JPH01124919A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH01124919A
JPH01124919A JP62283628A JP28362887A JPH01124919A JP H01124919 A JPH01124919 A JP H01124919A JP 62283628 A JP62283628 A JP 62283628A JP 28362887 A JP28362887 A JP 28362887A JP H01124919 A JPH01124919 A JP H01124919A
Authority
JP
Japan
Prior art keywords
film
forming
gas
oxide
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62283628A
Other languages
Japanese (ja)
Inventor
Mikio Nakagawa
中川 三紀夫
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Shinya Aoki
青木 伸哉
Toshio Usui
俊雄 臼井
Taichi Yamaguchi
太一 山口
Kenji Goto
謙次 後藤
Atsushi Kume
篤 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62283628A priority Critical patent/JPH01124919A/en
Publication of JPH01124919A publication Critical patent/JPH01124919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to obtain a preferable superconductive characteristic with the whole uniform in quality and strong by forming an oxide line superconductor or its precusor while accelerating and irradiating nonreducing gas ion when forming it by a film forming method. CONSTITUTION:A film 2 consisting of oxide superconductor or its precusor is formed on base substance 1 using a method which combined ion beam assisting method to film forming methods such as, e.g. vacuum deposition method, spattering method, molecular beam epitaxy method, ion gas phase growing method, etc. When forming a film, nonreducing gas is used for gas ion to be irradiated after acceleration to the film 2 in formation, and the nonreducing gas is the gas of ions, atoms or molecules which include one or two kinds or more of nonactive elements such as Ar, He, We, Xe, etc. and halogen elements such as F, Cl, Br, I, etc. and a nitrogen element. Hereby, even if high temperature setting or high temperature heat treatment is not applied to the base substance, a preferable superconductivity can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、例えばジョセフソン素子、超電導記憶素子
などの超電導デバイス、超電導マグネット用コイルなど
に使用可能な酸化物系超電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide-based superconductor that can be used for superconducting devices such as Josephson elements and superconducting memory elements, coils for superconducting magnets, and the like.

[従来の技術] 近時、常電導状態から超電導状態に遷移する臨界温度(
Tc)が液体窒素温度以上の高い値を示す酸化物系の超
電導体が種々発見されつつある。
[Prior art] Recently, the critical temperature at which the normal conductive state transitions to the superconducting state (
Various oxide-based superconductors are being discovered that exhibit Tc) values higher than the liquid nitrogen temperature.

現在のところ、このような酸化物系超電導体を製造する
方法としては、例えば、真空蒸着法、スパッタリング法
、分子線エピタキシー(MBE)法、化学気相成長(C
VD)法、イオン気相成長(IVD)法などの成膜法が
知られている。そして、このような成膜法においては、
いずれの場合も、例えばITorr以下の低圧下で、か
つ酸素ガス雰囲気あるいは酸素ガスと不活性ガスとの混
合ガス雰囲気、中で酸化物系超電導体からなる膜体を製
造することができる。しかし、このままでは、成膜時・
の雰囲気中の酸素分圧か低いことから、基体上に形成さ
れる膜体の結晶中に所望量の酸素が導入されにくく、そ
の結晶組成が化学量論的組成からずれてしまうため、臨
界温度(Tc)や臨界電流密度(Jc)や臨界磁界(H
el)などの超電導特性が低い膜体が生成される傾向が
あり、このため、成膜後に酸素雰囲気中で高温熱処理(
例えば、800℃〜1,000℃)を行なうことによっ
て、上記膜体の結晶中に酸素を所望量導入して膜体の超
電導特性を改善する試みがなされている。
At present, methods for producing such oxide-based superconductors include, for example, vacuum evaporation, sputtering, molecular beam epitaxy (MBE), and chemical vapor deposition (C
Film forming methods such as VD) method and ion vapor deposition (IVD) method are known. In such a film formation method,
In either case, a film body made of an oxide-based superconductor can be produced under a low pressure of, for example, ITorr or less and in an oxygen gas atmosphere or a mixed gas atmosphere of oxygen gas and an inert gas. However, if this continues, the film formation time and
Due to the low oxygen partial pressure in the atmosphere, it is difficult to introduce the desired amount of oxygen into the crystals of the film formed on the substrate, and the crystal composition deviates from the stoichiometric composition. (Tc), critical current density (Jc), critical magnetic field (H
There is a tendency for film bodies with low superconducting properties such as
For example, attempts have been made to improve the superconducting properties of the membrane by introducing a desired amount of oxygen into the crystals of the membrane by heating the membrane at a temperature of 800 DEG C. to 1,000 DEG C.).

