JPH01132066A - Sealed nickel-hydrogen storage battery using hydrogen absorbing alloy - Google Patents

Sealed nickel-hydrogen storage battery using hydrogen absorbing alloy

Info

Publication number
JPH01132066A
JPH01132066A JP62290019A JP29001987A JPH01132066A JP H01132066 A JPH01132066 A JP H01132066A JP 62290019 A JP62290019 A JP 62290019A JP 29001987 A JP29001987 A JP 29001987A JP H01132066 A JPH01132066 A JP H01132066A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
storage battery
hydrogen storage
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62290019A
Other languages
Japanese (ja)
Other versions
JP2733230B2 (en
Inventor
Isao Matsumoto
功 松本
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Yasuko Ito
康子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17750736&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01132066(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62290019A priority Critical patent/JP2733230B2/en
Priority to EP88302472A priority patent/EP0284333B1/en
Priority to US07/171,739 priority patent/US4935318A/en
Priority to DE3854727T priority patent/DE3854727T2/en
Publication of JPH01132066A publication Critical patent/JPH01132066A/en
Application granted granted Critical
Publication of JP2733230B2 publication Critical patent/JP2733230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make it possible to elongate the life of a sealed nickel-hydrogen storage battery by using a positive electrode and a negative electrode made by the specified manufacturing method and controlling the battery capacity by means of the positive electrode capacity. CONSTITUTION:The storage battery presented here is composed of the combination of a positive electrode 1 and a negative electrode 2 whose compositions are as follows: the positive electrode 1 is an unformed one to which is added beforehand the appropriate quantity of cobalt or cobalt oxide being not discharged after electrochemical charge, and the negative electrode 2 is an alloy one that hydrogen-absorbing alloy is only filled in or coated on a supporter. Since the alloy negative electrode has yet some residual discharge power after the complete discharge of the battery, the battery capacity is controlled by means of the positive electrode capacity. The life of the battery can thereby be elongated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極に一水素吸蔵合金を用いたニッケル・水
素蓄電池の構成の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in the structure of a nickel-hydrogen storage battery using a monohydrogen storage alloy for the negative electrode.

従来の技術 高密度に水素を吸蔵・放出する水素吸蔵合金を負極材料
に用いるニッケル・水素蓄電池は密閉化が可能で、円筒
密閉形ニッケル・カドミウム蓄電池(以後二カド電池と
称する)をはるかに凌ぐ高エネルギー密度電池として期
待されている。しかし、このニッケル・水素蓄電池は、
現在まだ開発段階であシミ池の構成方法に基準となるも
のが乏しい。このため、従来0ニカド電池の構成方法を
参考にする場合が多い。電池構成時におけるニカド電池
は、通常以下の状態の正・負極をセパレータを介して渦
巻状に構成し、電解液とともに円筒状の缶に挿入し密閉
される。
Conventional technology Nickel-hydrogen storage batteries, which use a hydrogen storage alloy that stores and releases hydrogen at high density as the negative electrode material, can be sealed and are far superior to sealed cylindrical nickel-cadmium storage batteries (hereinafter referred to as 2-cadmium batteries). It is expected to be used as a high energy density battery. However, this nickel-metal hydride storage battery
Currently, it is still in the development stage and there are few standards for how to configure Shimi Pond. For this reason, the construction method of a conventional 0 NiCd battery is often referred to. In a nickel-cadmium battery, positive and negative electrodes in a sub-normal state are spirally formed with a separator in between, and the battery is inserted into a cylindrical can together with an electrolyte and sealed.

(1)  焼結式ニッケル正極の場合は、ニッケルの焼
結基板内部に活物質であるN1(OI()2を充填し、
アルカリ水溶液中で電気化学的に充放電を施したのち水
洗・乾燥を経過した放電状態である。
(1) In the case of a sintered nickel positive electrode, the active material N1(OI()2) is filled inside the nickel sintered substrate,
This is the discharged state after electrochemical charging and discharging in an alkaline aqueous solution, followed by washing and drying.

