルロード状態
に切換られる一方、電磁弁(2c)が低圧側に切換えら
れると、圧縮機(1)の運転容量が50%のアンロード
状態に切換られるように構成されている。従って、イン
バータ(2a)とアンロード機構(2b)との作動の組
合せにより、圧縮機(1)の容量段階を、0.25.3
0.35,40.50.60,70,80.90,10
0,110.120%の多段階(13段階)に可変可能
としている。
The compressor (1) has a plurality of operating frequencies (that is, capacity stages) (for example, 0.50
.. 80.70, 80, 90, 100, 110.120H
The compressor (1) is equipped with an inverter (2a) that variably adjusts the compressor (2a) to 9 stages of z), and adjusts the capacity of the compressor (1) depending on the height of the pilot pressure between a full load state of 100% capacity and a full load state of 100% capacity.
An unloading mechanism (2b) that adjusts in two stages with an unloaded state of 50% capacity, and a pilot compression compressor (1) to a pilot pipe (not shown) of the unloading mechanism (2b).
) of the discharge pipe (tin) side (high pressure side) or the suction pipe (ll
A solenoid valve (2c) is attached to switch to the q) side (low pressure side), and when the solenoid valve (2c) is switched to the high pressure side, the compressor (1) is in a full load state with 100% operating capacity. On the other hand, when the solenoid valve (2c) is switched to the low pressure side, the operating capacity of the compressor (1) is switched to an unloaded state of 50%. Therefore, the combination of operation of the inverter (2a) and the unloading mechanism (2b) increases the capacity step of the compressor (1) by 0.25.3
0.35, 40.50.60, 70, 80.90, 10
It can be varied in multiple stages (13 stages) of 0,110.120%.

また、上記室内ユニット(B)〜(F)は同一構成であ
り、各々その内部には、冷房運転時には蒸発器、暖房運
転時には凝縮器となる室内熱交換器(12)・・・及び
その送風ファン(12a)・・・と、液冷媒分岐管(l
la)・・・に介設されて冷媒流量を調節し、冷房運転
時に冷媒の絞り作用を行う室内電動膨張弁(13)・・
・が備えられ、該各機器(12)、 (13)は手動閉
鎖弁(17)を配した連絡配管(llb)を介して室外
ユニット(A)に接続されて、冷媒を室外ユニット(A
)と複数台(5台)の室内ユニット<8)〜(F)に循
環させる冷媒循環系統(Z)が形成されている。
In addition, the indoor units (B) to (F) have the same configuration, and each includes an indoor heat exchanger (12) that serves as an evaporator during cooling operation and a condenser during heating operation, and its air blower. Fan (12a)... and liquid refrigerant branch pipe (l
la)... An indoor electric expansion valve (13) that adjusts the refrigerant flow rate and throttles the refrigerant during cooling operation.
Each of the devices (12) and (13) is connected to the outdoor unit (A) via a connecting pipe (llb) equipped with a manual shutoff valve (17), and the refrigerant is supplied to the outdoor unit (A).
) and a refrigerant circulation system (Z) that circulates to a plurality of (5) indoor units <8) to (F) is formed.

