JP2940952B2 - Method for manufacturing nickel-hydrogen alkaline storage battery - Google Patents

Method for manufacturing nickel-hydrogen alkaline storage battery

Info

Publication number
JP2940952B2
JP2940952B2 JP1240070A JP24007089A JP2940952B2 JP 2940952 B2 JP2940952 B2 JP 2940952B2 JP 1240070 A JP1240070 A JP 1240070A JP 24007089 A JP24007089 A JP 24007089A JP 2940952 B2 JP2940952 B2 JP 2940952B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
storage battery
nickel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1240070A
Other languages
Japanese (ja)
Other versions
JPH03102780A (en
Inventor
優治 佐藤
和太 武野
浩孝 林田
浩之 高橋
一郎 猿渡
裕之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP1240070A priority Critical patent/JP2940952B2/en
Priority to DE69014183T priority patent/DE69014183T2/en
Priority to EP90310213A priority patent/EP0419220B1/en
Priority to US07/584,115 priority patent/US5032475A/en
Publication of JPH03102780A publication Critical patent/JPH03102780A/en
Application granted granted Critical
Publication of JP2940952B2 publication Critical patent/JP2940952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、初充電の工程を改良したニッケル・水素ア
ルカリ蓄電池の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial application field) The present invention relates to a method for manufacturing a nickel-hydrogen alkaline storage battery with an improved initial charging step.

(従来の技術) 水素吸蔵合金を主成分とする負極を用いたニッケル・
水素アルカリ蓄電池は、エネルギー密度が現在の代表的
なニッケル・カドミウム蓄電池に比べて1.5倍以上も大
きいことから、大容量の蓄電池として注目され、精力的
に研究・開発がなされている。
(Prior art) Nickel using a negative electrode mainly composed of a hydrogen storage alloy
Hydrogen-alkaline storage batteries have attracted attention as large-capacity storage batteries because their energy density is more than 1.5 times greater than the current typical nickel-cadmium storage batteries, and research and development are being made vigorously.

前記ニッケル・水素アルカリ蓄電池は、ニッケル・カ
ドミウム蓄電池と基本的に同構造、同構成であるが、過
充電過程での電池内圧上昇の抑制や過放電過程での転極
防止等の観点から、正極と負極の容量をバランス化する
ことが重要である。
The nickel-hydrogen alkaline storage battery has basically the same structure and configuration as the nickel-cadmium storage battery.However, from the viewpoint of suppressing a rise in battery internal pressure during an overcharge process and preventing reversal of polarity during an overdischarge process, a positive electrode It is important to balance the capacity of the anode and the anode.

このようなことから、特公昭61−5264号、特開昭63−
236274号には正極・負極の全容量に基づく正極と負極の
容量バランスを規定したニッケル・水素アルカリ蓄電池
が開示されている。また、特開昭62−15769号には単位
容積当りの正極と負極の容量バランスを規定したニッケ
ル・水素アルカリ蓄電池が開示されている。
Therefore, Japanese Patent Publication No. Sho 61-5264 and
No. 236274 discloses a nickel-hydrogen alkaline storage battery in which the capacity balance between the positive electrode and the negative electrode based on the total capacity of the positive electrode and the negative electrode is specified. Japanese Patent Application Laid-Open No. 62-15769 discloses a nickel-hydrogen alkaline storage battery in which the capacity balance between a positive electrode and a negative electrode per unit volume is specified.

しかしながら、ニッケル・水素アルカリ蓄電池におけ
る正極・負極の全容量に基づく正極と負極の容量バラン
スの規定や単位容積当りでの正極と負極の容量バランス
の規定だけでは、負極の利用率が正極の利用率よりも劣
ることに伴う大電流放電時の負極容量規制による不具合
が生じることもあり、密閉形蓄電池の性能を長期間に亘
って安定的に維持することが困難であった。
However, in the nickel-hydrogen alkaline storage battery, the stipulation of the capacity balance between the positive electrode and the negative electrode based on the total capacity of the positive electrode and the negative electrode and the stipulation of the capacity balance of the positive electrode and the negative electrode per unit volume alone are not sufficient for the utilization rate of the negative electrode. In some cases, problems due to the negative electrode capacity regulation at the time of large current discharge accompanied by inferior performance may occur, and it has been difficult to stably maintain the performance of the sealed storage battery over a long period of time.

