JPS63239771A - Paste-type hydrogen occluded electrode - Google Patents

Paste-type hydrogen occluded electrode

Info

Publication number
JPS63239771A
JPS63239771A JP62074682A JP7468287A JPS63239771A JP S63239771 A JPS63239771 A JP S63239771A JP 62074682 A JP62074682 A JP 62074682A JP 7468287 A JP7468287 A JP 7468287A JP S63239771 A JPS63239771 A JP S63239771A
Authority
JP
Japan
Prior art keywords
copper
alloy
nickel
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074682A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Yasuko Ito
康子 伊藤
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074682A priority Critical patent/JPS63239771A/en
Publication of JPS63239771A publication Critical patent/JPS63239771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a high capacity and to improve a high rate discharge property by making a hydrogen occluded alloy holding body with a foamy metallic porous body of copper, an alloy mainly of copper, or, nickel, iron, or the like coated with copper over its surface, and filling a paste mainly of a hydrogen storage alloy powder in this active material holding body. CONSTITUTION:This hydrogen occluded alloy holding body is formed of a foamy metallic porous body of copper, an alloy mainly of copper, or nickel, iron, or the like coated with copper, and an alloy powder or an alloy powder hydrogenated partially is filled in the hydrogen occluded alloy holding body. By applying an alloy powder holding body of a foamy copper, an alloy mainly of copper, or a metal coated with copper, the electron conductibility of the metal and in the three-dimensional directions is improved, and by contacting the copper and the hydrogen occluded alloy directly, a catalystic function to promote smoothly the hydrogen dissociation reaction to absorb and discharge in the alloy in an electrochemical reaction is improved. A nickel-hydrogen storage battery of a high capacity and an excellent high rate discharge property can be obtained consequently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池用水素吸蔵電極の集電体と活物
質全改善することにより、高容量で高率放電特注にすぐ
れたペースト式水素吸蔵電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a paste-type hydrogen storage electrode for alkaline storage batteries that has a high capacity and is excellent in high-rate discharge customization by completely improving the current collector and active material of the hydrogen storage electrode. It is something.

従来の技術 従来、この種のペースト式水素吸蔵電極はニッケル多孔
体を中央に配して合金粉末と加圧一体化する方法、また
は、ペースト状にしてニッケル多孔体の両面に塗着ある
いは充填して電極を構成する方法が用いられている。こ
れらの方法によれば、′ 合金粉末を高密度に充填する
ことが可能になるが、大電流放電による放電電圧の低下
、あるいは活物質利用率の低下を招くという欠点を有し
ている。
Conventional technology Conventionally, this type of paste-type hydrogen storage electrode has been produced by placing a porous nickel material in the center and integrating it with alloy powder under pressure, or by making a paste and applying or filling both sides of the porous nickel material. A method is used in which electrodes are constructed using According to these methods, it is possible to pack the alloy powder at a high density, but they have the disadvantage of causing a decrease in discharge voltage due to large current discharge or a decrease in the active material utilization rate.

この問題を解決するために、反応に直接関与しない電子
電導性粉末を混合、あるいは合金粉末の表面に金属層を
形成する方法が提案されてきた(特開昭6f−1384
59号、特開昭81−64069号、特開昭59−11
4767号)。
In order to solve this problem, methods have been proposed in which electronically conductive powders that are not directly involved in the reaction are mixed or a metal layer is formed on the surface of alloy powders (Japanese Patent Laid-Open No. 6F-1384
No. 59, JP-A-81-64069, JP-A-59-11
No. 4767).

しかし、このような構成では水素吸蔵合金粉末を高密度
に充填を行う場合、限界が生じる。したがって、水素吸
蔵合金のみを充填した水素吸蔵電極において、充放電時
の過電圧を低下させ、活物質利用率全向上させることが
高容量化には望ましい。
However, such a configuration has a limit when filling the hydrogen storage alloy powder with high density. Therefore, in a hydrogen storage electrode filled only with a hydrogen storage alloy, it is desirable to lower the overvoltage during charging and discharging and to improve the active material utilization rate in order to increase the capacity.

発明が解決しようとする間頂点 このような従来の構成では、水素吸蔵合金粉末の高密度
充填が可能で、高率放電特性に優れたペースト式水素吸
蔵電極とするには限界があった。
Problem to be Solved by the Invention With such a conventional structure, there is a limit to the ability to form a paste-type hydrogen storage electrode that is capable of high-density packing of hydrogen storage alloy powder and has excellent high-rate discharge characteristics.