非焼結式ニッケル正極の場合はN l (OH) 2を
塗着または充填した放電状態である。
In the case of a non-sintered nickel positive electrode, it is in a discharge state where Nl(OH)2 is applied or filled.

(巧 カドミウム負極の場合は、焼結式および非焼結式
のいずれもが、アルカリ水溶液中で電気化学的に部分充
電を施したのち水洗・乾燥を経過した未放電状態である
(Takumi Cadmium negative electrodes, both sintered and non-sintered, are in an undischarged state after being electrochemically partially charged in an alkaline aqueous solution, then washed and dried.

この理由は、一般にカドミウム負極はニッケル正極に比
べて、高率放電特性に劣るためあらかじめ負極側に放電
可能容量を前記した方法で設け、正極容量によって電池
容量を規制するためである。これによって、負極が、電
池の放電後においても完全放電状態あるいは過放電状態
になることが防止でき、負極活物質の溶出に起因するサ
イクル寿命の劣化が抑制される。
The reason for this is that cadmium negative electrodes generally have inferior high-rate discharge characteristics compared to nickel positive electrodes, so a dischargeable capacity is provided in advance on the negative electrode side by the method described above, and the battery capacity is regulated by the positive electrode capacity. This prevents the negative electrode from entering a fully discharged state or an overdischarged state even after the battery is discharged, and deterioration of cycle life due to elution of the negative electrode active material is suppressed.

ニッケル・水素蓄電池では、ニッケル正極を用いる点は
、ニカド電池と同様であるが、負極活物質に水素を吸蔵
・放出する水素吸蔵合金を使用する(以後、合金負極と
略称する)。一般に、合金負極はカドミウム負極と同様
に、ニッケル正極と比べて高率放電特性に劣るためこの
場合も前記(1)(2)の状態で電池を構成する必要が
ある。そこで合金負極を部分充電状態にするため、以下
の方法が提案されている。
Nickel-hydrogen storage batteries use a nickel positive electrode, similar to nickel-cadmium batteries, but use a hydrogen storage alloy that absorbs and releases hydrogen in the negative electrode active material (hereinafter abbreviated as alloy negative electrode). In general, alloy negative electrodes, like cadmium negative electrodes, are inferior to nickel positive electrodes in high rate discharge characteristics, so in this case as well, it is necessary to construct a battery under the conditions (1) and (2) above. Therefore, the following method has been proposed to bring the alloy negative electrode into a partially charged state.

■ カドミウム負極と同様ブルカ、り溶液中で部分充電
を施す。
■ As with the cadmium negative electrode, partial charging is performed in a burqa solution.

■ 水素ガスの吸蔵放出操作により合金を粉砕するとと
もに一部の水素を残しておき、この状態の合金粉末を用
いて負極を構成する(水素の吸蔵は充電に相当する)。
■ The alloy is pulverized by a hydrogen gas storage/release operation, and some hydrogen is left behind, and the alloy powder in this state is used to form a negative electrode (hydrogen storage corresponds to charging).

発明が解決しようとする問題点 前記■■の方法は、従来のカドミウム負極の化成操作に
あたる煩雑な水素吸蔵操作を必要とする。
Problems to be Solved by the Invention The above-mentioned method (1) requires a complicated hydrogen storage operation that corresponds to the conventional chemical formation operation of a cadmium negative electrode.

また■■の方法では、電池構成前に大気に触れ水素を吸
蔵した活性な合金が燃焼する危険性がちシ、仮に燃えな
くても大気中に水素が飛散し、所望の水素吸蔵量が得ら
・れにくい。
In addition, with method ■■, there is a risk that the active alloy that is exposed to the atmosphere and has absorbed hydrogen before battery construction will burn, and even if it does not burn, hydrogen will scatter into the atmosphere, making it impossible to obtain the desired amount of hydrogen storage.・Not easy to break.