そこで、予め負極の一部を充電状態とすることも試み
られている。しかしながら、かかる方法では工程が煩
雑で水素を吸蔵した状態の水素吸蔵合金粉末を取り扱う
上での危険性を有し、正極を構成する活物質中に金属
コバルトを含む非焼結式ニッケル正極を用いた電池の場
合には電極作製時に空気中の酸素により酸化され易い金
属コバルトを安定的に取扱うことが困難である、等の問
題があった。
Therefore, it has been attempted to bring a part of the negative electrode into a charged state in advance. However, in such a method, the process is complicated and there is a danger in handling the hydrogen storage alloy powder in a state where hydrogen is stored, and a non-sintered nickel positive electrode containing metallic cobalt in an active material constituting the positive electrode is used. In the case of the battery, there is a problem that it is difficult to stably handle metallic cobalt which is easily oxidized by oxygen in the air at the time of manufacturing the electrode.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、過充電状態での電池内圧上昇を抑制すると共
に、負極に一部充電部分として適正な量を残留して大電
流放電・過放電の特性を長期間に亘って安定的に維持し
得るニッケル・水素アルカリ蓄電池の製造方法を提供し
ようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and suppresses a rise in internal pressure of a battery in an overcharged state, and allows a negative electrode to have an appropriate amount as a partially charged portion. And to provide a method for manufacturing a nickel-hydrogen alkaline storage battery capable of stably maintaining the characteristics of large current discharge / overdischarge over a long period of time.

[発明の構成] (課題を解決するための手段) 本発明に係るニッケル・水素アルカリ蓄電池の製造方
法は、水素吸蔵合金を主成分とする負極と活物質及びCo
Oを含む非焼結式ニッケル正極とをセパレータを介して
密閉容器内に収納し、かつ前記容器内にアルカリ電解液
を注液後、封口した構造のニッケル・水素アルカリ蓄電
池を組み立てる工程と、前記蓄電池を保管する工程と、
前記蓄電池に前記CoOがオキシ水酸化コバルトに酸化さ
れる電気量の1.5倍以上の電気量が通電されるまで電流
値を0.05〜1CmAの範囲にする初充電を施す工程とを具備
することを特徴とするものである。
[Constitution of the Invention] (Means for Solving the Problems) The method for producing a nickel-hydrogen alkaline storage battery according to the present invention comprises a negative electrode mainly composed of a hydrogen storage alloy, an active material,
Storing a non-sintered nickel positive electrode containing O in a closed container via a separator, and after injecting an alkaline electrolyte into the container, assembling a nickel-hydrogen alkaline storage battery having a sealed structure, Storing the storage battery;
Performing a first charge to keep the current value in the range of 0.05 to 1 CmA until the storage battery is energized by 1.5 times or more the amount of electricity that the CoO is oxidized to cobalt oxyhydroxide. It is assumed that.

上記負極は、水素吸蔵合金粉末に高分子結着剤を配合
し、必要に応じて導電性粉末を配合した合剤を集電体で
ある導電性芯体に被覆、固定した構造を有する。
The negative electrode has a structure in which a polymer binder is mixed with a hydrogen storage alloy powder, and a mixture obtained by mixing a conductive powder as necessary is coated and fixed on a conductive core as a current collector.