[発明が解決しようとする問題点] しかしながら、上記従来の方法にあっては、いずれの場
合も基体温度が700℃以下では、膜体がアモルファス
となり超電導を示さない。したがって成膜時、基体温度
を700℃以上に設定する必要があるが、この場合、成
膜後の酸素雰囲気中での高温熱処理と併せて、以下のよ
うな不都合が指摘されている。
[Problems to be Solved by the Invention] However, in any of the above conventional methods, when the substrate temperature is 700° C. or lower, the film becomes amorphous and does not exhibit superconductivity. Therefore, it is necessary to set the substrate temperature to 700° C. or higher during film formation, but in this case, the following disadvantages have been pointed out in addition to high-temperature heat treatment in an oxygen atmosphere after film formation.

(1)基体温度の高温設定や高温熱処理により膜体の構
成元素が基体の構成元素と反応して両者の界面に化合物
が生成され易く、このため良好な超電導特性を示す酸化
物系超電導体からなる膜体を得ることが難しい。
(1) Due to the high temperature setting of the substrate or high-temperature heat treatment, the constituent elements of the film react with the constituent elements of the substrate, and compounds are likely to be generated at the interface between the two, and for this reason, oxide-based superconductors exhibit good superconducting properties. It is difficult to obtain a film body that looks like this.

(2)上記(1)の場合において、膜体の構成元素と反
応しにくい基体(酸化マグネシウム(MgO)、チタン
酸ストロンチウム(S rT iOs”)も存在するが
、これらは高価である。
(2) In the case of (1) above, there are also substrates (magnesium oxide (MgO), strontium titanate (S rTiOs)) that are difficult to react with the constituent elements of the film body, but these are expensive.

(3)ジタセフソン素子などの微細加工を必要とする素
子を製造する場合、基体温度の高温設定や高温熱処理に
より微細加工部分に欠陥が生じ易く、高度に集積化した
素子を製造することが難しい。
(3) When manufacturing devices that require microfabrication, such as Jitasefson devices, defects tend to occur in microfabricated parts due to high temperature setting of the substrate temperature or high temperature heat treatment, making it difficult to manufacture highly integrated devices.

このような事情から、従来より、基体温度の高温設定ま
たは高温熱処理を施さずとも、良好な超電導特性を示し
得る酸化物系超電導体の製造技術の開発が望まれている
Under these circumstances, it has been desired to develop a manufacturing technology for oxide-based superconductors that can exhibit good superconducting properties without setting the substrate temperature at a high temperature or performing high-temperature heat treatment.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明にあっては、酸化物系超電導体あるい
は酸化物系超電導体の前駆体を成膜法により形成する際
に、非還元性ガスを加速して照射しつつ形成することに
より上記問題点を解決した。
Therefore, in the present invention, when forming an oxide superconductor or a precursor of an oxide superconductor by a film forming method, the above problem is solved by forming the oxide superconductor or a precursor of the oxide superconductor while accelerating irradiation with a non-reducing gas. Resolved the point.

以下、この発明の酸化物系超電導体の製造方法を詳しく
説明する。
Hereinafter, the method for producing an oxide-based superconductor of the present invention will be explained in detail.

この発明では、第1図に示すように基体lを用意する。In this invention, a base 1 is prepared as shown in FIG.

この基体lには、例えば板材、線材、テープ材、筒状体
、柱状体など種々の形状のものが用いられる。そして、
このような基体1の形成材料としては、比較的安価な材
料、例えばステンレス、アルミニウム、銅などの金属材
料、これらの合金材料、上記金属または合金材料の窒化
物や炭化物、安定化ジルコニア、アルミナ、シリコン、
シリカ、ニオブ酸リチウム、サファイア、ルビーなどの
結晶材料が用いられる。
The base 1 may be of various shapes, such as a plate, a wire, a tape, a cylinder, or a column. and,
Examples of materials for forming the base 1 include relatively inexpensive materials, such as metal materials such as stainless steel, aluminum, and copper, alloy materials thereof, nitrides and carbides of the above-mentioned metals or alloy materials, stabilized zirconia, alumina, silicon,
Crystalline materials such as silica, lithium niobate, sapphire, and ruby are used.