本発明はこのような間遠点を解決するもので、ペースト
式水素吸蔵電極において、高容量で高率放電特性を改善
することを目的とするものである。
The present invention is intended to solve this problem, and aims to improve the high capacity and high rate discharge characteristics of a paste type hydrogen storage electrode.

間層点を解決するための手段 この間頂点全解決するために本発明は、水素吸蔵合金支
持体が銅、銅を主体とする合金または、ニッケル、鉄な
どの表面に銅メッキを施した発泡状金属多孔体であり、
この水素吸蔵合金支持体内へ合金粉末あるいは、一部水
素化された合金粉末を充填して水素吸蔵電極を構成した
ものである。
Means for Solving Interlayer Points In order to solve all the interlayer points, the present invention proposes that the hydrogen storage alloy support is made of copper, an alloy mainly composed of copper, or a foamed material made of nickel, iron, etc. with copper plating on the surface. It is a porous metal body,
A hydrogen storage electrode is constructed by filling this hydrogen storage alloy support with alloy powder or partially hydrogenated alloy powder.

作用 発泡状の銅、銅を主体とする合金または金属に銅メッキ
を施した合金粉末支持体を適用することで、金属および
、三次元方向の電子電導性を向上させるとともに、銅と
水素吸蔵合金が直接接触することで合金中に電気化学的
反応で吸蔵・放出する水素解離反応が円滑に進行する触
媒作用が向上する。
By applying foamed copper, copper-based alloys, or copper-plated alloy powder supports to metals, the electronic conductivity of metals and three-dimensional directions can be improved, and copper and hydrogen storage alloys can be improved. Direct contact with the alloy improves the catalytic action of the hydrogen dissociation reaction that is absorbed and released by electrochemical reactions in the alloy.

一方、密閉電池全構成する場合、ニッケルーカドミウム
蓄電池においては、正極と負極との間に高率放電特性の
差があるため、高率放電特性の悪い負極すなわちカドミ
ウム極に放電リザーブを設けている。このような構成に
より、過放電を繰り返した時の容量低下が大きいカドミ
ウム極で電池電圧の低下が起らないように設計されてい
る。このために、カドミウム極は通常化成充電を行ない
、一部充電状態の活物質(放電リザーブ)に変化させ、
完全放電状態のニッケル極とで構成されている。この化
成充電工程はアルカリ水溶液中で陽分極させることによ
り、金属カドミウムを形成させ、その後水洗、乾燥金行
うことがなされている。この結果、銅とアルカリ水溶液
が接触し、その後、水洗、乾燥により銅が腐食し、電池
特性に悪影響?およぼす。
On the other hand, in the case of a completely sealed battery, in a nickel-cadmium storage battery, there is a difference in high rate discharge characteristics between the positive electrode and the negative electrode, so a discharge reserve is provided at the negative electrode, which has poor high rate discharge characteristics, that is, the cadmium electrode. . This configuration is designed to prevent a drop in battery voltage from occurring in the cadmium electrode, which has a large capacity drop when over-discharge is repeated. For this purpose, the cadmium electrode is usually chemically charged to transform it into a partially charged active material (discharge reserve).
It consists of a nickel electrode in a fully discharged state. In this chemical charging process, metal cadmium is formed by anodically polarizing the metal in an alkaline aqueous solution, followed by washing with water and drying. As a result, the copper comes into contact with the alkaline aqueous solution, and then the copper is corroded by washing and drying, which adversely affects battery characteristics? I'm going to call you.