上記合剤中に配合される水素吸蔵合金としては、格別
制限されるものではなく、電解液中で電気化学的に発生
させた水素を吸蔵でき、かつ放電時にその吸蔵水素を容
易に放出できるものであればよく、例えばLaNi5、MmN
i5、LmNi5(Lm;ランタン富化したミッシュメタル)、及
びこれらのNiの一部をAl、Mn、Fe、Co、Ti、Cu、Zn、Z
r、Cr、Bのような元素で置換した多元素系のもの、又
はTiNi系、TiFe系のものを挙げることができる。
The hydrogen storage alloy compounded in the above mixture is not particularly limited, and can store hydrogen electrochemically generated in an electrolytic solution, and can easily release the stored hydrogen during discharge. If it is sufficient, for example, LaNi 5 , MmN
i 5 , LmNi 5 (Lm; lanthanum-enriched misch metal), and part of these Nis are Al, Mn, Fe, Co, Ti, Cu, Zn, Z
Examples thereof include a multi-element type substituted with elements such as r, Cr and B, or a TiNi type or TiFe type.

上記合剤中に配合される高分子結着剤としては、例え
ばポリアクリル酸ソーダ、ポリテトラフルオロエチレン
(PTFE)、カルボキシメチルセルロース(CMC)等を挙
げることができる。かかる高分子結着剤の配合割合は、
水素吸蔵合金粉末100重量部に対して0.5〜5重量部の範
囲とすることが望ましい。
Examples of the polymer binder incorporated in the above mixture include sodium polyacrylate, polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), and the like. The compounding ratio of the polymer binder is
It is desirable that the amount be in the range of 0.5 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder.

上記合剤中に配合される導電性粉末としては、例えば
カーボンブラック、黒鉛等を挙げることができる。かか
る導電性粉末の配合割合は、前記水素吸蔵合金粉末100
重量部に対して0.1〜4重量部とすることが望ましい。
Examples of the conductive powder mixed in the mixture include carbon black and graphite. The mixing ratio of the conductive powder is 100% of the hydrogen storage alloy powder.
It is desirable that the amount be 0.1 to 4 parts by weight based on parts by weight.

上記集電体である導電性芯体としては、例えばパンチ
ドメタル、エキスパンドメタル、金網等の二次元構造の
もの、発泡メタル、網状焼結金属繊維などの三次元構造
のもの等を挙げることができる。
Examples of the conductive core serving as the current collector include a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and a three-dimensional structure such as foamed metal and reticulated sintered metal fiber. it can.

上記初充電工程での電流値を限定した理由は、その電
流値を0.05CmA未満にすると正極中に含まれるCoOのオキ
シ水酸化コバルトへの酸化が不充分となり、負極に一部
充電部分を残留させることができなくなり、一方その電
流値が1CmAを越えるとCoOがオキシ水酸化コバルトに酸
化される効率の低下(水素吸蔵合金を含む負極の一部充
電部分の減少)、作製初期の前記負極の電極活性度が高
くならず、過充電領域で正極から発生する酸素ガスを迅
速に水に戻す還元反応が不充分となって電池内圧の上昇
等を招くからである。
The reason for limiting the current value in the first charging step is that if the current value is less than 0.05 CmA, the oxidation of CoO contained in the positive electrode to cobalt oxyhydroxide becomes insufficient, and a part of the charged portion remains on the negative electrode. On the other hand, if the current value exceeds 1 CmA, the efficiency of oxidation of CoO to cobalt oxyhydroxide decreases (a part of the negative electrode including the hydrogen storage alloy decreases in charge), This is because the electrode activity does not increase, and the reduction reaction for rapidly returning oxygen gas generated from the positive electrode in the overcharge region to water becomes insufficient, which causes an increase in battery internal pressure and the like.