次いで、このような基体1上に酸化物系超電導体あるい
はその・前駆体からなる膜体2を形成する。
Next, a film body 2 made of an oxide superconductor or its precursor is formed on such a substrate 1.

ここで酸化物系超電導体としては、典型的にはA−B−
C−D系(ただし、AはY、Sc、La、Ce。
Here, the oxide superconductor is typically AB-
CD system (A is Y, Sc, La, Ce.

Pr、Nd、Ps、Ss+、Eu、Gd、Tb、Dy、
Ho、Er、Tm。
Pr, Nd, Ps, Ss+, Eu, Gd, Tb, Dy,
Ho, Er, Tm.

Yb、Luの周期律表第ma族元素のうち1種あるいは
2種以上を表し、BはSr、Ba、Ca、Be、Mg。
Yb and Lu represent one or more elements of group ma of the periodic table, and B represents Sr, Ba, Ca, Be, and Mg.

Raの周期律表第1[a族元素のうち1種あるいは2種
以上を表し、CはCu、Ag、Auの周期律表第ib族
元素とNb元素のうちCuあるいはCuを含む2種以上
を表し、DはO,S、Se、Te、Poの周期律表第v
+b族元素及びF、CI2.Br、I’、Atの周期律
表第■b族元素のうち0あるいは0を含む2種以上を表
す。)のものが用いられる。そして、この酸化物系超電
導体の各構成元素の組成は、例えばY−Ba−Cu−0
系超電導体の場合、Y : 1 、Ba; 2〜3.C
u; 3〜4.0 ;7−δとされ、また、δはO≦δ
≦5の範囲とされる。なお、上記°酸化物系超電導体の
前駆体は、上記A−B−C−D系超電導体の組成に比べ
てその構成元素の酸素の一部が欠損して、その超電導特
性が芳しくないものである。
Ra represents one or more of the Group A elements of the Periodic Table 1 [A], and C represents Cu or two or more of the Group Ib elements of the Periodic Table of Cu, Ag, and Au and the Nb element; , D represents the periodic table v of O, S, Se, Te, Po.
+b group elements and F, CI2. Represents 0 or two or more elements containing 0 among the elements of Group 1b of the periodic table, such as Br, I', and At. ) are used. The composition of each constituent element of this oxide superconductor is, for example, Y-Ba-Cu-0
In the case of a system superconductor, Y: 1, Ba; 2-3. C
u; 3-4.0; 7-δ, and δ is O≦δ
The range is ≦5. In addition, the precursor of the above-mentioned oxide-based superconductor is one in which a part of the constituent element oxygen is deficient compared to the composition of the above-mentioned A-B-C-D-based superconductor, and its superconducting properties are poor. It is.

また、上記膜体2の形成方法としては、例えば真空蒸着
法、スパッタリング法、分子線エピタキシー(MBE)
法、化学気相成長(CVD)法、イオン気相成長(IV
D)法などの成膜法にイオンビームアシスト法を組合わ
せた方法が好適に用いられる。このイオンビームアシス
ト法は、成膜時に、ガスイオンを対象物(形成中の膜体
2)に加速して照射し、膜体2の膜質を向上させる方法
であるが、この発明で使用されるガスイオンは非還元性
ガスである。ここで非還元性ガスとは、A r、 He
Further, as a method for forming the film body 2, for example, a vacuum evaporation method, a sputtering method, a molecular beam epitaxy (MBE), etc.
method, chemical vapor deposition (CVD) method, ion vapor deposition (IV
A method in which an ion beam assist method is combined with a film forming method such as method D) is preferably used. This ion beam assist method is a method in which gas ions are accelerated and irradiated onto the target object (the film body 2 being formed) during film formation to improve the film quality of the film body 2, and is used in this invention. Gas ions are non-reducing gases. Here, non-reducing gases include Ar, He
.