また、密閉形ニッケルー水素蓄電池においても前述した
問題があるため放電リザーブを設ける必要はある。しか
し、高率放電特性がカドミウム負極に比べ容量低下が少
ない。さらにニッケルー極に金属コバルトを混入した正
極を適用することで放電リザーブが形成される。すなわ
ち、コバルト金属を正極に混入することで初期充電によ
り、コバルト金属は酸化コバルト、水酸化コバルトに変
化し、放電には寄与しない特徴を有しているため、コバ
ルト金属が酸化される電気量だけ余分に負極は充電され
ることになり、結果として、放電リザーブが形成される
。したがって、上記2つの観点より、密閉形ニッケルー
水素蓄電池においては化成充電全省略できる電池構成が
可能になる。この結果、アルカリ水溶液に浸漬、水洗、
乾燥による金属銅の腐食を受けることなく、電池特性へ
の悪影響を防止することとなり、合金粉末の支持体材料
として銅、あるいは銅主体の合金金使用することが可能
になる。つぎに、実施例において、本発明の構成と効果
全詳述する。
Further, since the above-mentioned problems also exist in sealed nickel-metal hydride storage batteries, it is necessary to provide a discharge reserve. However, due to its high rate discharge characteristics, the capacity decrease is less than that of a cadmium negative electrode. Furthermore, a discharge reserve is formed by applying a positive electrode containing metallic cobalt to the nickel electrode. In other words, by mixing cobalt metal into the positive electrode, the cobalt metal changes into cobalt oxide and cobalt hydroxide during initial charging, and has the characteristic that it does not contribute to discharge, so only the amount of electricity that oxidizes the cobalt metal. The negative electrode will be charged in excess, and as a result, a discharge reserve will be formed. Therefore, from the above two viewpoints, it is possible to create a battery configuration in which chemical charging can be completely omitted in a sealed nickel-metal hydride storage battery. As a result, immersion in alkaline aqueous solution, washing with water,
This prevents the copper metal from being corroded by drying, thereby preventing any adverse effects on battery characteristics, and making it possible to use copper or a copper-based alloy as the support material for the alloy powder. Next, in Examples, the structure and effects of the present invention will be fully explained in detail.

実施例 水素全吸蔵・放出する合金材料として、純度99.6チ
以上のランタン(La)、ニッケル(Ni)。
Examples: Lanthanum (La) and nickel (Ni) with a purity of 99.6 cm or higher are used as alloy materials that completely absorb and release hydrogen.

コバルト(Go)、マンガン(Mn ) 、希土類元素
含有量ca s、s 4以上のミシュメタル(Mm)を
用いて、合金組成がLa(1,5Mm (1,5Ni 
5,5Go +、2Mnoj  になるように各々の金
gt−秤量し、アーク溶解炉を用いて合金全作成した。
Using cobalt (Go), manganese (Mn), and mischmetal (Mm) with a rare earth element content of cas, s 4 or more, the alloy composition is La (1,5Mm (1,5Ni)
Each gold gt was weighed to give 5,5Go + and 2Mnoj, and the entire alloy was prepared using an arc melting furnace.

この合金i1050℃、6時間、真空度10Torr以
下に保ち、熱処理を行なった。
This alloy was heat-treated at 1050° C. for 6 hours while keeping the vacuum level at 10 Torr or less.

冷却後、この合金を機械的に粉砕し、38μ以下の合金
粉末とした。また、一部は粉砕することなく、密閉容器
内に合金を収納し、ガス状の水素を吸蔵・放出させるこ
とにより粉砕と水素を一部吸蔵した合金粉末とした2種
類の合金粉末を作成した。前者の粉末を単独で負極材料
として使用する色粉末と前者の粉末95 wt%と後者
の粉末Swt%混合したb粉末を作成し、水素を全く吸
蔵していない合金粉末a及び一部水素を吸蔵している状
態のb粉末、2種類を用意した。ついで、a、bの粉末
径々1oogに対して、1.5wt%のポリビニールア
ルコールの水溶液25fの割合で混合して泥状のペース
トとした。
After cooling, this alloy was mechanically pulverized into an alloy powder of 38 μm or less. In addition, two types of alloy powder were created by storing the alloy in a sealed container without pulverizing it, and occluding and releasing gaseous hydrogen. . A colored powder in which the former powder is used alone as a negative electrode material, a powder b in which 95 wt% of the former powder and Swt% of the latter powder are mixed are prepared, and alloy powder a which occludes no hydrogen at all and alloy powder a which occludes some hydrogen are prepared. Two types of B powder were prepared. Then, 25 f of a 1.5 wt % polyvinyl alcohol aqueous solution was mixed with 100 g of the powders a and b to form a slurry paste.

一方、集電体を兼ねた活物質支持体としては、0.1朋
のニッケル板及び銅板に、穴径2+1ff 、中心間ピ
ッチ2.6Hで開孔したパンチングメタルに、前記ペー
ストに両面に塗着後、スリットを通過させ一定厚さに調
整し乾燥した。その後、加圧プレスを行ない厚さ0.6
朋の極板とした。また、ニッケル板および銅板をエキス
バンド加工した活物質支持体を用いて、同様な方法によ
り、厚さ0・6朋の極板とした。さらに、ニッケル及び
銅の発泡状多孔体全周いて、前記ペーストラ多孔体内へ
圧入し、乾燥後、加圧プレスを行ない、同様に厚さ金0
・6朋にした。この時に使用したニッケル、銅およびニ
ッケルに銅メンキした発泡状多孔体は平均孔径150μ
で多孔度94〜96チと平均孔径7゜μ、多孔度93〜
94チであった。以上に示した9種類の活物質支持体お
よび合金粉末の異なるペースト式水素吸R電極を作成し
た。これらの電極を単2サイズの密閉形ニッケルー水素
蓄電池で評価するために260X 38朋に切断した。
On the other hand, as an active material support that also serves as a current collector, a punched metal plate with holes of 2+1 ff in diameter and a center-to-center pitch of 2.6 H is coated on both sides of a 0.1 mm nickel plate and a copper plate. After wearing, it was passed through a slit, adjusted to a constant thickness, and dried. After that, pressure pressing is performed to obtain a thickness of 0.6
I made it my pole plate. In addition, an electrode plate having a thickness of 0.6 mm was prepared in the same manner using an active material support obtained by expanding a nickel plate and a copper plate. Further, a foamed porous body of nickel and copper is placed all around and press-fitted into the paster porous body, and after drying, pressure pressing is performed, and the thickness is 0%.
・I made it to 6 friends. The average pore diameter of the nickel, copper, and copper-plated foamed porous material used at this time was 150 μm.
The porosity is 94-96 inches, the average pore diameter is 7゜μ, and the porosity is 93-96 inches.
It was 94chi. Paste-type hydrogen absorption R electrodes were created using the nine types of active material supports and alloy powders shown above. These electrodes were cut into 260 x 38 pieces for evaluation in AA size sealed nickel-metal hydride storage batteries.

つぎに、酸fヒニソケル正極として、公知の方法で得ら
れた発泡状ニッケル正極(理論光てん電気量2980〜
3090mAh’) とセパL’−1としてポリアミド
の不織布を中央に配し、上記水素吸蔵電極とで渦巻状に
巻回した。これを金属ケースに挿入後、電解液として、
水酸化リチウム3oy/1溶解させた3 0 wt%の
水酸化カリウム水溶液を注液後、封口し公称容量2.8
人りの電池を構成した。
Next, a foamed nickel positive electrode obtained by a known method (theoretical photovoltaic capacity 2980~
3090mAh') and a polyamide nonwoven fabric as Separator L'-1 were arranged in the center and wound in a spiral shape with the hydrogen storage electrode. After inserting this into the metal case, as an electrolyte,
After injecting a 30 wt% potassium hydroxide aqueous solution containing 3 oy/1 lithium hydroxide, the cap was sealed and the nominal capacity was 2.8.
It formed a battery of people.

これらの電池の水素吸蔵電極に用いた活物質支持体種類
、合金粉末種類、後述する評価条件での電池特性を第1
表に示す。
The type of active material support used in the hydrogen storage electrode of these batteries, the type of alloy powder, and the battery characteristics under the evaluation conditions described below were first evaluated.
Shown in the table.

(以 下金 白) 電池特性の比較は20℃、一定温度下で初サイクルの充
電6o、1cで16時間、2サイクル目以降はすべて0
.2Cで7.6時間、放電は7目まで0.20の電流で
終止電圧が0.9vまで放電を続け、8目に30放電、
9目以降は0.6Cで終止電圧0.9vまで放電全行っ
た。この時の7目と8目の中間電圧と、1vまでの放電
容量の比全第1表に示す。
(Hereinafter referred to as gold and white) Comparison of battery characteristics is at 20℃, under constant temperature, first cycle charging 6o, 1c for 16 hours, second cycle and subsequent cycles are all 0.
.. At 2C for 7.6 hours, the discharge continues until the 7th point with a current of 0.20 until the final voltage is 0.9V, and the 8th point is 30 discharges.
From the 9th point onward, all discharges were performed at 0.6C until the final voltage was 0.9V. At this time, the ratio of the intermediate voltage of the 7th and 8th points and the discharge capacity up to 1 V is shown in Table 1.

これらの結果より、0−20での放電電圧については、
水素吸蔵電極に用いた活物質支持体の材質。
From these results, regarding the discharge voltage at 0-20,
The material of the active material support used in the hydrogen storage electrode.

形態による差は顕著に認められなかった。しかし、3C
の放電電流においては材質、形態の差が犬きく現われ、
平面的な金属多孔体より立体的な金属多孔体が放電電圧
は高くなった。材質については、ニッケルに比べ銅を用
いた場合がより高い放電電圧を示した。また、実際に電
源として用いられた場合、1v以下では使用しにくくす
ることから、終止電圧を1vにして、放電容量?0.2
0と3Cで比較すると活物質支持体により大きな差が生
じた。以上の結果より、本発明である銅金属あるいはニ
ッケルに銅メッキして形成された発泡状多孔体を水素吸
蔵電極の活物質支持体に用いた電池は大電流放電におい
ての電圧低下が少なく、実用電源として有効であること
が言える。
No significant differences were observed depending on the morphology. However, 3C
There are significant differences in material and form in the discharge current,
The three-dimensional porous metal material had a higher discharge voltage than the planar porous metal material. Regarding the material, higher discharge voltage was shown when copper was used compared to nickel. Also, if it is actually used as a power source, it will be difficult to use it if it is less than 1V, so the final voltage should be set to 1V and the discharge capacity? 0.2
When comparing 0 and 3C, there was a large difference depending on the active material support. From the above results, the battery using the foamed porous material of the present invention, which is formed by copper plating on copper metal or nickel, as the active material support of the hydrogen storage electrode has little voltage drop during large current discharge, and is suitable for practical use. It can be said that it is effective as a power source.

一方、アルカリ蓄電池用の活物質支持体材料として銅が
実用化されていない原因の1つとして、充放電における
銅の溶解・析出による電池特性への悪影響が大きいとい
われている。この悪影響を調べるため充放電サイクルの
繰りかえしによる放電容量の変化を第1表のF、H,I
、Jの電池で行ないその、結果を図に示す。この結果よ
り明らかなように、通常アルカリ蓄電池の活物質支持体
として使用されているニッケルに比べ、悪影響はほとん
ど認められなかった。初期の放電容量が低下したH、J
の電池については電解液を注液後、初充電全行う前の短
時間に、正常な水素電位より責な電位を示すため、微量
の銅が溶解したことによるものと考えられる。しかし、
一部水素化された合金粉末を用いた工の電池については
このような問題が生じることなく、安定なサイクル寿命
を示した。実施例においては、銅金属およびニッケルに
銅メッキした発泡状多孔体について示したが、銅を主体
とする合金として、銅−クローム、銅−亜鉛、銅−スズ
などの発泡状多孔体についても、同様な結果が得られた
。したがって、網金主体とする合金であれば本発明は有
効だと考えられる。
On the other hand, one of the reasons why copper has not been put to practical use as an active material support material for alkaline storage batteries is said to be that dissolution and precipitation of copper during charging and discharging has a large adverse effect on battery characteristics. In order to investigate this negative effect, the changes in discharge capacity due to repeated charge/discharge cycles were calculated using F, H, and I in Table 1.
, J batteries and the results are shown in the figure. As is clear from the results, almost no adverse effects were observed compared to nickel, which is normally used as an active material support for alkaline storage batteries. H, J with decreased initial discharge capacity
The battery showed a negative potential rather than the normal hydrogen potential in a short period of time after the electrolyte was injected and before the first full charge, which is thought to be due to the dissolution of a small amount of copper. but,
The battery using partially hydrogenated alloy powder did not suffer from such problems and exhibited a stable cycle life. In the examples, foamed porous bodies made of copper metal and nickel plated with copper are shown, but foamed porous bodies made of copper-based alloys such as copper-chromium, copper-zinc, and copper-tin can also be used. Similar results were obtained. Therefore, the present invention is considered to be effective if the alloy is made mainly of wire mesh.

発明の効果 以上のように本発明によれば、ニッケルに比べ銅は電子
電導性が優れ、水素吸蔵合金中に吸蔵された水素との解
離反応に対する触媒能が勝るため、高率放電特性が改良
されたものと考えられる。また、発泡状の多孔体にする
ことにより、効果が顕著に現われた。さらに、合金粉末
に一部水素化された粉末を混入させることにより、充放
電による電池特性の低下も認められず、高容量でしかも
、高率放電特性の優れたニッケルー水素蓄電池が可能に
なるという効果が得られる。
Effects of the Invention As described above, according to the present invention, copper has better electronic conductivity than nickel and has superior catalytic ability for the dissociation reaction with hydrogen stored in the hydrogen storage alloy, so high rate discharge characteristics are improved. It is thought that it was done. In addition, the effect was remarkable when the porous material was made into a foamed material. Furthermore, by mixing partially hydrogenated powder into the alloy powder, no deterioration in battery characteristics is observed during charging and discharging, making it possible to create a nickel-metal hydride storage battery with high capacity and excellent high-rate discharge characteristics. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例および従来法によるペースト式水
累吸蔵電極を用いた密閉形ニッケルー水素蓄電池のサイ
クル寿命特性を示す図である。
The figure shows the cycle life characteristics of a sealed nickel-metal hydride storage battery using a pasted water storage electrode according to an embodiment of the present invention and a conventional method.

Claims (2)

【特許請求の範囲】[Claims] (1)水素吸蔵合金支持体が銅、銅を主体とする合金ま
たは、ニッケル、鉄などの表面に銅メッキを施した発泡
状金属多孔体を有し、上記活物質支持体内へ水素吸蔵合
金粉末を主体とするペーストを充填したことを特徴とす
るペースト式水素吸蔵電極。
(1) The hydrogen storage alloy support has copper, a copper-based alloy, or a foamed metal porous body made of nickel, iron, etc. whose surface is plated with copper, and the hydrogen storage alloy powder is incorporated into the active material support. A paste-type hydrogen storage electrode characterized by being filled with a paste mainly composed of.
(2)水素吸蔵合金粉末の一部が水素を吸蔵した合金粉
末であることを特徴とする特許請求の範囲第1項に記載
のペースト式水素吸蔵電極。
(2) The paste-type hydrogen storage electrode according to claim 1, wherein a portion of the hydrogen storage alloy powder is an alloy powder that stores hydrogen.
JP62074682A 1987-03-27 1987-03-27 Paste-type hydrogen occluded electrode Pending JPS63239771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074682A JPS63239771A (en) 1987-03-27 1987-03-27 Paste-type hydrogen occluded electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074682A JPS63239771A (en) 1987-03-27 1987-03-27 Paste-type hydrogen occluded electrode

Publications (1)

Publication Number Publication Date
JPS63239771A true JPS63239771A (en) 1988-10-05

Family

ID=13554242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074682A Pending JPS63239771A (en) 1987-03-27 1987-03-27 Paste-type hydrogen occluded electrode

Country Status (1)

Country Link
JP (1) JPS63239771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021767A3 (en) * 1996-11-13 1998-08-13 Eltech Systems Corp Metal foam support member for secondary battery electrode
EP0976168A1 (en) * 1997-01-31 2000-02-02 Ovonic Battery Company, Inc. High power nickel-metal hydride batteries and high power electrodes for use therein
US6557655B2 (en) 1997-01-31 2003-05-06 Ovonic Battery Company, Inc. Hybrid electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021767A3 (en) * 1996-11-13 1998-08-13 Eltech Systems Corp Metal foam support member for secondary battery electrode
EP0976168A1 (en) * 1997-01-31 2000-02-02 Ovonic Battery Company, Inc. High power nickel-metal hydride batteries and high power electrodes for use therein
EP0976168A4 (en) * 1997-01-31 2000-03-08 Ovonic Battery Co High power nickel-metal hydride batteries and high power electrodes for use therein
US6557655B2 (en) 1997-01-31 2003-05-06 Ovonic Battery Company, Inc. Hybrid electric vehicle
US6837321B2 (en) 1997-01-31 2005-01-04 Ovonic Battery Company, Inc. Hybrid electric vehicle incorporating an integrated propulsion system

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP5119577B2 (en) Nickel metal hydride battery
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS5937667A (en) Metal oxide-hydrogen battery
JPS63314777A (en) Sealed type ni-h accumulator
JPS63239771A (en) Paste-type hydrogen occluded electrode
JPS6119063A (en) Hydrogen occlusion electrode
JP2001118597A (en) Alkaline secondary cell
JP2989877B2 (en) Nickel hydride rechargeable battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3738864B2 (en) Nickel electrode for alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP2000200612A (en) Rectangular alkaline secondary battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP2003317796A (en) Storage battery
JPS63237357A (en) Paste type negative electrode for alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH03285270A (en) Alkaline storage battery
JPH04284369A (en) Nickel-metal hydride storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery