JPH01138718A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01138718A
JPH01138718A JP29726287A JP29726287A JPH01138718A JP H01138718 A JPH01138718 A JP H01138718A JP 29726287 A JP29726287 A JP 29726287A JP 29726287 A JP29726287 A JP 29726287A JP H01138718 A JPH01138718 A JP H01138718A
Authority
JP
Japan
Prior art keywords
metal
substrate
plating
type
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29726287A
Other languages
Japanese (ja)
Inventor
Hitoshi Hasegawa
長谷川 斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29726287A priority Critical patent/JPH01138718A/en
Publication of JPH01138718A publication Critical patent/JPH01138718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive improvement both in tight adhesion and barrier property between a buried metal and a semiconductor substrate by a method wherein a barrier metal, having affinity to both of semiconductor and a plating metal, which prevents the diffusion of plated metal to a semiconductor substrate, is adhered in advance. CONSTITUTION:The surface of a P-type Si substrate 21 is covered by a PSG film having an aperture part 5 to be used to lead out an electrode, and an N<+> region is provided. TiW 25, which has affinity to both of semiconductor Si and plating metal and prevents the diffusion of Au to Si, is deposited on the whole surface of the substrate 21. Then, using a resist 26 which will be peeled off as a mask, the TiW 25 is removed excluding the electrode lead-out part 5 and its circumference. The substrate 21 is dipped into an Au electrolyte with substrate side in negative potential. At this time, a light is projected from the rear side of the substrate 21, the backward current of the P-N junction is increased, and Au plating is grown. Then, after TiW 28, which has affinity with both of Au and the wiring metal of Al has been deposited on the whole surface, Al is deposited, patterning is conducted, and an Al wiring is formed.

Description

【発明の詳細な説明】 〔概要〕 半導体基板上の電極取り出し部の形成方法に関電極取り
出し部のステンプカバレージを良好にすると共に電極取
り出し部の埋め込み金属と半4体基板との密着性および
バリヤー性を向上させることを目的とし。
[Detailed Description of the Invention] [Summary] A method for forming an electrode lead-out portion on a semiconductor substrate involves improving the stamp coverage of the electrode lead-out portion and improving the adhesion between the embedded metal of the electrode lead-out portion and the semi-quadrite substrate. The purpose is to improve barrier properties.

半導体基板の上に形成された絶縁膜に設けられた開孔部
中に、電極取り出し用の金属をメッキにより析出させる
半導体装置の製造方法において。
In a method of manufacturing a semiconductor device, a metal for taking out an electrode is deposited by plating into an opening provided in an insulating film formed on a semiconductor substrate.

開孔部に、半導体とメッキ金属の双方に相性が良くかつ
メッキ金属が半導体基板に拡散するのを防ぐ能力を有す
るバリヤ−メタルを付着させ、その上に電極取り出し用
の金属をメッキにより析出させてメッキ膜を形成するよ
うに構成する。
A barrier metal that is compatible with both the semiconductor and the plating metal and has the ability to prevent the plating metal from diffusing into the semiconductor substrate is attached to the opening, and a metal for taking out the electrode is deposited on it by plating. to form a plating film.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法、特に半導体基板上の
電極取り出し部の形成方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming an electrode lead-out portion on a semiconductor substrate.

現在、l4Sl配線材料として、ΔlまたはA1合金が
用いられ、その3膜形成方法として真空蒸着やスパッタ
リングが用いられている。
Currently, Δl or A1 alloy is used as the l4Sl wiring material, and vacuum evaporation and sputtering are used as methods for forming the three films.

素子の高集積度化、高密度化が進むにつれて。As devices become more highly integrated and densely packed.

AI配線を行うべき下地の段差形状が厳しくなってきて
いる。すなわち、アスペクト比(段差の高さと開花部の
大きさとの比)が大きくなってきている。このため、良
好なステップカバレージを持ったAI膜を形成すること
が困難になってきている。
The shape of the step on the base for AI wiring is becoming stricter. In other words, the aspect ratio (the ratio between the height of the step and the size of the flowering part) is increasing. For this reason, it has become difficult to form an AI film with good step coverage.

この傾向は、多層配線構造を持つ素子ではより深刻であ
る。
This tendency is more serious in devices having a multilayer wiring structure.

〔従来の技術〕[Conventional technology]

第5図は、従来例を示す図である。 FIG. 5 is a diagram showing a conventional example.

第5図において、61はP型Si基板、62はP型Si
基板61の表面に形成されたN゛型領領域63はP型S
i基板61とN°型領領域62で形成されたPN接合、
64はP型Si基板61上に形成され、 SiO2,P
SG等からなる絶縁膜、65は絶縁膜64中に形成され
た電極取り出し用の開孔部。
In FIG. 5, 61 is a P-type Si substrate, 62 is a P-type Si substrate, and 62 is a P-type Si substrate.
The N-type region 63 formed on the surface of the substrate 61 is a P-type S
A PN junction formed by the i-substrate 61 and the N° type region 62,
64 is formed on the P-type Si substrate 61, SiO2, P
An insulating film made of SG or the like, 65 is an opening formed in the insulating film 64 for taking out an electrode.

66はAI&!線である。66 is AI&! It is a line.

従来、^l配線66は、真空蒸着やスパッタリングによ
りAIを半導体基板の上面から堆積した後。
Conventionally, the wiring 66 is formed after AI is deposited from the top surface of the semiconductor substrate by vacuum evaporation or sputtering.

バクーニングして形成していた。It was formed by bakuning.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方法では、第5図に示したように、開花部65の
アスペクト比が大きい場合、 AI配線66に断線、陥
没、盛り上がり等が生じてステップカバレージが良くな
いという問題が生じていた。
In the conventional method, as shown in FIG. 5, when the aspect ratio of the flowering part 65 is large, the AI wiring 66 is broken, depressed, bulged, etc., resulting in poor step coverage.

本発明は、ステップカバレージが良好な電極取り出し部
を形成することができるようにすると共に電極取り出し
部の埋め込み金属と半導体基板との密着性およびバリヤ
ー性を向上させた半導体装置の製造方法を提供すること
を目的とする。
The present invention provides a method for manufacturing a semiconductor device that enables the formation of an electrode lead-out part with good step coverage and improves the adhesion and barrier properties between the embedded metal of the electrode lead-out part and a semiconductor substrate. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電極取り出し用の開孔部の底面の半導体基板
の上から、電解メッキにより、半導体および配線用の金
属の双方になじみ易い金属を析出させて開孔部を充填し
た後1表面に配線用の金属を堆積させれば、開花部のス
テップカバレージが良好になるという知見に基づいてな
されたものである。
In the present invention, a metal that is compatible with both the semiconductor and wiring metal is deposited from the top of the semiconductor substrate at the bottom of the hole for taking out the electrode by electrolytic plating, and the hole is filled with a metal that is easily compatible with both the semiconductor and the metal for wiring. This was done based on the knowledge that step coverage in the flowering area would be improved if metal for wiring was deposited.

しかしながら、半導体基板に直接メッキ膜を形成すると
、密着性が悪<、!1.l+かれてしまうという問題が
ある。
However, when a plating film is formed directly on a semiconductor substrate, the adhesion is poor! 1. There is a problem that l+ is lost.

そこで1本発明では、予め、電極取り出し用の開花部に
、半導体とメッキ金属の双方に相性が良いと共にメッキ
金属が半導体基板に拡散するのを防ぐ能力を有するバリ
ヤ−メタルを付着させた後にメッキを行うことにより、
上記の問題を解決した。
Therefore, in the present invention, a barrier metal that is compatible with both the semiconductor and the plating metal and has the ability to prevent the plating metal from diffusing into the semiconductor substrate is attached to the flowering part for taking out the electrode in advance, and then the plating is performed. By doing
Solved the above problem.

第1図(a)および(b)は1本発明の原理説明図であ
る。
FIGS. 1(a) and 1(b) are diagrams explaining the principle of the present invention.

第1図(a)および(b)において、1はP型半導体基
板、2はP型半専体基Fi1の表面に形成されたN゛型
領領域3はP型半導体基板1およびN゛型領領域2で形
成されたPN接合、4は絶縁膜、5は絶縁膜4中に設け
られた電極取り出し用の開孔部、6は開孔部5の内面に
形成された。半導体とメッキ金属の双方に相性が良いと
共にメッキ金属が半導体基板に拡散するのを防ぐ能力を
有するバリヤ−メタル57は開孔部5に析出されたメッ
キ膜である。
In FIGS. 1(a) and (b), 1 is a P-type semiconductor substrate, 2 is an N-type region 3 formed on the surface of a P-type semi-dedicated group Fi1, and 2 is a P-type semiconductor substrate 1 and an N-type region 3 formed on the surface of a P-type semi-dedicated group Fi1. A PN junction was formed in the region 2, 4 was an insulating film, 5 was an opening provided in the insulating film 4 for taking out an electrode, and 6 was formed on the inner surface of the opening 5. The barrier metal 57 is a plating film deposited in the opening 5, which is compatible with both the semiconductor and the plating metal and has the ability to prevent the plating metal from diffusing into the semiconductor substrate.

〔作用〕[Effect]

まず、第1図(a)に示すように、絶縁膜4中に形成さ
れた電極取り出し用の開孔部5に半導体とメッキ金属の
双方に相性が良くかつメッキ金属が半導体基板に拡散す
るのを防ぐ能力を有するバリヤ−メタル6を付着させた
後、P型半導体基板1を負電位にして9メッキ金属の電
解液中に浸して電解メッキを行う。
First, as shown in FIG. 1(a), the opening 5 for taking out the electrode formed in the insulating film 4 has good compatibility with both the semiconductor and the plating metal, and the plating metal can diffuse into the semiconductor substrate. After depositing a barrier metal 6 having the ability to prevent this, the P-type semiconductor substrate 1 is brought to a negative potential and immersed in an electrolytic solution for plating metal to perform electrolytic plating.

この際、電極取り出し用の開花部5の下に、第1図に示
すように、N゛型領領域2設けられている場合に問題が
生じる。すなわち、電解メッキの際に、P型半導体基板
1は常に負の電位にされるので、P型半導体基板1とN
゛型領領域2で形成されるPN接合3は逆バイアスされ
、電流がほとんど流れず、したがって、メッキ金属はほ
とんど析出されない。
At this time, a problem arises when an N-shaped area 2 is provided below the flowering part 5 for taking out the electrode, as shown in FIG. That is, during electrolytic plating, since the P-type semiconductor substrate 1 is always brought to a negative potential, the P-type semiconductor substrate 1 and the N
The PN junction 3 formed in the ゛-type region 2 is reverse biased so that little current flows, and therefore little plating metal is deposited.

この問題は、P型半導体基板1に光を照射することによ
り、PN接合3の逆方向電流を増加させてメッキ生長を
生じさせることにより解決することができる。
This problem can be solved by irradiating the P-type semiconductor substrate 1 with light to increase the reverse current in the PN junction 3 and cause plating growth.

P型半導体基板1に光を照射する場合、P型半導体基F
i、1の表面には鞄緑膜4や析出金属等があるので、光
の照射は、P型半導体基板1の背面から行う。
When irradiating light onto the P-type semiconductor substrate 1, the P-type semiconductor substrate F
Since there is a bag green film 4, precipitated metal, etc. on the surface of i, 1, the light irradiation is performed from the back side of the P-type semiconductor substrate 1.

P型半導体基板Iの背面から照射された光は。The light irradiated from the back side of the P-type semiconductor substrate I is.

P型半導体基板1に吸収され、PN接合3に到達し、P
N接合3の逆方向電流を増加させる。これにより、電極
取り出し用の開孔部5の底面からメッキが生長し、第1
図(b)に示すようにメッキ膜7が形成される。
It is absorbed into the P-type semiconductor substrate 1, reaches the PN junction 3, and P
The reverse current of N junction 3 is increased. As a result, the plating grows from the bottom of the opening 5 for taking out the electrode, and the first
A plating film 7 is formed as shown in Figure (b).

この後、メッキ膜7の表面に、メッキ金属および配線金
属の双方に相性の良い金属を付着させ。
Thereafter, a metal compatible with both the plating metal and the wiring metal is attached to the surface of the plating film 7.

その上に配線金属を堆積させた後、バターニングを行っ
て金属配線を形成する。
After depositing wiring metal thereon, patterning is performed to form metal wiring.

〔実施例〕〔Example〕

(実施例1) 第2図は、実施例1を示す図である。 (Example 1) FIG. 2 is a diagram showing the first embodiment.

本実施例は、半導体基板表面の全面に付着させたバリヤ
−メタルのうち開孔部以外の部分を、開孔部に設けたレ
ジストをマスクにしてエツチングにより除去した後、レ
ジストを除去し、バリヤ−メタルの上にメッキを行うも
のである。
In this example, the portions of the barrier metal adhered to the entire surface of the semiconductor substrate other than the openings are removed by etching using the resist provided in the openings as a mask, and then the resist is removed and the barrier metal is removed. - Plating is performed on metal.

第2図において、21はP型Si基板、22はP型Si
基板21の表面に設けられたN゛型領領域23はP型S
i基板21およびN゛型領領域22で形成されるPN接
合、24はPSG膜、25はバリヤ−メタルとしてのT
iW、26はレジスl−,27はAuメッキ膜、28は
メッキ金属および配線金属の双方と相性の良い金属とし
てのTiW、29はAI配線である。
In FIG. 2, 21 is a P-type Si substrate, 22 is a P-type Si substrate, and 22 is a P-type Si substrate.
The N-type region 23 provided on the surface of the substrate 21 is a P-type S
A PN junction formed by an i-substrate 21 and an N-type region 22, 24 a PSG film, and 25 a T film as a barrier metal.
iW, 26 is a resist l-, 27 is an Au plating film, 28 is TiW as a metal that is compatible with both the plating metal and the wiring metal, and 29 is an AI wiring.

以下、第2図に基づいて2本実施例を詳細に説明する。Hereinafter, two embodiments will be described in detail based on FIG.

■ 表面が電極取り出し用の開孔部を有する厚さ1μm
のPSG膜24で覆われ、N′領域22が設けられたP
型Si基板21の表面全体に真空蒸着やスパッタリング
によりTiW25を2000大の厚さに堆積させる。
■ 1 μm thick surface with openings for electrode extraction
P is covered with a PSG film 24 and provided with an N' region 22.
TiW 25 is deposited to a thickness of 2000 mm over the entire surface of the type Si substrate 21 by vacuum evaporation or sputtering.

■ 電極取り出し用の開孔部およびその周囲をレジスト
26で覆う。
(2) Cover the opening for taking out the electrode and its surroundings with a resist 26;

■ レジスト26をマスクとして5電極取り出し部およ
びその周囲を残してTiW25をエツチングにより除去
する。
(2) Using the resist 26 as a mask, the TiW 25 is removed by etching, leaving the 5-electrode extraction portion and its surroundings.

■ レジスト26をff1lX’lfする。■ Perform ff1lX'lf on the resist 26.

■ P型Si基板21を、基板側を負電位にしてAuの
電解液中に浸してTiW25の上にAuをメッキ生長さ
せてAuメッキ膜27を形成する。
(2) A P-type Si substrate 21 is immersed in an Au electrolyte with the substrate side set to a negative potential, and Au is plated and grown on the TiW 25 to form an Au plating film 27.

この時、P型Si基板21は負電位であるから。At this time, the P-type Si substrate 21 is at a negative potential.

P型Si基板21とN″領域22とで形成されるPN接
合23は逆バイアスとなり、電流がほとんど流れない。
The PN junction 23 formed by the P-type Si substrate 21 and the N'' region 22 is reverse biased, and almost no current flows.

そこで、P型St基板21の背面から光を照射してPN
接合23の逆方向電流を増大させてAuのメッキ生長を
行う。
Therefore, light is irradiated from the back side of the P-type St substrate 21 to form a PN
The reverse current in the junction 23 is increased to cause Au plating to grow.

1例として、電流密度2 m A / cdで10分間
メッキ生長を行った場合、 Auメッキ膜27は0.5
μmの厚さに形成された。
As an example, when plating is grown for 10 minutes at a current density of 2 mA/cd, the Au plating film 27 is 0.5 mA/cd.
It was formed to a thickness of μm.

■ Auメッキ膜27が形成されたP型Si基板21の
表面全体にAuおよび配線金属である八1の双方に相性
の良い金属としてTiW28を真空蒸着やスパッタリン
グにより、2.000人の11さにtl積させた後、バ
ターニングを行う。
■ On the entire surface of the P-type Si substrate 21 on which the Au plating film 27 has been formed, TiW 28, which is a metal that is compatible with both Au and the wiring metal 81, is deposited on 2,000 11 layers by vacuum evaporation or sputtering. After tl stacking, buttering is performed.

■ 基板表面全体に配線金属であるAIを真空蒸着やス
パッタリングにより、1μmの厚さに堆積させた後、バ
ターニングを行ってAI配線29を形成する。
(2) AI, which is a wiring metal, is deposited on the entire surface of the substrate to a thickness of 1 μm by vacuum evaporation or sputtering, and then patterning is performed to form an AI wiring 29.

以上の説明ではバリヤ−メタルとしてTiWを用いた場
合を示したが、バリヤ−メタルとしては。
In the above explanation, the case where TiW was used as the barrier metal was shown, but as the barrier metal.

TiWの他に、 Ti、Ni、TiN、Cr+Pd、C
u、Pt等が用いられる。
Besides TiW, Ti, Ni, TiN, Cr+Pd, C
U, Pt, etc. are used.

(実施例2) 第3図は、実施例2を示す図である。(Example 2) FIG. 3 is a diagram showing the second embodiment.

本実施例は、半導体基板表面の全面にバリヤ−メタルを
付着させ、開孔部以外の部分にレジストを設け、この状
態で開孔部にメッキを行い、その後、レジストを剥離し
、形成されたメッキ膜をマスクとして余分のバリヤ−メ
タルをエツチングにより除去するものである。
In this example, a barrier metal is attached to the entire surface of the semiconductor substrate, a resist is provided on the part other than the opening, plating is performed on the opening in this state, and then the resist is peeled off. Excess barrier metal is removed by etching using the plating film as a mask.

第3図において、31はP型Si基板、32はP型Si
基板31の表面に設けられたN°型領領域33はP型S
i基板31およびN゛型領領域32で形成されるPN接
合、34はPSG膜、35はバリヤ−メタルとしてのT
iW、36はレジスト、37はAuメッキ膜、38はメ
ッキ金属および配線金属の双方と相性の良い金属として
のTiW、39はAt配線である。
In FIG. 3, 31 is a P-type Si substrate, 32 is a P-type Si substrate, and 32 is a P-type Si substrate.
The N° type region 33 provided on the surface of the substrate 31 is a P type S
A PN junction formed by an i-substrate 31 and an N-type region 32, 34 a PSG film, and 35 a T film as a barrier metal.
iW, 36 is a resist, 37 is an Au plating film, 38 is TiW as a metal that is compatible with both the plating metal and the wiring metal, and 39 is an At wiring.

以下、第3図に基づいて9本実施例を詳細に説明する。Hereinafter, nine embodiments will be described in detail based on FIG.

■ 表面が電極取り出し用の開花部を存する。厚さ1μ
mのPSG膜34で覆われ、N″領域32が設けられた
P型S1基板31の表面全体に真空7着やスパッタリン
グによりTiW35を2000人の厚さに堆積させる。
■ The surface has a flowering part for taking out the electrode. Thickness 1μ
TiW 35 is deposited to a thickness of 2,000 nm over the entire surface of the P-type S1 substrate 31 covered with a PSG film 34 of 2,000 nm and provided with an N'' region 32 by vacuum deposition or sputtering.

■ 電極取り出し用の開花部およびその周囲を残してレ
ジスト36を塗布する。
■ Apply resist 36, leaving the flowering part and its surroundings for electrode extraction.

■ P型Si基板31を、基板側を負電位にしてAuの
電解液中に浸してTiW35の上にAuをメッキ生長さ
せてAuメッキ膜37を形成する。
(2) A P-type Si substrate 31 is immersed in an Au electrolyte with the substrate side set to a negative potential, and Au is plated and grown on the TiW 35 to form an Au plating film 37.

この時、P型Si基板31が負電位であるから。At this time, the P-type Si substrate 31 is at a negative potential.

P型Sii板31とN I hp域32とで形成される
PN接合33は逆バイアスとなり、電流がほとんど流れ
ない。そこで、P型Si%仮31の背面から光を照射し
てPN接合33の逆方向電流を増大させてAuのメッキ
生長を行う。
The PN junction 33 formed by the P-type Sii plate 31 and the N I hp region 32 is reverse biased, and almost no current flows. Therefore, light is irradiated from the back side of the P-type Si% temporary 31 to increase the reverse current in the PN junction 33 to grow Au plating.

1例として5電流密度2 m A / cfflで10
分間メッキ生長を行った場合、0.5μmの厚さのAu
メッキ膜37が形成できた。
10 at a current density of 2 mA/cffl as an example
When plating growth is performed for minutes, Au with a thickness of 0.5 μm
A plating film 37 was formed.

■ レジスト36を剥離する。■ Peel off the resist 36.

■ Auメッキ膜37をマスクとして余分のTiW35
をエツチングにより除去する。
■ Using the Au plating film 37 as a mask, remove extra TiW 35
is removed by etching.

■ Auメッキ膜37が形成されたP型Si基板3Iの
表面全体にAuおよび配線金属であるAIの双方に相性
の良い金属としてTiW38を真空蒸着やスパッタリン
グにより、2000人の厚さに堆積させた後、バターニ
ングを行う。
■ On the entire surface of the P-type Si substrate 3I on which the Au plating film 37 was formed, TiW 38, a metal that is compatible with both Au and the wiring metal AI, was deposited to a thickness of 2000 nm by vacuum evaporation or sputtering. Afterwards, perform buttering.

■ 基板表面全体に配線金属であるAIを真空蒸着やス
パッタリングにより、1μmの厚さに堆積させた後、パ
ターニングを行ってAt配線39を形成する。
(2) After depositing AI, which is a wiring metal, on the entire surface of the substrate to a thickness of 1 μm by vacuum evaporation or sputtering, patterning is performed to form an At wiring 39.

以上の説明ではバリヤ−メタルとしてTiWを用いた場
合を示したが、バリヤ−メタルとしては。
In the above explanation, the case where TiW was used as the barrier metal was shown, but as the barrier metal.

TNR/の他に、Ti、N++T+)1.Cr、Pd、
Cu、Pt等が用いられる。
In addition to TNR/, Ti, N++T+)1. Cr, Pd,
Cu, Pt, etc. are used.

(実施例3) 第4図は、実施例3を示す図である。(Example 3) FIG. 4 is a diagram showing the third embodiment.

本実施例は4本発明を、電極取り出し部の下池が半導体
基板ばかりでなく、配線金属の場合にも適用したもので
ある。
In this embodiment, the present invention is applied not only to a semiconductor substrate but also to a case where the lower layer of the electrode lead-out portion is a metal wiring.

第4図において、41はP型Si基板、42はP型Si
基板41の表面に設けられたN゛型領領域43はP型S
i基板41およびN°型領領域42より形成されるPN
接合、44はPSG膜、45はバリヤ−メタルとしての
TiW、46はAuメッキ膜。
In FIG. 4, 41 is a P-type Si substrate, 42 is a P-type Si substrate, and 42 is a P-type Si substrate.
The N-type region 43 provided on the surface of the substrate 41 is a P-type S
PN formed by the i-substrate 41 and the N° type region 42
44 is a PSG film, 45 is TiW as a barrier metal, and 46 is an Au plating film.

47は篩メッキ46および配線金属の双方と相性の良い
金属としてのTiW、48はAt配線、49はP型Si
基板に直接設けられたAI!i!線、50はpsG膜、
51はAt配線49上に被着されたバリヤ−メタルとし
てのTiW、52はAuメッキ膜、53はメッキ金属お
よび配線金属の双方と相性の良い金属としてのTiW、
54はAt配線である。
47 is TiW as a metal that is compatible with both the sieve plating 46 and the wiring metal, 48 is At wiring, and 49 is P-type Si.
AI installed directly on the board! i! line, 50 is psG film,
51 is TiW as a barrier metal deposited on the At wiring 49; 52 is an Au plating film; 53 is TiW as a metal compatible with both the plating metal and the wiring metal;
54 is an At wiring.

本実施例では、第4図の左側に示した電極取り出し部は
、実施例1および実施例2と同様に半導体基板の上から
形成されているが、右側に示した電極取り出し部は、 
At配線の上から形成されている。
In this example, the electrode lead-out portion shown on the left side of FIG. 4 is formed from above the semiconductor substrate as in Examples 1 and 2, but the electrode lead-out portion shown on the right side
It is formed from above the At wiring.

このように1本発明は、メッキ金属が析出する下地が半
導体基板でなく、配線金属であっても適用することがで
きる。
As described above, the present invention can be applied even if the base on which the plating metal is deposited is not a semiconductor substrate but a wiring metal.

したがって、多層配線の形成に有用である。Therefore, it is useful for forming multilayer wiring.

以上の説明ではバリヤ−メタルとしてTiWを用いた場
合を示したが、バリヤ−メタルとしては。
In the above explanation, the case where TiW was used as the barrier metal was shown, but as the barrier metal.

TtWの他に、 Ti、Ni+TiN+Cr、Pd、C
u、Pt等が用いられる。
In addition to TtW, Ti, Ni+TiN+Cr, Pd, C
U, Pt, etc. are used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ステンプカバレージが良好な電極取り
出し部を形成することができると共に電極取り出し部の
埋め込み金属と半導体基板との密着性およびバリヤー性
を向上させることができる。
According to the present invention, it is possible to form an electrode lead-out portion with good stamp coverage, and it is also possible to improve the adhesion and barrier properties between the embedded metal of the electrode lead-out portion and the semiconductor substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は実施例1を示す
回、第3図は実施例2を示す図、第4図は実施例3を示
す図、第5図は従来例を示す図である。 第1図において lap型半導体基板 2:N゛型領領 域:PN接合 4:絶縁膜 5:開孔部 6:バリヤ−メタル 7;メッキ膜
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a diagram showing the first embodiment, Fig. 3 is a diagram showing the second embodiment, Fig. 4 is a diagram showing the third embodiment, and Fig. 5 is a conventional example. FIG. In FIG. 1, a lap type semiconductor substrate 2: an N-type region: a PN junction 4: an insulating film 5: an opening 6: a barrier metal 7; a plating film

Claims (1)

【特許請求の範囲】  半導体基板(1)の上に形成された絶縁膜(4)に設
けられた開孔部(5)中に、電極取り出し用の金属をメ
ッキにより析出させる半導体装置の製造方法において、 開孔部(5)に、半導体とメッキ金属の双方に相性が良
くかつメッキ金属が半導体基板(1)に拡散するのを防
ぐ能力を有するバリヤ−メタル(6)を付着させ、その
上に電極取り出し用の金属をメッキにより析出させてメ
ッキ膜(7)を形成することを特徴とする半導体装置の
製造方法。
[Claims] A method for manufacturing a semiconductor device, in which a metal for taking out an electrode is deposited by plating into an opening (5) provided in an insulating film (4) formed on a semiconductor substrate (1). A barrier metal (6) that is compatible with both the semiconductor and the plating metal and has the ability to prevent the plating metal from diffusing into the semiconductor substrate (1) is attached to the opening (5), and then A method for manufacturing a semiconductor device, comprising depositing a metal for taking out an electrode by plating to form a plating film (7).
JP29726287A 1987-11-25 1987-11-25 Manufacture of semiconductor device Pending JPH01138718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29726287A JPH01138718A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29726287A JPH01138718A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01138718A true JPH01138718A (en) 1989-05-31

Family

ID=17844246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29726287A Pending JPH01138718A (en) 1987-11-25 1987-11-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01138718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523025A (en) * 2003-04-10 2006-10-05 サンパワー コーポレイション Metal contact structure for solar cell and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523025A (en) * 2003-04-10 2006-10-05 サンパワー コーポレイション Metal contact structure for solar cell and manufacturing method

Similar Documents

Publication Publication Date Title
US3751292A (en) Multilayer metallization system
JPH06204281A (en) Improved semiconductor bonding pad constituent body and its manufacture
JPH01138718A (en) Manufacture of semiconductor device
US7075113B2 (en) Semiconductor device and method for fabricating the same
JPS59154041A (en) Formation of electrode of semiconductor device
JPS60115221A (en) Manufacture of semiconductor device
JP3116573B2 (en) Bump electrode for semiconductor device and method of forming the same
JPH02224336A (en) Manufacture of semiconductor device
JPH01138717A (en) Manufacture of semiconductor device
JP2725611B2 (en) Semiconductor device
JPH03101233A (en) Electrode structure and its manufacture
JPH02148739A (en) Manufacture of semiconductor device
JPH05218047A (en) Manufacture of semiconductor device
TWI253157B (en) Structure and method of forming conductive bumps with same height
JPH03246945A (en) Semiconductor device
JPS5823934B2 (en) Electrode formation method for semiconductor devices
JPH08213402A (en) Manufacture of semiconductor device
TWI339416B (en) Method of forming conductive bumps with different diameters
JPH03132036A (en) Manufacture of semiconductor device
JPH0369118A (en) Manufacture of semiconductor device
JPH07283225A (en) Circuit board with bump electrode
JPS58139426A (en) Manufacture of semiconductor device
JPS6059742B2 (en) Semiconductor device and its manufacturing method
JPS58134428A (en) Manufacture of semiconductor device
JPS5987889A (en) Manufacture of semiconductor element