また、各室内ユニット(B)〜(F)内において、(T
lll)・・・は各室内温度を検出する室温センサ、(
TH2)・・・および(TH13)・・・は各々室内熱
交換器(12)・・・の波調およびガス側配管の温度を
検出する温度センサである。また、室外ユニット(A)
において、(Tl!4)は圧縮機(1)の吐出管の温度
を検出する温度センサ、(TH5)は暖房運転時に室外
熱交換器(6)における蒸発温度を検出する蒸発温度セ
ンサ、(TH16)は圧縮機(1)の吸入ガス温度を検
出する吸入ガス温度センサ、(TH7)は外気温度を検
出する外気温度検出手段としての外気温度センサであっ
て、外気温度と冷媒の蒸発温度とが比例関係にあること
から、該外気温度センサ(TH7)により、冷媒の蒸発
温度に相当する信号(外気温度)を検出するようにした
蒸発温度検出手段を構成している。
In addition, in each indoor unit (B) to (F), (T
lll)... is a room temperature sensor that detects the temperature in each room, (
TH2)... and (TH13)... are temperature sensors that detect the wave harmonics of the indoor heat exchanger (12) and the temperature of the gas side piping, respectively. In addition, outdoor unit (A)
, (Tl!4) is a temperature sensor that detects the temperature of the discharge pipe of the compressor (1), (TH5) is an evaporation temperature sensor that detects the evaporation temperature in the outdoor heat exchanger (6) during heating operation, and (TH16) is a temperature sensor that detects the temperature of the discharge pipe of the compressor (1). ) is a suction gas temperature sensor that detects the suction gas temperature of the compressor (1), and (TH7) is an outside air temperature sensor as an outside air temperature detection means that detects the outside air temperature. Since there is a proportional relationship, the outside air temperature sensor (TH7) constitutes an evaporation temperature detection means that detects a signal (outside air temperature) corresponding to the evaporation temperature of the refrigerant.

また、(PI)は暖房運転時には吐出ガスの圧力、冷房
運転時には吸入ガスの圧力を検知する圧力センサである
Further, (PI) is a pressure sensor that detects the pressure of discharge gas during heating operation and the pressure of intake gas during cooling operation.

尚、第2図において上記各主要機器以外に補助用の諸機
器が設けられている。(lh)は油分離器(4)から圧
縮機(1)に潤滑油を戻す油戻し配管(llu)に介設
され、返油量をコントロールするキャピラリーチューブ
、(21)は吐出管と吸入管とを接続する均圧ホットガ
スバイパス回路(lid)に介設され、デフロスト時等
に開作動するホットガス用電磁弁である。また、(ll
e)は暖房過負荷制御用バイパス回路であって、該バイ
パス回路(lle)には、補助コンデンサ(22)、第
1逆止弁(23)、暖房運転時に室内熱交換5(12)
 (凝縮器)が低負荷時のとき開作動する高圧制御弁(
24)および第2逆止弁(25)が順次直列に接続され
ており、その一部には運転停止時に液封を防止するため
の液封防止バイパス回路(111’)が第3逆止弁(2
7)およびキャピラリーチューブ(CF2)を介して設
けられている。さらに、(l1g)は上記暖房過負荷制
御用バイパス回路(lie)の液冷媒側配管と主配管の
吸入ガス管との間を接続し、冷暖房運転時に吸入ガスの
過熱度を調節するためのリキッドインジェクションバイ
パス回路であって、該リキッドインジェクションバイパ
ス回路(l1g)には圧縮機(1)のオン・オフと連動
して開閉するインジェクション用電磁弁(29)と、感
温筒(TPI)により検出される吸入ガスの過熱度に応
じて開度調節される自動膨張弁(30)とが介設されて
いる。
Incidentally, in FIG. 2, various auxiliary devices are provided in addition to the above-mentioned main devices. (lh) is a capillary tube installed in the oil return pipe (llu) that returns lubricating oil from the oil separator (4) to the compressor (1) and controls the amount of oil returned, and (21) is the discharge pipe and suction pipe. This is a hot gas solenoid valve that is installed in the pressure equalized hot gas bypass circuit (lid) that connects the hot gas valve and is opened during defrosting, etc. Also, (ll
e) is a bypass circuit for heating overload control, and the bypass circuit (lle) includes an auxiliary capacitor (22), a first check valve (23), and an indoor heat exchanger 5 (12) during heating operation.
High pressure control valve (condenser) that opens when the load is low (
24) and a second check valve (25) are sequentially connected in series, and a part of the circuit includes a liquid seal prevention bypass circuit (111') for preventing liquid seal when the operation is stopped. (2
7) and is provided via a capillary tube (CF2). Furthermore, (l1g) is a liquid that connects between the liquid refrigerant side piping of the heating overload control bypass circuit (lie) and the suction gas pipe of the main piping to adjust the degree of superheating of the suction gas during heating and cooling operation. The liquid injection bypass circuit (l1g) includes an injection solenoid valve (29) that opens and closes in conjunction with the on/off of the compressor (1), and a temperature sensing cylinder (TPI) to detect the liquid injection bypass circuit (l1g). An automatic expansion valve (30) whose opening degree is adjusted according to the degree of superheating of the intake gas is provided.

また、第2図中、(PI)〜(FB)は冷媒回路あるい
は油戻し管中に介設された液浄化用フィルタ、(+1P
S)は圧縮機保護用の高圧圧力開閉器、(sp)はサー
ビスポートである。
In addition, in Fig. 2, (PI) to (FB) are liquid purification filters installed in the refrigerant circuit or oil return pipe, (+1P
S) is a high pressure switch for protecting the compressor, and (sp) is a service port.

次に、上記圧縮機(1)の運転容量の制御を暖房運転時
を例に挙げて第3図の制御フローに基いて説明する。尚
、この容量制御は室外ユニット(A)に接続した室外制
御装置(15)により行われる。
Next, control of the operating capacity of the compressor (1) will be explained based on the control flow shown in FIG. 3, taking heating operation as an example. Note that this capacity control is performed by an outdoor control device (15) connected to the outdoor unit (A).

第3図において、スタートして、ステップS1で圧力セ
ンサ(PI)により検出した吸入ガス圧力を相当飽和温
度に換算して得られる冷媒温度Tc、つまり冷媒循環系
統(Z)における冷媒の凝縮温度を検出した後、ステッ
プS2で冷媒の凝縮塩度TCを予め固定設定した目標値
Tc5(例えば46℃)に保持するよう、圧縮機(1)
の運転容量のフィードバック制御としてPI制御(比例
−積分制御)を行うこととし、圧縮機(1)の目標容量
 L +を、上記凝縮温度Tcと目標値Tcsとの偏差
の、今回と前回の値e (t)、 e (を−Δt)に
基いて、凝縮温度Tcが目標値Tcsになるよう下記式 %式%) LO,現在の運転容量 Kc;ゲイン(定数) Tl ;積分定数 Δt ;サンプリング時間 で演算して、冷媒の凝縮温度Tcが目標値Teaを越え
るときには、圧縮機(1)の容量段階を低くする一方、
逆に凝縮温度Tcが目標値Tcs未満のときには、圧縮
機(1)の容量段階を高くすることとする。
In Fig. 3, the refrigerant temperature Tc obtained by converting the suction gas pressure detected by the pressure sensor (PI) in step S1 to the equivalent saturation temperature, that is, the condensation temperature of the refrigerant in the refrigerant circulation system (Z), is determined at step S1. After the detection, in step S2, the compressor (1)
PI control (proportional-integral control) is performed as feedback control of the operating capacity of the compressor (1), and the target capacity L + of the compressor (1) is determined by the current and previous values of the deviation between the condensing temperature Tc and the target value Tcs. Based on e (t), e (-Δt), use the following formula to make the condensing temperature Tc become the target value Tcs (%) LO, current operating capacity Kc; gain (constant) Tl; integral constant Δt; sampling Calculated by time, when the refrigerant condensation temperature Tc exceeds the target value Tea, the capacity level of the compressor (1) is lowered, while
Conversely, when the condensing temperature Tc is less than the target value Tcs, the capacity level of the compressor (1) is increased.

しかる後、ステップS3で、外気温度センサ(TH(7
)からの外気温度Ta1rと、上記で算出した凝縮温度
Tcとに基いて、その時の圧縮機(1)が取り得る容量
の最低段を規制することとする。
After that, in step S3, the outside air temperature sensor (TH(7)
), and the condensation temperature Tc calculated above, the lowest stage of capacity that the compressor (1) can take at that time is regulated.

つまり、外気温度Ta1rが低く(冷媒の蒸発温度Te
が低く)なれば、第4図に示す如く、圧縮機(1)の使
用限界の冷媒の凝縮温度Tcも低くなる関係上、先ず、
圧縮機(1)の最低段容量を規制すべき冷媒の凝縮温度
Tcの設定値Tc + 、 Tc2(Tc+は設定値の
ディファレンシャル上限値、Tc2は設定値のディファ
レンシャル下限値である。)を外気温度Ta1rに基い
て例えば下記式%式% で、外気温度Ta1rが低くなるほど低く算出設定する
。その後、圧縮機(1)の現在の運転容量り。
In other words, the outside air temperature Ta1r is low (refrigerant evaporation temperature Te
As shown in FIG.
The set value Tc + , Tc2 (Tc+ is the differential upper limit value of the set value, Tc2 is the differential lower limit value of the set value) of the refrigerant condensation temperature Tc that should regulate the lowest stage capacity of the compressor (1) is the outside air temperature. Based on Ta1r, the lower the outside air temperature Ta1r is, the lower the outside air temperature Ta1r is calculated and set, for example, using the following formula %. Then, the current operating capacity of the compressor (1) is determined.

が最大容量に対し30%の容量のときに冷媒の凝縮温度
Tcが上記設定値Tc2未満(Tc<Tc2)であれば
、最低段容量を低くできる状況と判断して、圧縮機(1
)の最低段容iL+*inを25%容量に規制する。こ
れに対し、冷媒の凝縮温度Tcが上記設定値Te+を越
えるとき(Tc >Tc + )、又は圧縮機(1)の
現在容量Loが30%を越えるとき、若しくは室内サー
モがOFFのときには、最低段容量を高く規制すべき状
況と判断して、最低段容QL+inを30%容量に規制
する。
If the refrigerant condensation temperature Tc is less than the set value Tc2 (Tc<Tc2) when the capacity is 30% of the maximum capacity, it is determined that the lowest stage capacity can be lowered, and the compressor (1
)'s lowest stage capacity iL+*in is regulated to 25% capacity. On the other hand, when the refrigerant condensation temperature Tc exceeds the above set value Te+ (Tc > Tc +), or when the current capacity Lo of the compressor (1) exceeds 30%, or when the indoor thermostat is OFF, the minimum It is determined that the stage capacity should be regulated high, and the minimum stage capacity QL+in is regulated to 30% capacity.

その後は、ステップS4において、上記で算出した圧縮
機(1)の目標容Ei L + と、規制すべき最低段
容量Lmlnとの関係で、前者の方が大きいときには圧
縮機(1)の目標容量L1を圧縮機<1)の実際の運転
容量とし、後者の方が大きいときには規制すべき最低段
容量La1nを圧縮機(1)の実際の運転容量とするよ
う、インバータ(2a)及びアンロード機構(2b)で
制御する。そして、ステップS5でサンプリング時間Δ
tの経過を待って以上の動作を繰返して、基本的に冷媒
循環系統(Z)における冷媒の凝縮温度Tcを目標値T
csに保持するよう圧縮機(1)を容量制御しつつ、圧
縮機(1)の最低段界ffiLminを外気温度(蒸発
温度)が低ければ高く規制するようにしている。
Thereafter, in step S4, in the relationship between the target capacity Ei L + of the compressor (1) calculated above and the lowest stage capacity Lmln to be regulated, if the former is larger, the target capacity of the compressor (1) is determined. The inverter (2a) and the unloading mechanism are set so that L1 is the actual operating capacity of the compressor (<1), and when the latter is larger, the lowest stage capacity La1n to be regulated is the actual operating capacity of the compressor (1). (2b). Then, in step S5, the sampling time Δ
Wait for the elapse of t and repeat the above operation to basically set the refrigerant condensation temperature Tc in the refrigerant circulation system (Z) to the target value T.
While controlling the capacity of the compressor (1) so as to maintain it at cs, the lowest stage limit ffiLmin of the compressor (1) is regulated to be higher as the outside air temperature (evaporation temperature) is lower.

よって、上記第3図の制御フローにおいて、ステップS
1により、圧力センサ(Pl)により検出した吐出ガス
圧力に基いて冷媒循環系統(Z)における冷媒の凝縮温
度Tcを検出するようにした凝縮温度検出手段(51)
を構成していると共に、ステップS2 、S4 、Ss
により、基本的に冷媒の凝縮温度Tcを目標値Tc5(
−46℃)に保持するよう圧縮機(1)を容量制御する
ようにした容量制御手段(50)を構成している。
Therefore, in the control flow of FIG. 3 above, step S
1, the condensing temperature detection means (51) detects the condensing temperature Tc of the refrigerant in the refrigerant circulation system (Z) based on the discharge gas pressure detected by the pressure sensor (Pl).
and steps S2, S4, Ss
Basically, the condensation temperature Tc of the refrigerant is set to the target value Tc5 (
A capacity control means (50) is configured to control the capacity of the compressor (1) so as to maintain the temperature at -46°C.

また、ステップS3により、上記凝縮温度検出手段(5
1)及び外気温度センサ(TH17)の出力を受け、冷
媒の凝縮温度Tcと外気温度Ta1r(冷媒の蒸発温度
)とに応じて、上記容量制御手段(5o)による圧縮機
(1)の容量@4制御の最低段L winを、外気温度
Ta1r(冷媒の蒸発温度)が低いほど凝縮温度TCの
低い状況で圧縮機(1)の最低段界fiLa+Inを高
く規制するようにした最低段規制手段(52)を構成し
ている。
Further, in step S3, the condensation temperature detection means (5
1) and the output of the outside air temperature sensor (TH17), the capacity of the compressor (1) is controlled by the capacity control means (5o) according to the refrigerant condensation temperature Tc and the outside air temperature Ta1r (refrigerant evaporation temperature). 4. The lowest stage limit Lwin of the 4-control is regulated to a higher level than the lowest stage limit fiLa+In of the compressor (1) in a situation where the lower the outside air temperature Ta1r (refrigerant evaporation temperature) is, the lower the condensing temperature TC is. 52).

したがって、上記実施例においては、暖房運転時、圧縮
機(1)の容量は容量制御手段(50)によりインバー
タ(2a)及びアンロード機構(2b)でもって増減制
御されて、冷媒の凝縮温度Tcが目標値Ta5(48℃
)未満のときには、圧縮機(1)の容量が増大して、冷
媒の凝縮温度Tcは目標値Tc5(4[i℃)に向かっ
て上昇する一方、逆に凝縮温度Tcが目標値T cs 
(46℃)を越えるときには、圧縮機0)の容量が低下
して、冷媒の凝縮温度Tcが目標値Tc5(4B ”C
)に向かって低下し、凝縮温度TCは目標値Tc5(4
B ’C)に良好に固定保持されることになる。
Therefore, in the above embodiment, during heating operation, the capacity of the compressor (1) is controlled to increase or decrease by the capacity control means (50) using the inverter (2a) and the unloading mechanism (2b), and the refrigerant condensation temperature Tc is the target value Ta5 (48℃
), the capacity of the compressor (1) increases and the condensing temperature Tc of the refrigerant rises toward the target value Tc5 (4 [i°C), while conversely, the condensing temperature Tc increases to the target value T cs
(46°C), the capacity of the compressor 0) decreases and the refrigerant condensation temperature Tc reaches the target value Tc5 (4B ”C).
), and the condensing temperature TC decreases toward the target value Tc5 (4
B'C) will be well fixed and held.

而して、上記の如き暖房運転時において、室内ユニット
(B)〜(F)の運転台数が少ないときには、圧縮機(
1)の容量は、冷媒の凝縮温度Tcを目標値Tcsに保
持すべく、最低容ffi (25%)近傍に′rA御さ
れて、冷媒循環系統(Z)の冷媒循環量は減少するが、
この状況では、圧縮機(1)の形式が例えば密閉型でそ
のモータの冷却を冷媒で行う形式のものでは、冷媒循環
量の減少に伴い冷媒中の圧縮機用潤滑油の油温の上昇を
招く。また、圧縮機(1)の容量制御がインバータ(2
a)で行われるときには、その効率が低下して発熱量が
増大するため、上記コイル温度や潤滑油の油温上昇は顕
著になる。しかも、この状況で外気温度が顕著に低いと
きには、それに伴い冷媒の蒸発温度Teが下がるため、
圧縮機(1)のコイル温度等から規制される圧縮機(1
)の使用限界は、第4図に示す如く、冷媒の凝縮温度T
cの低い領域に制限されるが、マルチ形式の空気調和装
置では、圧縮機(1)の最低段容量近傍での運転下で運
転中の室内熱交換器(12)の合計容量が室外熱交換器
(8)の容量に対して容量比が小さいから、冷媒の凝縮
温度Tcは下がり難くて高く保持する傾向にあって、上
記圧縮機(1)の使用限界を越える可能性が高く、保護
装置の作動を招く状況である。
Therefore, during the heating operation as described above, when the number of operating indoor units (B) to (F) is small, the compressor (
In order to maintain the refrigerant condensation temperature Tc at the target value Tcs, the capacity of 1) is controlled near the minimum capacity ffi (25%), and the refrigerant circulation amount in the refrigerant circulation system (Z) is reduced.
In this situation, if the compressor (1) is of a closed type and its motor is cooled by refrigerant, the oil temperature of the compressor lubricating oil in the refrigerant may rise due to the decrease in the amount of refrigerant circulation. invite In addition, the capacity control of the compressor (1) is controlled by the inverter (2).
When a) is performed, the efficiency decreases and the amount of heat generated increases, so the coil temperature and the lubricating oil temperature rise significantly. Moreover, in this situation, when the outside air temperature is significantly low, the evaporation temperature Te of the refrigerant decreases accordingly.
The compressor (1) is regulated by the coil temperature of the compressor (1), etc.
) is determined by the condensation temperature T of the refrigerant, as shown in Figure 4.
Although limited to a low c range, in multi-type air conditioners, the total capacity of the indoor heat exchanger (12) under operation under the operation near the lowest stage capacity of the compressor (1) is the outdoor heat exchanger. Since the capacity ratio is small with respect to the capacity of the compressor (8), the condensation temperature Tc of the refrigerant is difficult to lower and tends to be kept high, and there is a high possibility that the usage limit of the compressor (1) will be exceeded. This is a situation that leads to the activation of

しかし、本発明では、外気温度センサ(n17)でもっ
て外気温度Ta1r(冷媒の蒸発温度Te)が検出され
、その外気温度Ta1r(蒸発温度Te)に応じて規制
すべき冷媒の凝縮温度の設定値Tc + 、 Tc2が
低外気温度(低蒸発温度)はど低く決定されて、冷媒の
凝縮温度Tcが上記設定値Telを越える状況では、圧
縮機(1)の最低段容量が最低段規制手段(52)で規
制されて、通常の最低段容量(25%)に対して30%
容量にまで高く規制される。このことにより、冷媒循環
系統(Z)の冷媒循環量が増大して、30%容量時での
圧縮機(1)の使用限界の範囲まで圧縮機(1)の運転
範囲が広がって、圧縮機(1)のコイル温度の過昇や潤
滑油の油温の上昇が有効に抑えられて保護装置の作動が
可及的に防止され、圧縮機(1)の信頼性を良好に確保
しながら装置の連続運転を可及的長く行うことができる
However, in the present invention, the outside air temperature Ta1r (refrigerant evaporation temperature Te) is detected by the outside air temperature sensor (n17), and the set value of the refrigerant condensation temperature to be regulated according to the outside air temperature Ta1r (evaporation temperature Te). In a situation where Tc + and Tc2 are determined to be as low as the low outside air temperature (low evaporation temperature) and the refrigerant condensation temperature Tc exceeds the above set value Tel, the lowest stage capacity of the compressor (1) is determined by the lowest stage regulating means ( 52), 30% of the normal lowest stage capacity (25%)
Even the capacity is highly regulated. As a result, the amount of refrigerant circulated in the refrigerant circulation system (Z) increases, the operating range of the compressor (1) expands to the operating limit of the compressor (1) at 30% capacity, and the compressor (1) Excessive rise in coil temperature and rise in lubricating oil temperature are effectively suppressed, and the activation of the protective device is prevented as much as possible, while ensuring good reliability of the compressor (1). can be operated continuously for as long as possible.

尚、上記実施例では、圧縮機(1)の容量をインバータ
(2a)及びアンロード機構(2b)の双方で制御した
が、インバータ(2a)のみで容量制御する場合等にも
同様に適用できるのは勿論である。また、容量制御手段
(50)は、冷媒の凝縮温度Tcを目標値Tcsに一定
制御するもので構成したが、その他、室内ユニット(B
)〜(P)の運転台数に応じて容量制御するもので構成
してもよい。また、蒸発温度検出手段を外気温度センサ
(TI!7)で構成したが、直接に冷媒の蒸発温度を検
出する蒸発温度センサ(TH15)で構成してもよいの
は勿論である。
In the above embodiment, the capacity of the compressor (1) is controlled by both the inverter (2a) and the unloading mechanism (2b), but the present invention can be similarly applied to a case where the capacity is controlled only by the inverter (2a). Of course. In addition, although the capacity control means (50) is configured to constantly control the refrigerant condensation temperature Tc to the target value Tcs, other indoor units (B
) to (P) whose capacity is controlled according to the number of operating units. Further, although the evaporation temperature detection means is configured with an outside air temperature sensor (TI!7), it is of course possible to configure it with an evaporation temperature sensor (TH15) that directly detects the evaporation temperature of the refrigerant.

(発明の効果) 以上説明したように、本発明によれば、マルチ形式の冷
凍装置において、圧縮機を多段階に容量制御する場合、
冷媒の蒸発温度が極端に低下した状況の下で圧縮機が最
低段近傍で運転される状況のときには、その圧縮機の最
低段容量を高く規制したので、冷媒循環量の減少等に起
因する圧縮機のコイル温度の過昇等を防止して、その圧
縮機の運転範囲を拡大でき、保護装置の作動を招くこと
なく装置の連続運転を行うことができる。
(Effects of the Invention) As explained above, according to the present invention, when controlling the capacity of the compressor in multiple stages in a multi-type refrigeration system,
When the compressor is operated near the lowest stage under conditions where the evaporation temperature of the refrigerant is extremely low, the lowest stage capacity of the compressor is regulated to be high, so compression due to a decrease in the amount of refrigerant circulated, etc. The operating range of the compressor can be expanded by preventing excessive rise in the coil temperature of the machine, and the machine can be operated continuously without activating the protection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第4図は本発明の実施例を示し、第2図は
空気調和機に適用した冷媒配管系統図、第3図は室外制
御装置による圧縮機の容量制御を示すフローチャート図
、第4図は最低段近傍での圧縮機の使用限界を示す説明
図である。 (A)・・・室外ユニット、(B)〜(F)・・・室内
ユニット、(1)・・・圧縮機、(2a)・・・インバ
ータ、(6)・・・室外熱交換器、(12)・・・室内
熱交換器、(TH17)・・−外気温度センサ、(Z)
・・・冷媒循環系統、(50)・・・容量制御手段、(
51)・・・凝縮温度検出手段、(52)・・・最低段
規制手段。 特許出願人 ダイキン工業 株式会社
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 show embodiments of the present invention, FIG. 2 is a refrigerant piping system diagram applied to an air conditioner, FIG. 3 is a flowchart showing compressor capacity control by an outdoor control device, and FIG. FIG. 4 is an explanatory diagram showing the usage limit of the compressor near the lowest stage. (A)...Outdoor unit, (B)-(F)...Indoor unit, (1)...Compressor, (2a)...Inverter, (6)...Outdoor heat exchanger, (12)...Indoor heat exchanger, (TH17)...-Outside air temperature sensor, (Z)
... Refrigerant circulation system, (50) ... Capacity control means, (
51)...Condensing temperature detection means, (52)...Lowest stage regulation means. Patent applicant Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)多段階の容量段階に調整される圧縮機(1)を有
する室外ユニット(A)に対して、複数台の室内ユニッ
ト(B)〜(F)を並列に接続してなる冷媒循環系統(
Z)を備えたマルチ形式の冷凍装置において、上記圧縮
機(1)の容量を制御して冷凍能力を調整する容量制御
手段(50)を備えるとともに、上記冷媒循環系統(Z
)における冷媒の凝縮温度を検出する凝縮温度検出手段
(51)と、冷媒の蒸発温度又はこれに相当する信号を
検出する蒸発温度検出手段(TH7)と、該両検出手段
(51)、(TH7)の出力を受け、冷媒の凝縮温度と
蒸発温度とに応じて上記容量制御手段(50)による圧
縮機(1)の容量制御の最低段を規制する最低段規制手
段(52)とを備えたことを特徴とする冷凍装置の保護
装置。
(1) A refrigerant circulation system in which a plurality of indoor units (B) to (F) are connected in parallel to an outdoor unit (A) having a compressor (1) whose capacity is adjusted in multiple stages. (
A multi-type refrigeration system equipped with the refrigerant circulation system (Z) includes a capacity control means (50) for controlling the capacity of the compressor (1) to adjust the refrigerating capacity, and a refrigerant circulation system (Z).
), a condensing temperature detecting means (51) for detecting the condensing temperature of the refrigerant, an evaporating temperature detecting means (TH7) for detecting the evaporating temperature of the refrigerant or a signal corresponding thereto, and both detecting means (51), (TH7). ), the lowest stage regulation means (52) regulates the lowest stage of the capacity control of the compressor (1) by the capacity control means (50) according to the condensation temperature and evaporation temperature of the refrigerant. A protection device for a refrigeration device characterized by:
JP29819987A 1987-11-26 1987-11-26 Protective device for refrigerator Pending JPH01139967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29819987A JPH01139967A (en) 1987-11-26 1987-11-26 Protective device for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29819987A JPH01139967A (en) 1987-11-26 1987-11-26 Protective device for refrigerator

Publications (1)

Publication Number Publication Date
JPH01139967A true JPH01139967A (en) 1989-06-01

Family

ID=17856498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29819987A Pending JPH01139967A (en) 1987-11-26 1987-11-26 Protective device for refrigerator

Country Status (1)

Country Link
JP (1) JPH01139967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103968A (en) * 1990-08-20 1992-04-06 Hitachi Ltd Freezing cycle control system for multi-air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103968A (en) * 1990-08-20 1992-04-06 Hitachi Ltd Freezing cycle control system for multi-air conditioner

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
JP2664740B2 (en) Air conditioner
EP2075519B1 (en) Air Conditoning system
JP4440883B2 (en) Air conditioner
JPH05256525A (en) Air-conditioner
JP2922002B2 (en) Air conditioner
EP3601907B1 (en) A vapour compression system with a suction line liquid separator
EP1347248A1 (en) Air conditioner and control method for the air conditioner
JPH01139965A (en) Operation controller for refrigerator
JPH01139967A (en) Protective device for refrigerator
JP2508347B2 (en) Heat pump system
JPS63297784A (en) Protecting device for refrigeration device
JP3170532B2 (en) Air conditioner
JPH07190534A (en) Heat storage type air conditioning equipment
JPH052902B2 (en)
JPH04222341A (en) Operation controller for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
KR100696712B1 (en) System and method for protecting compressor of multi air-conditioner
JP3945523B2 (en) Refrigeration equipment
JP2757685B2 (en) Operation control device for air conditioner
KR100941470B1 (en) A heat pump system and an operating control method for the same
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPH01139966A (en) Protective device for refrigerator
JP2614253B2 (en) Air conditioner
JPH01203850A (en) Air conditioner