本発明は上記のような問題点を解消し、簡単な製法によ
る正極と負極を用いて、正極容量によシ容量が規制され
る長寿命の密閉形ニッケル・水素蓄電池を提供すること
を目的とする。
The purpose of the present invention is to solve the above-mentioned problems and provide a long-life sealed nickel-metal hydride storage battery whose capacity is regulated by the capacity of the positive electrode, using positive and negative electrodes manufactured using a simple manufacturing method. do.

問題点を解決するための手段 この問題点を解決するため本発明は、正極中に電気化学
的に充電され充電後は放電しない適量のコバ/l/)お
よび/またはコバルト酸化物を予め加えた無化成の正極
と、水素吸蔵合金を支持体に充填あるいは塗着しただけ
の合金負極とを組み合わせて電池を構成したものである
Means for Solving the Problem In order to solve this problem, the present invention pre-adds an appropriate amount of cobalt oxide (cobalt/l/) and/or cobalt oxide which is electrochemically charged and does not discharge after charging into the positive electrode. A battery is constructed by combining a chemical-free positive electrode and an alloy negative electrode in which a support is simply filled with or coated with a hydrogen storage alloy.

作  用 この構成によれば、電池の初充電でニッケル正極では活
物質であるNi(OH)2の他にコバ/l/)および/
または2価のコバ/l/l−酸化物(例えばCo (O
H) 2 )が充電され、一方合金負極ではこれら両者
の充電電気量の合計が充電される。しかし、コバルトお
よび/または2価のコバルト酸化物は3価のco203
等の高次酸化物になると放電されず、正極の放電は活物
質だけが働く。したがって、電池の完全放電後には合金
負極にまだ放電余力を有する結果、電池容量は正極容量
で規制され電池の長寿命化がはかれることとなる。
Effect: According to this configuration, in the first charge of the battery, in addition to the active material Ni(OH)2, the nickel positive electrode contains
or divalent Co/l/l-oxides (e.g. Co (O
H) 2) is charged, while the alloy negative electrode is charged with the total amount of charge of both of them. However, cobalt and/or divalent cobalt oxide is trivalent co203
When it becomes a higher order oxide such as, no discharge occurs, and only the active material works to discharge the positive electrode. Therefore, after the battery is completely discharged, the alloy negative electrode still has discharge capacity, and as a result, the battery capacity is regulated by the positive electrode capacity, and the life of the battery can be extended.

実施例 以下本発明の実施例を第1図と第2図を参照して説明す
る。
Embodiments Below, embodiments of the present invention will be described with reference to FIGS. 1 and 2.

Ni(OH)2粉末100重量部に対し平均粒径6μm
のコバルトカルボニル 物を水で混練し多孔度約96%、厚さ1.5鴫のスポン
ジ状ニッケル多孔体中に充填する。これを100℃で乾
燥後、加圧して平均厚さ7.8 mmとしたのち幅39
間、長さ60mmの寸法に切断し、理論容量1070m
Ahのニッケル正極1を得る。
Average particle size 6 μm for 100 parts by weight of Ni(OH)2 powder
The cobalt carbonyl compound was kneaded with water and filled into a sponge-like porous nickel material having a porosity of about 96% and a thickness of 1.5 mm. After drying this at 100℃, it was pressurized to an average thickness of 7.8 mm, and then a width of 39 mm.
Cut to a length of 60mm, theoretical capacity 1070m
A nickel positive electrode 1 of Ah is obtained.

MrnN l 3. s sMn o 、 4A J 
o 、 s C O o 、 7sとなるように溶解し
合金化された水素吸蔵合金を機械的に粉砕し、平均粒径
2o:μmの合金粉末を得る。
MrnN l 3. s sMno , 4A J
The hydrogen-absorbing alloy melted and alloyed to give 0, s C O o , 7s is mechanically pulverized to obtain an alloy powder with an average particle size of 2o:μm.

この粉末をポリビニルアルコ−)v 1,s wt%水
溶液でペースト状にし、厚さ0.9mmにした前記スポ
ンジ状ニッケル多孔体内に充填し、100℃で乾燥後加
圧して平均厚さ0.5mmの極板にする。ついで幅39
M、長さ80rranに切断し、理論容量1700mA
hの合金負極板を得る。ここで理論容量の算出には23
0mAh/合金1グラムを採用した。
This powder was made into a paste form with a polyvinyl alcohol) v 1,s wt% aqueous solution, filled into the sponge-like porous nickel body made to a thickness of 0.9 mm, dried at 100°C, and then pressurized to give an average thickness of 0.5 mm. Make it into a pole plate. Then the width is 39
M, cut to length 80rran, theoretical capacity 1700mA
Obtain an alloy negative electrode plate of h. Here, to calculate the theoretical capacity, 23
0mAh/1 gram of alloy was adopted.

このようにして得られた正・負極を汎用のポリアミド系
不織布のセパレータ3を介し、渦巻状に捲回してAAサ
イズのケース4に挿入し、ついで6.3NのKOH水溶
液を2.2−加えたのち絶縁リング5を介して正極端子
6を取付けた封口板7で封口した。第1図にこの電池の
概略図を示す。
The positive and negative electrodes obtained in this way were wound spirally through a general-purpose polyamide nonwoven fabric separator 3 and inserted into an AA size case 4, and then a 6.3N KOH aqueous solution was added to the case 4. Thereafter, it was sealed with a sealing plate 7 to which a positive electrode terminal 6 was attached via an insulating ring 5. FIG. 1 shows a schematic diagram of this battery.

なお、2で示した負極はケース4に直接接触するのでケ
ース4は負極端子を兼ねる。
Incidentally, since the negative electrode indicated by 2 is in direct contact with the case 4, the case 4 also serves as a negative electrode terminal.

第2図のaに、この電池を20’Cの雰囲気中で200
 mAで7.5時間充電後s o o m Aで放電し
たときの充放電サイクル数と放電容量の関係、すなわち
サイクル寿命試験の結果を示す。比較例として、合金負
極を予め約4oomAhの部分充電を施した前記合金負
極とCO粉末を含まない汎用の正極とを組み合せた電池
および部分充電を全く施さない合金負極と前記汎用の正
極とを組み合せた電池の同様なサイクル寿命試験結果を
それぞれbおよびCで示す。この結果、bの電池の合金
負極には放電後、若干の水素が吸蔵されているためCよ
り寿命が改善されているが、本発明によるdの電池は、
はぼコバルトの充電電気量(この場合は約400 mA
hに相当する)相当の水素が放電後の合金負極中に存在
するため優れたサイクル寿命を示したものと考えられる
。なお、正極中のコバルト量を減少させ、約300 m
Ahの充電電気量にすると、サイクル寿命が低下する傾
向が認められた。この結果および高価なコバルトの使用
を考慮すると、1000 mAhの正極容量の場合30
0〜450 mAhの充電電気量、すなわちNi(OH
)2100重量部に対し6〜9重量部のコバ/L/)粉
末の添加が適切である。
In Figure 2 a, this battery was heated at 200°C in an atmosphere of 20'C
The relationship between the number of charge/discharge cycles and the discharge capacity when charging at mA for 7.5 hours and discharging at somA, that is, the results of a cycle life test, is shown. As a comparative example, a battery was prepared in which the alloy negative electrode was partially charged in advance to approximately 4 oomAh and a general-purpose positive electrode containing no CO powder was combined, and an alloy negative electrode that was not partially charged at all was combined with the general-purpose positive electrode. Similar cycle life test results for the same batteries are shown in b and c, respectively. As a result, since the alloy negative electrode of battery b has some hydrogen occluded after discharge, its lifespan is improved compared to battery C, but battery d according to the present invention has a
Habo cobalt charging electricity amount (in this case approximately 400 mA
It is thought that the excellent cycle life was exhibited because a considerable amount of hydrogen (corresponding to h) was present in the alloy negative electrode after discharge. In addition, by reducing the amount of cobalt in the positive electrode,
It was observed that when the charging electricity amount was set to Ah, the cycle life tended to decrease. Considering this result and the use of expensive cobalt, for a cathode capacity of 1000 mAh, 30
The amount of charging electricity from 0 to 450 mAh, that is, Ni(OH
) 6 to 9 parts by weight of Koba/L/) powder is suitable for 2100 parts by weight.

またコバルト粉末の一部を2価のコバ/L/ )酸化物
で置き換えても300〜450 mAhの充電電気量が
得られる限シ、同様な効果が認められた。
Furthermore, even if part of the cobalt powder was replaced with divalent cobalt/L/ ) oxide, a similar effect was observed as long as a charging electricity amount of 300 to 450 mAh could be obtained.

なお、水素吸蔵合金粉末を発泡状ニッケμ多孔体中に充
填するのではなく、汎用の焼結式ニッケル正極に使用さ
れる焼結基板のように芯材に塗着して焼結電極にした場
合は、高率放電特性が若干向上する。この場合は、正極
の放電量に対する合金負極の放電量差が縮まるため、正
極中に加えるコバ/l/l−量を若干減少させることが
可能である。
In addition, instead of filling the hydrogen-absorbing alloy powder into a foamed nickel microporous material, we applied it to a core material to create a sintered electrode, similar to the sintered substrate used in general-purpose sintered nickel positive electrodes. In this case, the high rate discharge characteristics are slightly improved. In this case, since the difference in the discharge amount of the alloy negative electrode with respect to the discharge amount of the positive electrode is reduced, it is possible to slightly reduce the amount of edges/l/l− added to the positive electrode.

発明の効果 本発明による密閉形二7ケ〜・水素蓄電池は、電池構成
前の正・負極とも化成(充放電あるいは水素の吸蔵・放
出)等の工程を必要としない簡単な製法が採用でき、サ
イクル寿命にも優れるという効果が与えられる。
Effects of the Invention The sealed 27-cell hydrogen storage battery according to the present invention can be manufactured using a simple manufacturing method that does not require processes such as chemical formation (charging and discharging or hydrogen storage and release) for both the positive and negative electrodes before battery construction. It also has the effect of having an excellent cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に示した密閉形ニッケル・水素
蓄電池の構成図、第2図は20℃雰囲気における密閉形
ニッケル・水素蓄電池の充放電サイクル寿命試験の結果
を示す図である。 1・・・・・・正極、2・・・・・・負極、3・・・・
・・セパレータ、4・・・・・・ケース。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名I−
正 極 2− 負  極 3−でパレータ Φ−ケース 5−絶縁ソング 第1図
FIG. 1 is a block diagram of a sealed nickel-metal hydride storage battery shown in an embodiment of the present invention, and FIG. 2 is a diagram showing the results of a charge-discharge cycle life test of the sealed nickel-metal hydride battery in an atmosphere of 20°C. 1...Positive electrode, 2...Negative electrode, 3...
... Separator, 4... Case. Name of agent: Patent attorney Toshio Nakao and one other person I-
Positive pole 2- Negative pole 3- and pallet Φ- Case 5- Insulating song Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)主に水素吸蔵合金で構成される負極、ニッケル正
極、セパレータおよび電解液より成る主発電要素を密閉
容器に収納した密閉形ニッケル・水素蓄電池であって、
蓄電池構成時における電極は、正・負極とも電気化学的
な充電・放電のいづれの過程も全く経過していない放電
状態であり、水素吸蔵合金は水素ガスの吸蔵放出過程を
経過していなく、正極中には、電気化学的に酸化される
コバルトおよび/または2価のコバルト酸化物の微粉末
を有し、通常の使用条件下での放電容量は正極の放電容
量によって規制されたことを特徴とする水素吸蔵合金を
用いた密閉形ニッケル・水素蓄電池。
(1) A sealed nickel-metal hydride storage battery in which a main power generation element consisting of a negative electrode mainly composed of a hydrogen storage alloy, a nickel positive electrode, a separator, and an electrolyte is housed in a sealed container,
When configuring a storage battery, both the positive and negative electrodes are in a discharged state without undergoing any electrochemical charging or discharging process, and the hydrogen storage alloy has not undergone the process of absorbing and releasing hydrogen gas; It contains fine powder of electrochemically oxidized cobalt and/or divalent cobalt oxide, and its discharge capacity under normal usage conditions is regulated by the discharge capacity of the positive electrode. A sealed nickel-hydrogen storage battery using a hydrogen storage alloy.
(2)コバルトおよび/または2価のコバルト酸化物の
量は、これらを含まないニッケル正極を用いた前記蓄電
池の完全放電時に残存する正極容量以上の充電可能容量
を有する特許請求の範囲第1項記載の水素吸蔵合金を用
いた密閉形ニッケル・水素蓄電池。
(2) The amount of cobalt and/or divalent cobalt oxide has a chargeable capacity greater than or equal to the positive electrode capacity remaining upon complete discharge of the storage battery using a nickel positive electrode that does not contain these. A sealed nickel-hydrogen storage battery using the hydrogen storage alloy described above.
JP62290019A 1987-03-25 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy Expired - Lifetime JP2733230B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62290019A JP2733230B2 (en) 1987-11-17 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy
EP88302472A EP0284333B1 (en) 1987-03-25 1988-03-22 Sealed type nickel-hydride battery and production process thereof
US07/171,739 US4935318A (en) 1987-03-25 1988-03-22 Sealed type nickel-hydride battery and production process thereof
DE3854727T DE3854727T2 (en) 1987-03-25 1988-03-22 Gas-tight nickel hydride battery and method of manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290019A JP2733230B2 (en) 1987-11-17 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH01132066A true JPH01132066A (en) 1989-05-24
JP2733230B2 JP2733230B2 (en) 1998-03-30

Family

ID=17750736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290019A Expired - Lifetime JP2733230B2 (en) 1987-03-25 1987-11-17 Sealed nickel-hydrogen storage battery using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2733230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737610A (en) * 1992-12-10 1995-02-07 Furukawa Battery Co Ltd:The Manufacture of sealed alkaline storage battery using paste type nickel positive electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS6139461A (en) * 1984-07-31 1986-02-25 Toshiba Corp Manufacture of enclosed alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575018A (en) * 1980-06-13 1982-01-11 Olympus Optical Co Ltd Focus controller
JPS6139461A (en) * 1984-07-31 1986-02-25 Toshiba Corp Manufacture of enclosed alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737610A (en) * 1992-12-10 1995-02-07 Furukawa Battery Co Ltd:The Manufacture of sealed alkaline storage battery using paste type nickel positive electrode

Also Published As

Publication number Publication date
JP2733230B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US6673490B2 (en) Nickel-hydrogen storage battery and method of producing the same
JPH0541212A (en) Nickel hydroxide active material and positive nickel electrode and alkaline storage battery using same
US20050287438A1 (en) Alkaline electrochemical cell with improved lifetime
US5840442A (en) Method for activating an alkaline rechargeable battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPS63314777A (en) Sealed type ni-h accumulator
JPH01132066A (en) Sealed nickel-hydrogen storage battery using hydrogen absorbing alloy
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2987873B2 (en) Alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
US6479189B1 (en) Sealed alkaline storage battery with a manganese containing NiOH electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS60130063A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2926288B2 (en) Nickel-cadmium battery
JP3547980B2 (en) Nickel-hydrogen storage battery
JPH04328252A (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPS60175367A (en) Production of negative electrode for closed storage battery
JPS63239771A (en) Paste-type hydrogen occluded electrode
JP3454574B2 (en) Manufacturing method of alkaline secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term