Ne、Xeなどの不活性元素、F、C1,Br、Iなど
のハロゲン元素、及び窒素元素のうち、単独あるいは2
種以上を含むイオン、原子、または分子の気体を指称す
るものである。
Inert elements such as Ne and Xe, halogen elements such as F, C1, Br, I, and nitrogen elements alone or in combination
Refers to a gas containing more than one species of ions, atoms, or molecules.

そして、上記イオンビームアシスト法は、前述の成膜法
のいずれかと任意に組合わせることが可能であるが、こ
こで、−例(実施態様)として、真空蒸着法とイオンビ
ームアシスト法との組合わせによる膜体2の形成方法に
ついて第2図を参照しながら説明する。
The ion beam assist method described above can be arbitrarily combined with any of the film forming methods described above, but here, as an example (embodiment), a combination of the vacuum evaporation method and the ion beam assist method is used. A method of forming the film body 2 by lamination will be explained with reference to FIG. 2.

第2図は、この発明に用いられる製造装置の一例を示す
ものである。図中符号3で示されるこの製造装置は、真
空蒸着装置にイオンビームアシスト用のイオン源4を追
加して設けてなるものであり、具体的には、この製造装
置3は、非還元性ガスイオンを加速して対象物(形成中
の膜体2)に照射するイオン源4と、基体lを保持する
板状の基体ホルダ5と、この基体ホルダ5に所定間隔を
もって対向する三つのるつぼ6.6.6とから概略構成
されている。そして、イオン源4は基体ホルダ5に基体
lを保持した場合に、基体l上の膜体2に向くように配
設されている。ま、た基体ホルダ5は電気的に接地され
ている。さらに、上記三つのるつぼ6,6.6のそれぞ
れの近傍には、蒸着材料に電子ビームを直接あてて加熱
するようにした電子銃7.7.7が設けられている。
FIG. 2 shows an example of a manufacturing apparatus used in the present invention. This manufacturing device, indicated by the reference numeral 3 in the figure, is a vacuum evaporation device with an ion source 4 for ion beam assist added thereto. Specifically, this manufacturing device 3 uses non-reducing gas. An ion source 4 that accelerates ions and irradiates the target object (film body 2 being formed), a plate-shaped substrate holder 5 that holds a substrate 1, and three crucibles 6 that face the substrate holder 5 at predetermined intervals. It is roughly composed of .6.6. The ion source 4 is arranged so as to face the membrane 2 on the substrate 1 when the substrate 1 is held in the substrate holder 5. Furthermore, the substrate holder 5 is electrically grounded. Further, in the vicinity of each of the three crucibles 6, 6.6, an electron gun 7.7.7 is provided which heats the vapor deposition material by directly applying an electron beam to it.

このような構成の製造装置3を用いて膜体2を形成する
にあたっては、まず、基体ホルダ5に基体lを取り付け
ると共に、膜体2の形成材料(蒸着材料)をるつぼ6.
6.6に入れる。ここで、膜体2の形成材料としては前
述したA−B−C−D系超電導体を構成する元素を含む
ものが用いられる。例えば、上記A−B−C−D系の超
電導体の構成元素A、B、Cの単体または酸化物、例え
ばY。
When forming the film body 2 using the manufacturing apparatus 3 having such a configuration, first, the base body 1 is attached to the base body holder 5, and the material for forming the film body 2 (evaporation material) is placed in the crucible 6.
6. Put it in 6. Here, as the material for forming the film body 2, a material containing the elements constituting the above-mentioned A-B-C-D superconductor is used. For example, simple substances or oxides of constituent elements A, B, and C of the above-mentioned A-B-C-D superconductor, such as Y.

Ba、Cuをそれぞれ別々のるつぼ6.6.6に入れる
。そして、上記イオン源4と基体ホルダ5と三つのるつ
ぼ6,6.6とを共に低圧の酸素雰囲気下におくように
する。このような状態の下で、まず、基体lをヒータ(
図示せず)により600℃〜700℃に予熱する。次ぎ
に、電子銃7.7.7から3源同時に電子ビームを発生
させ、これにより発生した電子ビームをるつぼ6.6.
6内の膜体2の形成材料に衝突させ、この衝突により加
熱された形成材料の中性原子や分子を蒸発させて基体1
表面に堆積させて膜体2を形成する。
Put Ba and Cu into separate crucibles 6.6.6. Then, the ion source 4, substrate holder 5, and three crucibles 6, 6.6 are placed together in a low pressure oxygen atmosphere. Under these conditions, first, the substrate l is placed in a heater (
(not shown) to 600°C to 700°C. Next, three sources of electron beams are simultaneously generated from the electron guns 7.7.7, and the electron beams thus generated are transferred to the crucibles 6.6 and 7.
The neutral atoms and molecules of the forming material heated by this collision are evaporated to form the base 1.
A film body 2 is formed by depositing it on the surface.

そして、この膜体2の形成に伴って、イオン源4の先端
部に設けられた加速電極(図示せず)により非還元性ガ
スイオンを所定の速度に加速し、加速された非還元性ガ
スイオンを基体lの表面に照射すると共に、雰囲気中の
酸素に衝撃を与えてこれを活性化(イオン化あるいは原
子化)する。
As the film body 2 is formed, non-reducing gas ions are accelerated to a predetermined speed by an accelerating electrode (not shown) provided at the tip of the ion source 4, and the accelerated non-reducing gas Ions are irradiated onto the surface of the substrate 1, and oxygen in the atmosphere is bombarded to activate (ionize or atomize) it.

また、非還元性ガスイオンにより活性化された酸素も基
体lの表面に照射される。ここで、上記の加速電極に印
加される電圧は、膜体2内に照射される際の非還元性ガ
スイオンなどの衝突速度、イオン源4と基体lとの離間
寸法、真空蒸着条件などに応じて適宜法められる。また
、加速により非還元性ガスイオンに与えられるエネルギ
ーはlO〜2000eVの範囲であることが望ましい。
Furthermore, oxygen activated by non-reducing gas ions is also irradiated onto the surface of the substrate l. Here, the voltage applied to the accelerating electrode mentioned above depends on the collision speed of non-reducing gas ions etc. when irradiating the inside of the film body 2, the distance between the ion source 4 and the substrate l, the vacuum evaporation conditions, etc. Laws will be enacted accordingly. Further, it is desirable that the energy given to the non-reducing gas ions by acceleration is in the range of lO to 2000 eV.

10eV未満では、エネルギー不足で非還元性ガスイオ
ンなどが膜体2内に注入されにくく、2000eVを越
えると、非還元性ガスイオンの注入効果が頭打ちとなり
、不経済である。
If it is less than 10 eV, it is difficult to inject non-reducing gas ions into the membrane body 2 due to lack of energy, and if it exceeds 2000 eV, the effect of non-reducing gas ion injection reaches its peak, which is uneconomical.

この上うな成膜法により製造された膜体2は、非還元性
ガスイオンを用いた上記イオンビームアシスト法の効果
により、膜体2を構成する各元素が適度に活性化される
ので、結晶のC軸が基体lの垂直方向に配向した膜体2
を得ることができ、したがって、全体が均質でJ−段と
良好な超電導特性を得ることができると共に、基体1と
の付着が強固な膜体を形成することができる。また、上
記イオンビームアシスト法によれば、従来の成膜法に比
べて膜体2の結晶中への酸素の導入量が増加することが
確認された。したがって、酸化物超電導体の前駆体から
なる膜体2によれば、成膜後の酸素雰囲気中での熱処理
を低温下で行って、最終物質(酸化物超電導体からなる
膜体2)を製造することができる。したがって、以上の
製造方法によれば、さらに、次のような優れた効果を得
ることができる。すなわち、従来法と異なり、成膜時の
基体温度及び成膜後の熱処理温度を低温に設定すること
ができるので、(1)基体lと膜体2とが高温で反応し
合う不都合もなく、この点においても膜体2の超電導特
性を良好なものとすることができる。(2)基体lの形
成材料として比較的安価な材料を選ぶことができる。(
3)微細加工部分に熱的欠陥が生Eにくいため、例えば
ジョセフソン素子など、微細な超電導デバイスを一段と
良好に製造することができる。
Moreover, the film body 2 manufactured by this film-forming method is crystallized because each element constituting the film body 2 is appropriately activated by the effect of the above-mentioned ion beam assist method using non-reducing gas ions. A film body 2 whose C axis is oriented perpendicular to the substrate l.
Therefore, it is possible to obtain a homogeneous overall superconducting property with good J-level superconducting properties, and also to form a film body with strong adhesion to the substrate 1. Furthermore, it was confirmed that according to the ion beam assisted method, the amount of oxygen introduced into the crystal of the film body 2 was increased compared to the conventional film forming method. Therefore, according to the film body 2 made of a precursor of an oxide superconductor, the final material (film body 2 made of an oxide superconductor) is manufactured by performing heat treatment in an oxygen atmosphere at a low temperature after film formation. can do. Therefore, according to the above manufacturing method, the following excellent effects can be obtained. That is, unlike the conventional method, the substrate temperature during film formation and the heat treatment temperature after film formation can be set to low temperatures, so (1) there is no inconvenience that the substrate 1 and the film body 2 react with each other at high temperatures; Also in this respect, the superconducting properties of the membrane body 2 can be made good. (2) A relatively inexpensive material can be selected as the material for forming the base 1. (
3) Since thermal defects are less likely to occur in microfabricated parts, microscopic superconducting devices such as Josephson elements can be manufactured even better.

なお、上記の例では、前述の成膜法により基体l上に膜
状の膜体2を形成するようにしたが、成膜する際の製造
方法、製造条件を選ぶことで基体l上に粉末状あるいは
微粉末状あるいは超微粒子状の酸化物系超電導体を形成
することができる。
In the above example, the film-like film body 2 was formed on the substrate l by the above-mentioned film-forming method. It is possible to form an oxide-based superconductor in the form of a powder, a fine powder, or an ultrafine particle.

したがって、この場合にも、上記の例と同様に成膜中に
イオンビームアシスト法で非還元性ガスを照射すること
により、上記酸化物系超電導体の超電導特性を向上させ
ることができる。
Therefore, in this case as well, the superconducting properties of the oxide-based superconductor can be improved by irradiating non-reducing gas with the ion beam assist method during film formation, as in the above example.

さらにまた、この例では、最終的に得られる酸化物超電
導体をA−B−Cu−0系のものとしたが、A−B−C
u−0−X系(但し、XはF、CC。
Furthermore, in this example, the oxide superconductor finally obtained was of the A-B-Cu-0 system, but the A-B-C
u-0-X system (X is F, CC.

Br等のハロゲン族元素の1種あるいは2種以上を表す
。)の酸化物超電導体またはその前駆体も製造できる。
Represents one or more halogen group elements such as Br. ) oxide superconductors or their precursors can also be produced.

〔実施例〕〔Example〕

第2図に示した製造装置3を用い、真空蒸着法とイオン
ビームアシスト法とを組合わせた方法により板状の基体
表面にY−Ba−Cu−0系の超電導体からなる膜体2
を形成した。以下、実施例を示す。上記の基体lには安
定化ジルコニア(ZrO,)製のものを使用するととも
に、蒸着材料にはY元素の単体、Ba元素の単体、及び
Cu元索の単体を用いた。これら3種類の蒸着材を三つ
のるつぼ6.6.6にそれぞれ別々に入れて、3源同時
に電子ビーム蒸着をし得るようにした。そして、成膜時
の雰囲気を100%酸素ガスからなるものとし、その圧
力を0.25 Paとした。また、非還元性ガスイオン
としてアルゴンガスイオンを用い、そのイオン源4のイ
オン電流密度をIiA/c+w”、加速電圧を200V
に設定した。さらに、上記基体1の温度(基体温度)を
600℃とした。
Using the manufacturing apparatus 3 shown in FIG. 2, a film body 2 made of a Y-Ba-Cu-0 based superconductor is formed on the surface of a plate-shaped substrate by a method combining a vacuum evaporation method and an ion beam assist method.
was formed. Examples are shown below. The above-mentioned substrate 1 was made of stabilized zirconia (ZrO), and the vapor deposition materials were a simple substance of Y element, a simple substance of Ba element, and a simple substance of Cu element. These three types of evaporation materials were placed separately in three crucibles 6.6.6 so that electron beam evaporation could be performed simultaneously with three sources. The atmosphere during film formation was 100% oxygen gas, and the pressure was 0.25 Pa. In addition, argon gas ions are used as non-reducing gas ions, the ion current density of the ion source 4 is IiA/c+w'', and the acceleration voltage is 200V.
It was set to Further, the temperature of the substrate 1 (substrate temperature) was set to 600°C.

このような条件の下にアルゴンガスイオンを照射しなが
ら、約2時間かけて厚さ約1μ屑の膜体2を形成した。
Under these conditions and while irradiating with argon gas ions, a film body 2 having a thickness of about 1 μm was formed over about 2 hours.

この膜体2の結晶性を調べたところ、C軸が基体1の垂
直方向に整然と配列していることが確認された。次いで
、この膜体2を温度300℃の酸素雰囲気中で熱処理を
行いY−Ba−Cu−0系の超電導体からなる膜体2を
製造した。この膜体2の臨界温度(T c)を測定した
ところ、88にという結果が得られた。なお、基体温度
を700℃として形成した膜体のTcは89にであった
When the crystallinity of this film body 2 was examined, it was confirmed that the C-axis was regularly aligned in the vertical direction of the base body 1. Next, this film body 2 was heat-treated in an oxygen atmosphere at a temperature of 300° C. to produce a film body 2 made of a Y-Ba-Cu-0 based superconductor. When the critical temperature (Tc) of this film body 2 was measured, a result of 88 was obtained. Note that the Tc of the film formed at a substrate temperature of 700° C. was 89.

これに対し、比較のため、従来の真空蒸着装置を用いて
膜体2を形成した。この場合の成膜条件が上記実施例の
条件と異なるところは、アルゴンガスイオンの照射が行
われない点である。
On the other hand, for comparison, a film body 2 was formed using a conventional vacuum evaporation apparatus. The film forming conditions in this case differ from those in the above embodiments in that argon gas ion irradiation is not performed.

このような条件で得られた成膜後の膜体2の物性を調べ
たところ、基体温度600℃では結晶化せずアモルファ
ス状態となっていた。また、熱処理後の膜体2の電気特
性を調べたところ、半導体的な挙動を示し、超電導特性
を示さなかった。
When the physical properties of the film body 2 after film formation obtained under these conditions were examined, it was found that at a substrate temperature of 600° C., it did not crystallize and was in an amorphous state. Further, when the electrical properties of the film body 2 after the heat treatment were examined, it showed semiconductor-like behavior and did not exhibit superconducting properties.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の製造方法によれば、酸
化物系超電導体あるいはその前駆体を成膜法により形成
する際に、非還元性ガスイオンなどを加速して照射しつ
つ形成するようにしたので、酸化物系超電導体あるいは
その前駆体を構成する各元素が適度に活性化されて、結
晶のC軸が基体の垂直方向に配向した酸化物系超重導体
あるいはその前駆体からなる膜体を得ることができる。
As explained above, according to the manufacturing method of the present invention, when an oxide-based superconductor or its precursor is formed by a film-forming method, it is formed while being irradiated with accelerated non-reducing gas ions. As a result, each element constituting the oxide superconductor or its precursor is appropriately activated, resulting in a film made of the oxide superconductor or its precursor in which the C-axis of the crystal is oriented in the vertical direction of the substrate. You can get a body.

したがって、全体が均質かつ強固で、−段と良好な超電
導特性を示す酸化物系超電導体を製造できる。
Therefore, it is possible to produce an oxide-based superconductor that is homogeneous and strong as a whole and exhibits much better superconducting properties.

また、この製造方法によれ゛ば、従来例に比べて結晶中
への酸素の導入量が多い酸化物系超電導体の前駆体を製
造することができ°るので、この前駆体によれば、酸素
雰囲気中での低温熱処理により最終物質(酸化物超電導
体からなる膜体)を製造することができる。したがって
、以上の製造方法によれば、さらに、次のような優れた
効果を得ることができる。すなわち、従来法と異なり、
成膜時の基体温度及び成膜後の熱処理温度を低温に設定
することができるので、(1)基体と膜体とが高温で反
応し合う不都合もなく、この点においても膜体2の超電
導特性を良好なものとすることができる。(2)基体の
形成材料として比較的安価な材料を選ぶことができる。
Furthermore, according to this manufacturing method, it is possible to manufacture a precursor of an oxide-based superconductor in which a larger amount of oxygen is introduced into the crystal than in the conventional example. The final material (film body made of oxide superconductor) can be manufactured by low-temperature heat treatment in an oxygen atmosphere. Therefore, according to the above manufacturing method, the following excellent effects can be obtained. In other words, unlike the conventional method,
Since the substrate temperature during film formation and the heat treatment temperature after film formation can be set to low temperatures, (1) there is no inconvenience in which the substrate and the film react with each other at high temperatures; The characteristics can be improved. (2) A relatively inexpensive material can be selected as the material for forming the base.

(3)微細加工部分に欠陥が生じにくいため、例えばジ
ョセフソン素子など、微細な超電導デバイスを一段と良
好に製造することができる。
(3) Since defects are less likely to occur in microfabricated parts, microscopic superconducting devices such as Josephson elements can be manufactured even better.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の製造方法によって製造された酸化
物系超電導体の一例を示す概略断面図、第2図は、この
発明の製造方法に好適に用いられる製造装置の一例を示
す概略構成図である。 2・・・・・・膜体(酸化物系超電導体またはその前駆
体)、 4・・・・自イオン源。
FIG. 1 is a schematic cross-sectional view showing an example of an oxide-based superconductor manufactured by the manufacturing method of the present invention, and FIG. 2 is a schematic configuration showing an example of a manufacturing apparatus suitably used in the manufacturing method of the present invention. It is a diagram. 2...Membrane body (oxide-based superconductor or its precursor), 4...Self-ion source.

Claims (1)

【特許請求の範囲】[Claims]  酸化物系超電導体あるいは酸化物系超電導体の前駆体
を成膜法により形成する際に、非還元性ガスを加速して
照射しつつ形成することを特徴とする酸化物系超電導体
の製造方法。
A method for producing an oxide superconductor, characterized in that when forming an oxide superconductor or a precursor of an oxide superconductor by a film formation method, the formation is performed while accelerating and irradiating a non-reducing gas. .
JP62283628A 1987-11-10 1987-11-10 Manufacture of oxide superconductor Pending JPH01124919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62283628A JPH01124919A (en) 1987-11-10 1987-11-10 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62283628A JPH01124919A (en) 1987-11-10 1987-11-10 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01124919A true JPH01124919A (en) 1989-05-17

Family

ID=17667976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62283628A Pending JPH01124919A (en) 1987-11-10 1987-11-10 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01124919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279294A (en) * 1990-03-29 1991-12-10 Mitsubishi Materials Corp Growth of epitaxial layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279294A (en) * 1990-03-29 1991-12-10 Mitsubishi Materials Corp Growth of epitaxial layer

Similar Documents

Publication Publication Date Title
US4950642A (en) Method for fabricating superconducting oxide thin films by activated reactive evaporation
EP0285030A2 (en) Process for producing superconducting thin films
WO1998017846A1 (en) Process for preparing polycrystalline thin film, process for preparing oxide superconductor, and apparatus therefor
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
JPH01124919A (en) Manufacture of oxide superconductor
JP5145109B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JPH01261204A (en) Production of oxide based superconductor
JPH0238302A (en) Formation of superconducting thin film
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
JPH01201008A (en) Production of thin film of oxide superconductor
JP2611332B2 (en) Manufacturing method of thin film superconductor
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH01259582A (en) Manufacture of oxide superconductive thin film
JPH01183176A (en) Manufacture of thin superconducting film
DE68909644T2 (en) Oxide superconductor.
JPH01161628A (en) Formation of oxide superconducting thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JP2501616B2 (en) Preparation method of superconducting thin film
JPH01109614A (en) Manufacture of oxide superconductor
JP2919956B2 (en) Superconducting member manufacturing method
JP2835235B2 (en) Method of forming oxide superconductor thin film
JP2501614B2 (en) Preparation method of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film