上記初充電工程での期間を限定した理由は、CoOがオ
キシ水酸化コバルトに酸化される電気量の1.5倍以上の
電気量が通電される期間未満にすると、正極中に含まれ
るCoOのオキシ水酸化コバルトへの酸化が不充分とな
り、負極に一部充電部分を残留させることができなくな
る。
The reason for limiting the period in the first charging step is that if the amount of electricity is at least 1.5 times the amount of electricity that CoO is oxidized to cobalt oxyhydroxide and less than the period during which electricity is supplied, the oxywater of CoO contained in the positive electrode Oxidation to cobalt oxide becomes insufficient, and it becomes impossible to leave a part of the charged portion on the negative electrode.

(作用) 水素吸蔵合金を主成分とする負極と活物質及びCoOを
含む非焼結式ニッケル正極とをセパレータを介して密閉
容器内に収納し、かつ前記容器内にアルカリ電解液を注
液後、封口した構造のニッケル・水素アルカリ蓄電池を
0.05〜1CmAの電流値で初充電すると、前記CoOがオキシ
水酸化コバルトに酸化され、つづいて正極活物質である
水酸化ニッケルが酸化されてオキシ水酸化ニッケルを生
成していく。この初充電時に生成されるオキシ水酸化コ
バルトは、放電を行っても還元されずに安定状態を維持
し、CoOが水酸化コバルトに酸化される時に消費される
電気量がそのまま負極の還元として働くため、負極に充
電状態として残存することになる。このような電流値で
の初充電を、前記CoOがオキシ水酸化コバルトに酸化さ
れる電気量の1.5倍以上の電気量が通電される期間行う
ことによって、負極に一部充電部分として適正な量、つ
まり負極の利用率が正極の利用率よりも劣ることに伴う
負極容量規制を招かない最適な量、を残留できる。従っ
て、過充電状態での電池内圧上昇を抑制すると共に、大
電流放電・過放電特性を長期間に亘って安定的に維持し
得るニッケル・水素アルカリ蓄電池を製造することがで
きる。
(Function) A negative electrode mainly composed of a hydrogen storage alloy and a non-sintered nickel positive electrode containing an active material and CoO are housed in a closed container via a separator, and an alkaline electrolyte is poured into the container. And sealed nickel-hydrogen alkaline storage batteries
When initially charged at a current value of 0.05 to 1 CmA, the CoO is oxidized to cobalt oxyhydroxide, and subsequently, nickel hydroxide, which is a positive electrode active material, is oxidized to generate nickel oxyhydroxide. The cobalt oxyhydroxide generated at the time of the initial charge maintains a stable state without being reduced even when discharging, and the amount of electricity consumed when CoO is oxidized to cobalt hydroxide acts as a reduction of the negative electrode as it is Therefore, it remains in the negative electrode as a charged state. The initial charge at such a current value is performed during a period in which an amount of electricity equal to or more than 1.5 times the amount of electricity that the CoO is oxidized to cobalt oxyhydroxide is supplied, so that the negative electrode has an appropriate amount as a partially charged portion. In other words, an optimal amount that does not cause the negative electrode capacity regulation due to the negative electrode utilization ratio being inferior to the positive electrode utilization ratio can be left. Therefore, it is possible to manufacture a nickel-metal hydride storage battery capable of suppressing a rise in battery internal pressure in an overcharged state and maintaining a large current discharge / overdischarge characteristic stably over a long period of time.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 まず、LmNi4.2Mn0.3Al0.3Co0.2を機械的に75μm以下
の粒径の粉末に粉砕した水素吸蔵合金粉末を用意した。
つづいて、この水素吸蔵合金粉末に有機結着剤としてPT
FE、ポリアクリル酸ナトリウム、CMCと、導電性粉末と
してカーボンブラックと水を添加し、混練してペースト
を調製した。ひきつづき、このペーストをパンチドメタ
ルに塗布、乾燥、圧延を行った後、裁断して95mm×39mm
×0.4mmの水素吸蔵合金電極(負極)を作製した。
Example 1 First, a hydrogen storage alloy powder was prepared by mechanically pulverizing LmNi 4.2 Mn 0.3 Al 0.3 Co 0.2 into a powder having a particle size of 75 μm or less.
Subsequently, PT was added to this hydrogen storage alloy powder as an organic binder.
FE, sodium polyacrylate, CMC, carbon black and water as conductive powder were added and kneaded to prepare a paste. Continue to apply this paste to punched metal, dry and roll, then cut to 95 mm x 39 mm
A × 0.4 mm hydrogen storage alloy electrode (negative electrode) was produced.

また、水酸化ニッケル90重量部、CoO10重量部に結着
剤及び粘性剤を添加、混練して調製したペーストをニッ
ケル焼結繊維基板(多孔度95%)にに充填した後、乾
燥、圧延し、更に裁断して63mm×39mm×0.70mmの非焼結
式ニッケル正極を作製した。
A paste prepared by adding and kneading a binder and a viscous agent to 90 parts by weight of nickel hydroxide and 10 parts by weight of CoO is filled into a sintered nickel fiber substrate (porosity: 95%), and then dried and rolled. Then, a non-sintered nickel positive electrode having a size of 63 mm × 39 mm × 0.70 mm was prepared.

次いで、前記負極及び非焼結式ニッケル正極をポリア
ミド不織布からなる厚さ0.2mmのセパレータを介して捲
回することにより作製した電極群を用いて第1図に示す
AAサイズの試験セルを組み立てた。第1図において電池
ケースは、アクリル樹脂製のケース本体1と封口板の役
目を果たすキャップ2とから構成されている。前記ケー
ス本体1の中心部には、AAサイズの金属容器と同一の内
径、高さを有する空間3が形成されており、この空間3
内には前記構成の電極群4が収納されている。前記キャ
ップ2には、圧力検出器5が取り付けられてセル内の圧
力をモニタできようになっている。前記ケース本体1及
びキャップ2は、前記電極群4が収納された空間3内に
KOHとLiOHが7規定、1規定となるように調製した電解
液を2.4ml注入した後、ゴムシート6及びOリング7を
介して組み立てられ、ボルト8及びナット9により密閉
されている。また、前記電極群4の負極に接続されたリ
ード10、正極に接続されたリード11は夫々前記ゴムシー
ト6及びOリング7の間を通して外部に延出されてい
る。
Next, FIG. 1 shows an electrode group produced by winding the negative electrode and the non-sintered nickel positive electrode through a 0.2-mm-thick separator made of a polyamide nonwoven fabric.
An AA size test cell was assembled. In FIG. 1, the battery case includes an acrylic resin case main body 1 and a cap 2 serving as a sealing plate. A space 3 having the same inner diameter and height as the AA size metal container is formed in the center of the case body 1.
The electrode group 4 having the above configuration is accommodated therein. A pressure detector 5 is attached to the cap 2 so that the pressure in the cell can be monitored. The case body 1 and the cap 2 are placed in the space 3 in which the electrode group 4 is housed.
After injecting 2.4 ml of an electrolytic solution prepared so that KOH and LiOH become 7N and 1N, they are assembled via a rubber sheet 6 and an O-ring 7, and sealed with bolts 8 and nuts 9. The lead 10 connected to the negative electrode and the lead 11 connected to the positive electrode of the electrode group 4 extend to the outside through the space between the rubber sheet 6 and the O-ring 7, respectively.

得られた試験セル(容量1000mAh)を45℃の温度で24
時間静置、保管した後、下記第1表に示す各種の電流値
で、電池容量の150%まで初充電を行った。かかる初充
電後の電池内圧挙動を同第1表に併記した。
The obtained test cell (capacity 1000 mAh) was heated at a temperature of 45 ° C for 24 hours.
After standing and storing for a time, the battery was initially charged at various current values shown in Table 1 below to 150% of the battery capacity. The internal pressure behavior of the battery after such initial charging is also shown in Table 1.

初充電後の電池について1CmAの電流値にて0.8Vまで放
電した電池を分解し、負極である水素吸蔵合金電極に放
電されずに残留した一部充電状態の電気量(残留量)を
測定した。ここで、負極の残留量とは水素吸蔵合金電極
の全容量に対する水素吸蔵合金電極に放電されずに残留
した一部充電状態の電気量の割合を意味する。また、1C
mAにて電池容量の150%まで充電し、1CmAで0.8Vまで放
電する充放電を繰り返して充放電サイクル寿命を測定し
た。但し、充電と放電、放電と充電の間にそれぞれ休止
時間として30分間のオープン状態を持たせた。これらの
結果を同第1表に併記した。
The battery after the first charge was discharged to 0.8 V at a current value of 1 CmA, disassembled, and the amount of electricity (residual amount) in the partially charged state remaining without being discharged to the hydrogen storage alloy electrode as the negative electrode was measured. . Here, the residual amount of the negative electrode means the ratio of the amount of electricity in a partially charged state remaining without being discharged to the hydrogen storage alloy electrode to the total capacity of the hydrogen storage alloy electrode. Also, 1C
The battery was charged to 150% of the battery capacity with mA, and was repeatedly charged and discharged to 0.8 V at 1 CmA, and the charge and discharge cycle life was measured. However, an open state of 30 minutes was provided between the charge and the discharge and between the discharge and the charge as a pause time. These results are also shown in Table 1.

更に、第1図図示の試験セルとは別に前記電極群を用
いてAAサイズのニッケル・水素アルカリ蓄電池を組み立
て、前述した条件で初充電を行った後、前記条件で充放
電を繰り返し、30サイクル目で過放電試験を行った。そ
の結果を同第1表に併記した。
Further, an AA size nickel-hydrogen alkaline storage battery was assembled using the above-mentioned electrode group separately from the test cell shown in FIG. 1, and after initial charging was performed under the above-described conditions, charging and discharging were repeated under the above-described conditions, and the cycle was repeated for 30 cycles. An overdischarge test was performed visually. The results are shown in Table 1.

第1表から明らかなように本発明に係わる試験セル
B、C、D、E、Fは、サイクル寿命特性や大電流での
放電・過放電特性が良好であることがわかる。これに対
し、試験セルA、Hでは負極である水素吸蔵合金電極の
一部が充電状態になっているにも拘らず、サイクル寿命
が短く、過放電時の電池内圧の上昇等の不具合が認めら
れた。また、試験セルGでは若干改善されているもの
の、実用的に満足する電池特性を有するものではない。
As is clear from Table 1, the test cells B, C, D, E, and F according to the present invention have good cycle life characteristics and discharge / overdischarge characteristics at a large current. On the other hand, in the test cells A and H, although the hydrogen storage alloy electrode, which is the negative electrode, was partially charged, the cycle life was short and problems such as an increase in the internal pressure of the battery during overdischarge were recognized. Was done. Although the test cell G is slightly improved, it does not have practically satisfactory battery characteristics.

実施例2 前述した実施例1と同構成・同構造の試験セル(容量
1000Ah)を45℃の温度で24時間静置、保管した後、下記
第2表に示す条件で初充電を行った。かかる初充電後の
負極の残留容量を測定した。その結果を同第2表に併記
した。なお、この試験セルの正極中のCoOがオキシ水酸
化コバルトの酸化に消費される電気量は、20%である。
Example 2 A test cell (capacity) having the same configuration and structure as in Example 1 described above
1000Ah) was stored at 45 ° C. for 24 hours, and then initially charged under the conditions shown in Table 2 below. The residual capacity of the negative electrode after the initial charge was measured. The results are shown in Table 2 above. The amount of electricity consumed by CoO in the positive electrode of this test cell for the oxidation of cobalt oxyhydroxide was 20%.

上記第2表から明らかなように、試験セルI、Jにつ
いては初充電量が小さい(初充電期間が短い)ためにCo
Oの酸化が十分に行われず、その結果、負極である水素
吸蔵合金電極の一部充電部分の生成量が少くなり、前述
した試験セルAと同様に大電流での放電・過放電特性が
劣ることがわかる。これに対し、試験セルK〜Nについ
ては負極である水素吸蔵合金電極の一部充電部分の生成
量も多く、大電流での放電・過放電特性にも何等問題が
ないことがわかる。これは、初充電量が電池容量の30%
以上(CoOがオキシ水酸化コバルトの酸化に消費される
電気量の1.5倍以上の電気量が通電される期間)とすれ
ば特性上問題がないことを意味する。具体的には、試験
セルOのように初充電工程の短縮を図る目的で初充電時
の電流値を途中で変化させてトータルで150%まで充電
した場合でも前述したような効果を達成できる。しかし
ながら、試験セルJのように前記期間がCoOがオキシ水
酸化コバルトの酸化に消費される期間と同等である場合
には、CoOがオキシ水酸化コバルトに酸化される反応
と、正極活物質であるNi(OH)2がオキシ水酸化ニッケル
に酸化される反応との競争反応が始まる時点となり、Co
Oがオキシ水酸化コバルトに酸化される反応が効率よく
行えなくなるという問題が生じる。
As is apparent from Table 2 above, the test cells I and J have a small initial charge amount (the initial charge period is short), so that Co
O is not sufficiently oxidized, and as a result, the generation amount of the partially charged portion of the hydrogen storage alloy electrode as the negative electrode is reduced, and the discharge / overdischarge characteristics at a large current are inferior as in the test cell A described above. You can see that. On the other hand, in the test cells K to N, the generation amount of the partially charged portion of the hydrogen storage alloy electrode as the negative electrode is large, and it can be seen that there is no problem in the discharge / overdischarge characteristics at a large current. This means that the initial charge is 30% of the battery capacity
The above (period in which the amount of electricity of CoO is 1.5 times or more the amount of electricity consumed in oxidizing the cobalt oxyhydroxide) means that there is no problem in characteristics. Specifically, the same effect as described above can be achieved even when the current value at the time of the initial charge is changed halfway and charged up to 150% in total in order to shorten the initial charge step like the test cell O. However, when the period is equal to the period in which CoO is consumed for the oxidation of cobalt oxyhydroxide as in test cell J, the reaction in which CoO is oxidized to cobalt oxyhydroxide and the positive electrode active material The point at which a competitive reaction with the reaction where Ni (OH) 2 is oxidized to nickel oxyhydroxide starts,
There is a problem that the reaction of oxidizing O to cobalt oxyhydroxide cannot be performed efficiently.

[発明の効果] 以上詳述した如く、本発明によれば負極としての水素
吸蔵合金電極の一部を充電部分として容易に生成するこ
とができ、長期間安定した性能を取り出せると共に、大
電流での放電や万一過放電状態に至った場合でも電池内
圧の上昇に伴う漏液、破裂を防止できる適正な正極・負
極の容量バランスを有するニッケル・水素アルルカリ蓄
電池の製造方法を提供できる。
[Effects of the Invention] As described above in detail, according to the present invention, a part of the hydrogen storage alloy electrode as a negative electrode can be easily formed as a charged portion, and stable performance can be obtained for a long time, and a large current can be obtained. The present invention can provide a method for manufacturing a nickel-metal hydride alkaline storage battery having an appropriate positive electrode / negative electrode capacity balance capable of preventing liquid leakage and rupture due to an increase in battery internal pressure even in the event of battery discharge or overdischarge.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例で組み立てた試験セルを示す断
面図である。 1……電池ケース、2…キャップ、4…電極群、5…圧
力検出器。
FIG. 1 is a sectional view showing a test cell assembled in an embodiment of the present invention. 1 ... Battery case, 2 ... Cap, 4 ... Electrode group, 5 ... Pressure detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 浩孝 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 高橋 浩之 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 猿渡 一郎 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 長谷部 裕之 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 昭64−21864(JP,A) 特開 昭63−236274(JP,A) 特開 平2−207452(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/24 - 10/30 H01M 10/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirotaka Hayashida 1 Kosuka Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba Research Institute, Inc. (72) Inventor Hiroyuki Takahashi 3-4-1 Minamishinagawa, Shinagawa-ku, Tokyo No. Toshiba Battery Co., Ltd. (72) Inventor Ichiro Saruwatari 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Co., Ltd. (72) Inventor Hiroyuki Hasebe 1 Komukai Toshiba-cho, Koyuki-ku, Kawasaki-shi, Kanagawa Prefecture Address Toshiba Research Institute, Inc. (56) References JP-A-64-21864 (JP, A) JP-A-63-236274 (JP, A) JP-A-2-207452 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01M 10/24-10/30 H01M 10/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を主成分とする負極と活物質
及びCoOを含む非焼結式ニッケル正極とをセパレータを
介して密閉容器内に収納し、かつ前記容器内にアルカリ
電解液を注液後、封口した構造のニッケル・水素アルカ
リ蓄電池を組み立てる工程と、 前記蓄電池を保管する工程と、 前記蓄電池に前記CoOがオキシ水酸化コバルトに酸化さ
れる電気量の1.5倍以上の電気量が通電されるまで電流
値を0.05〜1CmAの範囲にする初充電を施す工程と を具備することを特徴とするニッケル・水素アルカリ蓄
電池の製造方法。
1. A negative electrode mainly composed of a hydrogen storage alloy and a non-sintered nickel positive electrode containing an active material and CoO are housed in a closed container via a separator, and an alkaline electrolyte is poured into the container. After the liquid, a step of assembling a nickel-hydrogen alkaline storage battery having a sealed structure, a step of storing the storage battery, and an electrical quantity of 1.5 times or more the quantity of electricity that the CoO is oxidized to cobalt oxyhydroxide is supplied to the storage battery. Performing a first charge to keep the current value in the range of 0.05 to 1 CmA until the battery is charged.
JP1240070A 1989-09-18 1989-09-18 Method for manufacturing nickel-hydrogen alkaline storage battery Expired - Fee Related JP2940952B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1240070A JP2940952B2 (en) 1989-09-18 1989-09-18 Method for manufacturing nickel-hydrogen alkaline storage battery
DE69014183T DE69014183T2 (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell.
EP90310213A EP0419220B1 (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell
US07/584,115 US5032475A (en) 1989-09-18 1990-09-18 Nickel-metal hydride secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240070A JP2940952B2 (en) 1989-09-18 1989-09-18 Method for manufacturing nickel-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH03102780A JPH03102780A (en) 1991-04-30
JP2940952B2 true JP2940952B2 (en) 1999-08-25

Family

ID=17054045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240070A Expired - Fee Related JP2940952B2 (en) 1989-09-18 1989-09-18 Method for manufacturing nickel-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2940952B2 (en)

Also Published As

Publication number Publication date
JPH03102780A (en) 1991-04-30

Similar Documents

Publication Publication Date Title
US5032475A (en) Nickel-metal hydride secondary cell
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JPH11162505A (en) Nickel-hydrogen battery
JP2001325957A (en) Alkaline secondary cell
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2001118597A (en) Alkaline secondary cell
JP2594149B2 (en) Manufacturing method of metal-hydrogen alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2750793B2 (en) Nickel-metal hydride battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP2594147B2 (en) Metal-hydrogen alkaline storage battery
JP2000021398A (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP2004296240A (en) Nickel hydrogen secondary battery, and manufacturing method of the same
JP2000188106A (en) Alkaline secondary battery
JPH10334941A (en) Alkaline secondary battery
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JP2000200599A (en) Alkaline secondary battery
JPH10289711A (en) Alkaline secondary battery
JPH11260394A (en) Sealed nickel hydrogen secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees