JPH01161628A - Formation of oxide superconducting thin film - Google Patents

Formation of oxide superconducting thin film

Info

Publication number
JPH01161628A
JPH01161628A JP62322172A JP32217287A JPH01161628A JP H01161628 A JPH01161628 A JP H01161628A JP 62322172 A JP62322172 A JP 62322172A JP 32217287 A JP32217287 A JP 32217287A JP H01161628 A JPH01161628 A JP H01161628A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
oxide
oxide superconducting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322172A
Other languages
Japanese (ja)
Inventor
Katsuhiro Imada
勝大 今田
Yoshio Takada
良雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62322172A priority Critical patent/JPH01161628A/en
Publication of JPH01161628A publication Critical patent/JPH01161628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconducting thin film with the vertically oriented C-axis and large critical current density by forming a ternary simultaneous deposition film using the specific oxide as a deposition source on a substrate, heat-treating it in the oxygen atmosphere to obtain the first layer of the oxide superconducting thin film, then providing the second layer likewise on this first layer. CONSTITUTION:A ternary simultaneous deposition film is formed on a substrate using Cu or Cu oxide, Ma or Ma oxide, and Ln or Ln oxide as a deposition source, this ternary simultaneous deposition film is heat-treated in the oxygen atmosphere to provide the oxide superconducting thin film first layer. The above two processes are applied on the oxide superconducting thin film first layer to provide the oxide superconducting thin film second layer. This oxide superconducting thin film second layer is hardly affected by the substrate, its composition is analogous to that of the first layer, thus crystals with the C-axis vertical to the deposition face of the substrate grow preferentially. The oxide superconducting thin film with excellent C-axis orientation and large critical current density is thereby obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、酸化物超電導薄膜作成法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an oxide superconducting thin film.

[従来の技術] 従来、常電導から超電導へと転移する温度(以下”■”
cと略記)が最も高いといわれていたN b 3Geで
もTc約23にで、利用に際しては一般に高価な液体ヘ
リウムを用いて冷却しなければならなかった。
[Conventional technology] Conventionally, the temperature at which normal conductivity transitions to superconductivity (hereinafter referred to as "■"
Even N b 3Ge, which was said to have the highest Tc (abbreviated as c), had a Tc of about 23, and generally had to be cooled using expensive liquid helium when used.

これに対し、近年ベドノルツ(Bednorz)やミュ
ーラ−(Miil 1erl などによってTcが約3
0〜40にである金属酸化物(La−Ba−3r−Ca
−Cu−0系)が見出された(2′I誌: Z、Phy
s、 864L+89(1986))、それ+、=続し
1て、M、に、ウー(v。
On the other hand, in recent years Bednorz and Müller have shown that Tc is about 3.
Metal oxide (La-Ba-3r-Ca
-Cu-0 series) was discovered (2'I magazine: Z, Phy
s, 864L+89 (1986)), it +, = continued 1 then M, ni, Wu (v.

に、 Wu)などによってT cが80〜93に程度で
あるY−Ba−Cu−0系物質が発見され(雑誌:Ph
ys、 Rev、 Le「t、 58.908 (19
8711、其の後の検討でYI3az Cus oy 
 (6≦y≦7)組成近傍が最も良好な特性を示すこと
が判明した。また、YをLa、  Nd、  Sm、 
 Eu、  Gd、  Ho、  Er、  Yb、L
、u等のランタノイドで置き換えても同様の特性が得ら
れる。これらの超電導材料は冷媒として安価な液体窒素
(沸点77K)を用いることが可能で、また、焼結体で
は77Kにおける臨界電流密度(以下Jcと略記)が1
0’A/cm”以上であることが確認されており、実用
上極めて有用な特性をもつ、一方、この物質の応用とし
ては、ジョセフソン素子や磁気検出素子などへの適用9
能性も薄膜形成技術を通して検討されてきており、この
方面での開発も急速に進められている。
A Y-Ba-Cu-0-based material with a T c of about 80 to 93 was discovered by Wu) and others (magazine: Ph
ys, Rev, Le't, 58.908 (19
8711, YI3az Cus oy in the later study
It was found that the composition near (6≦y≦7) exhibited the best characteristics. Also, Y is La, Nd, Sm,
Eu, Gd, Ho, Er, Yb, L
Similar characteristics can be obtained by replacing it with lanthanoids such as , u, etc. These superconducting materials can use inexpensive liquid nitrogen (boiling point 77K) as a refrigerant, and the critical current density (hereinafter abbreviated as Jc) at 77K for sintered materials is 1.
0'A/cm" or more, and has extremely useful properties in practice. On the other hand, applications of this material include applications such as Josephson elements and magnetic detection elements9.
The functionality has also been investigated through thin film formation technology, and development in this direction is progressing rapidly.

この物質の薄膜化に対していくつかの方法が提案されて
おり、代表的な例としては蒸着法が挙げられ、Ma%L
n、Cuそれぞれの金属またはその化合物を蒸着源とし
て、抵抗または電子ビームなどにより加熱し、三元同時
蒸着するなどの方法が採られてきている。基板に付着し
た膜を酸素雰囲気中で約900℃程度に加熱すると、M
a−Ln−Cu−0のペロブスカイト型化合物が得られ
、しかも最も単純な成膜方法であるため、比較的簡便に
作成できるなどの利点がある。
Several methods have been proposed for thinning this material, and a typical example is vapor deposition, and Ma%L
Methods have been adopted in which metals such as n and Cu or their compounds are used as vapor deposition sources and heated with a resistor or an electron beam to carry out ternary simultaneous vapor deposition. When the film attached to the substrate is heated to about 900°C in an oxygen atmosphere, M
Since a perovskite type compound of a-Ln-Cu-0 is obtained and it is the simplest film forming method, it has advantages such as being relatively easy to produce.

[発明が解決しようとする問題点] 一般に、Ma−Ln−Cu−0系の酸化物超電導体では
、超電導特性に著しい異方性があり、C軸に平行な面内
方向にくらべてC軸に垂直な面内方向では臨界電流密度
Jcが非常に大きいことが知られている。したがってJ
cの大きな酸化物超電導薄膜を得るには、膜を構成する
微結晶のC軸が、基板の蒸着面に対して垂直になるよう
に配向しているのが望ましい。しかしながら、上記従来
の三元同時蒸着法による酸化物超電導薄膜作成法では、
基板の影響のためにC軸配向性が極めて悪く1.J c
の大きな酸化物超電導R膜を作成するのは困難であると
いう問題点があった。
[Problems to be Solved by the Invention] Generally, Ma-Ln-Cu-0-based oxide superconductors have significant anisotropy in their superconducting properties, with the C-axis being more anisotropic than the in-plane direction parallel to the C-axis. It is known that the critical current density Jc is extremely large in the in-plane direction perpendicular to . Therefore J
In order to obtain an oxide superconducting thin film with a large c, it is desirable that the C axis of the microcrystals constituting the film be oriented perpendicular to the evaporation surface of the substrate. However, in the conventional oxide superconducting thin film production method using the above-mentioned ternary simultaneous vapor deposition method,
Due to the influence of the substrate, the C-axis orientation is extremely poor.1. Jc
There was a problem in that it was difficult to create an oxide superconducting R film with a large .

この発明は」1記のような問題点を解消するためになさ
れたもので、C軸が基板の蒸着面に対して垂直に配向し
、臨界電流密度Jcの大きなMa−Ln−Cu−0系の
酸化物超電導薄膜を得ることを目的とする。
This invention was made in order to solve the problems mentioned in 1. The aim is to obtain oxide superconducting thin films of

[問題点を解決するための手段] この発明に係る酸化物超電導薄膜作成法は、基板にCu
またはCu酸化物、MaまたはMa酸化物、およびLn
またはLn酸化物を蒸着源として三元同時蒸着膜を作成
する第1工程、並びに上記三元同時蒸着膜を酸素雰囲気
中で熱処理する第2工程を施して酸化物超電導薄膜第1
層を得、さらに上記酸化物超電導薄膜第1M上に第1お
よび第2工程を施して酸化物超電導薄膜第2層を得るも
のである。
[Means for Solving the Problems] The method for producing an oxide superconducting thin film according to the present invention includes
or Cu oxide, Ma or Ma oxide, and Ln
Alternatively, a first step of creating a ternary co-deposited film using Ln oxide as a deposition source and a second step of heat-treating the ternary co-deposited film in an oxygen atmosphere are performed to form the first oxide superconducting thin film.
The layer is obtained, and the first and second steps are further performed on the oxide superconducting thin film 1M to obtain a second layer of the oxide superconducting thin film.

[作用] この発明における酸化物超電導薄膜第1層は、三元pA
肴により基板に直接堆積された膜であるので、その熱処
理後、下地の基板の影響でC軸配向性は余り良くないが
、この第1層の上に形成された酸化物超電導薄膜第2層
は、基板の影響を受けにくく、また第1層と組成が類似
しているため基板の蒸着面に対してC軸が垂直な結晶が
優先的に成長するので、C軸配向性に優れ、大きなJc
値を有する酸化物超電導薄膜が得られる。
[Function] The first layer of the oxide superconducting thin film in this invention has a ternary pA
Since this is a film deposited directly on the substrate, after heat treatment, the C-axis orientation is not very good due to the influence of the underlying substrate, but the second layer of oxide superconducting thin film formed on this first layer is less affected by the substrate, and since the composition is similar to that of the first layer, crystals with the C-axis perpendicular to the deposition surface of the substrate preferentially grow. Jc
An oxide superconducting thin film having a certain value is obtained.

[実施例〕 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例に係る三元同時ICE蒸着装置
を示す断面図である。ルツボ(り〜(3)にそれぞれY
、Ba、およびCu金属を充填し、真空外容器(7)を
高真空(〜l O−’torr)とした後ヒータ(4)
〜(6)により加熱する。各元素の蒸気はルツボ(1)
〜(3)のノズルから真空槽内に噴出するが、このとき
断熱膨張によって過冷却となり、原子が数百〜数十個緩
く結合したクラスタな形成する。イオン化フィラメント
 (1o)から電子のシャワーを浴びせると、一部のク
ラスタがイオン化される。加速電極(I 1)によって
電場を加えることで、イオン化したクラスタは加速され
、基板(9)に衝突し付着して三元同時蒸着膜が形成さ
れ−る。膜組成の制御は、各元素の蒸発速度の比が所望
の値となるように、ヒータ(4)〜(6)の出力を制御
することでなされる。このようにして、例えばS r 
T i Oa 、9−結晶基板(9)上にY、 Ba−
C1uをY:Ba:Cu=l :2:3 (モル比)に
なるように約IILm三元同時に堆積させ、この三元同
時蒸着膜を酸素雰囲気中で約900℃、1時間加熱後1
00℃/時間で徐冷して酸化物超電導薄膜第1層を得、
この抵抗−温度特性を計測したところ、約80にのTc
をもつ超電導特性を示す膜となった。第2図はこの膜の
X線解析による結晶相を示すが、これは、第3図に示す
ような一般にC軸配向性が悪いと考えられる焼結体の解
析パターンに近く、(002)、(003)、(005
)、(006)などのC軸配向性は小さく、Jcも約5
0 A / c m ”  (a七77K)と小さかっ
た。この酸化物超電導薄膜第1層上にさらにY、Ba、
CuをY:Ba:Cu=l :2:3 (モル比)にな
るように約1μm三元同時に堆積させ、この三元同時蒸
着膜を酸素雰囲気中で約900℃、1時間加熱後100
℃/時間で徐冷して酸化物超電導薄膜第2層を得、この
抵抗−温度特性を計測したところ、約85にのTcをも
つ超電導膜となった。第4図はこの膜のX線解析による
結晶相を示すが、(002)、(003)、(005)
、(006)などC軸に垂直な面の反射強度が嬌めて強
いことから、膜中の結晶が極めて多くC軸方向に配向し
ているのが分かる。またJcの値も約200A/cm”
  (at77K)と大きかった・ 一方、5rTiOs単結晶基板にY、Ba、CUを上に
述べたのと同じ条件で、約2μの厚さで三元同時tct
tgaを1回行なった膜を、上気実施例と同様に熱処理
して得られた膜は、約80にで超電導となるものの、・
X線解析によれば、第5図に示すようにC軸配向性も良
くなく、またJcの値も約100A/cm”  (at
77K)程度であった。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a sectional view showing a ternary simultaneous ICE deposition apparatus according to an embodiment of the present invention. Crucible (Y to each (3)
, Ba, and Cu metals, and after setting the vacuum outer container (7) to a high vacuum (~1 O-'torr), the heater (4)
Heating is performed according to (6). The vapor of each element is in the crucible (1)
It is ejected from the nozzles in (3) into the vacuum chamber, but at this time it becomes supercooled due to adiabatic expansion, forming clusters of hundreds to tens of atoms loosely bonded. When showered with electrons from the ionizing filament (1o), some of the clusters are ionized. By applying an electric field by the accelerating electrode (I1), the ionized clusters are accelerated, collide with and adhere to the substrate (9), and form a ternary co-deposited film. The film composition is controlled by controlling the outputs of the heaters (4) to (6) so that the ratio of evaporation rates of each element becomes a desired value. In this way, for example S r
T i Oa, 9- Y, Ba- on the crystal substrate (9)
Approximately IILm ternary of C1u was simultaneously deposited so that Y:Ba:Cu=l:2:3 (molar ratio), and this ternary co-deposited film was heated at approximately 900°C for 1 hour in an oxygen atmosphere.
Slowly cooling at 00°C/hour to obtain the first layer of oxide superconducting thin film,
When this resistance-temperature characteristic was measured, it was found that Tc of about 80
The result is a film that exhibits superconducting properties. Figure 2 shows the crystalline phase of this film as determined by X-ray analysis, which is close to the analysis pattern of a sintered body, which is generally considered to have poor C-axis orientation, as shown in Figure 3, (002), (003), (005
), (006), etc., the C-axis orientation is small, and the Jc is also about 5.
0 A/cm" (a777K). On this first layer of oxide superconducting thin film, Y, Ba,
Approximately 1 μm of Cu was ternary deposited at the same time so that Y:Ba:Cu=l:2:3 (molar ratio), and this ternary co-deposited film was heated at approximately 900°C for 1 hour in an oxygen atmosphere.
A second layer of an oxide superconducting thin film was obtained by slow cooling at a rate of .degree. C./hour, and the resistance-temperature characteristics of the second layer were measured, and the superconducting film had a Tc of about 85. Figure 4 shows the crystal phases of this film according to X-ray analysis, including (002), (003), (005).
, (006) and other planes perpendicular to the C-axis are impressively strong, indicating that an extremely large number of crystals in the film are oriented in the C-axis direction. Also, the value of Jc is approximately 200A/cm”
On the other hand, ternary simultaneous TCT was performed on a 5rTiOs single crystal substrate with Y, Ba, and CU at a thickness of about 2μ under the same conditions as described above.
The film obtained by heat-treating the film subjected to TGA once in the same manner as in the upper air example becomes superconducting at about 80°C, but...
According to X-ray analysis, as shown in Figure 5, the C-axis orientation is not good, and the value of Jc is about 100 A/cm'' (at
77K).

以上のことからみて、配向性やJcの向上のためには単
純に膜厚を増すことによる効果だけでなく、−・・皮形
成されたY−Ba−Cu−系結晶のうえにさらにY、B
a、Cuを蒸着して酸素雰囲気中で熱処理を行なうとい
う成膜プロセスや基板と膜との界面構造が影響して効果
を上げていると考えられる。
In view of the above, in order to improve the orientation and Jc, it is necessary not only to increase the film thickness simply but also to add Y to Y-Ba-Cu-based crystals. B
It is thought that the film formation process of depositing Cu and performing heat treatment in an oxygen atmosphere and the interface structure between the substrate and the film are responsible for the effect.

なお、上記実施例では蒸着源としてY、Ba。Note that in the above embodiments, Y and Ba are used as vapor deposition sources.

Cuの金属をそれぞれ用いた場合について説明したが、
これらの化合物をそれぞれ用いてもよく、」1記実施例
と同様の効果を奏する。
The case where each metal of Cu was used was explained, but
These compounds may be used individually, and the same effects as in Example 1 will be obtained.

また、上記実施例では成分系としてY−Ba−Cu−0
系の場合を示したが、Yを例えばLa。
In addition, in the above example, the component system is Y-Ba-Cu-0
Although the case of the system is shown, Y is, for example, La.

Nd、   Sm、   Eu、   Gd、、Dy、
   Ho、   Er、   Yb、Lu’Jの他の
希土類元素、Baを例えばSr等の他のアルカリ土類元
素で置き換えたL n −Ma −Cu −0系の、場
合でも同様の効果を奏する。
Nd, Sm, Eu, Gd, Dy,
Similar effects can be obtained in the case of other rare earth elements such as Ho, Er, Yb, and Lu'J, and Ln-Ma-Cu-0 series in which Ba is replaced with other alkaline earth elements such as Sr.

また、上記実施例では三元同時ICB蒸着法による場合
について説明したが、−船釣な三元同時蒸着法を用いて
も、Jcの値は小さくなるものの、上記実施例と同様に
蒸着と熱処理を繰り返す効果が見られた。
Further, in the above embodiment, a case was explained in which the three-dimensional simultaneous ICB vapor deposition method was used, but even if the three-dimensional simultaneous vapor deposition method was used, the value of Jc would be smaller, but the vapor deposition and heat treatment would be the same as in the above embodiment. The effect of repeating was seen.

[発明の効果] 以上のように5この発明によれば、基板にCuまたはC
u酸化物、MaまたはMa酸化物、およびL nまたは
Ln酸化物を蒸着源として三元同時蒸着膜を作成する第
1工程、並びに上記三元同時蒸着膜を酸素雰囲気中で熱
処理する第2工程な施して酸化物超電導薄膜第1層を得
5さらに上記酸化物超電導薄膜第1層上に第1および第
2工程を施して酸化物超電導薄膜第2層を得るので、C
軸の配向性が良く、Jcの値の大きな良好な超電導特性
を示す酸化物超電導薄膜が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, Cu or C is added to the substrate.
A first step of creating a ternary co-deposited film using u oxide, Ma or Ma oxide, and Ln or Ln oxide as vapor deposition sources, and a second step of heat-treating the ternary co-deposited film in an oxygen atmosphere. The first layer of the oxide superconducting thin film is obtained by applying the following steps.5 Furthermore, the first and second steps are performed on the first layer of the oxide superconducting thin film to obtain the second layer of the oxide superconducting thin film.
This has the effect of providing an oxide superconducting thin film that exhibits good superconducting characteristics with good axis orientation and a large Jc value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る三元同時■CB蒸着
装置を示す断面図、第2図はこの発明の一実施例に係る
酸化物超電導薄膜筒1FIsのX線解析による結晶相を
示す特性図、第3図は比較例による一般的な焼結体のX
線解析による結晶相を示す特性図、第4図はこの発明の
一実施例に係る酸化物超電導薄膜第2層のX線解析によ
る結晶相を示す特性図、第5図は従来の酸化物超電導薄
膜のX線解析による結晶相を示す特性図である。 図において、(り〜(3)はルツボ、(4)〜(6)は
ヒーター、(8)はシャッター、(9)は基板、(10
)はイオン化フィラメント、(11)は加速電橋である
。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing a ternary simultaneous CB evaporation apparatus according to an embodiment of the present invention, and FIG. 2 shows the crystal phase of an oxide superconducting thin film cylinder 1FIs according to an embodiment of the present invention by X-ray analysis. The characteristic diagram shown in Figure 3 is X of a general sintered body according to a comparative example.
Figure 4 is a characteristic diagram showing the crystal phase determined by X-ray analysis of the second layer of an oxide superconducting thin film according to an embodiment of the present invention, and Figure 5 is a characteristic diagram showing the crystal phase determined by X-ray analysis of the second layer of an oxide superconducting thin film according to an embodiment of the present invention. FIG. 2 is a characteristic diagram showing the crystal phase of a thin film obtained by X-ray analysis. In the figure, (ri~(3) is a crucible, (4)~(6) are heaters, (8) is a shutter, (9) is a substrate, (10
) is an ionizing filament, and (11) is an accelerating bridge. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)Cu、アルカリ土類元素(以下Maと略す)、お
よび希土類元素(以下Lnと略す)を成分として有する
酸化物超電導薄膜を作成するものにおいて、基板にCu
またはCu酸化物、MaまたはMa酸化物、およびLn
またはLn酸化物を蒸着源として三元同時蒸着膜を作成
する第1工程、並びに上記三元同時蒸着膜を酸素雰囲気
中で熱処理する第2工程を施して酸化物超電導薄膜第1
層を得、さらに上記酸化物超電導薄膜第1層上に第1お
よび第2工程を施して酸化物超電導薄膜第2層を得るこ
とを特徴とする酸化物超電導薄膜作成法。
(1) In a method for creating an oxide superconducting thin film containing Cu, an alkaline earth element (hereinafter abbreviated as Ma), and a rare earth element (hereinafter abbreviated as Ln) as components, a Cu
or Cu oxide, Ma or Ma oxide, and Ln
Alternatively, a first step of creating a ternary co-deposited film using Ln oxide as a deposition source and a second step of heat-treating the ternary co-deposited film in an oxygen atmosphere are performed to form the first oxide superconducting thin film.
A method for producing an oxide superconducting thin film, which comprises obtaining a second layer of the oxide superconducting thin film by performing first and second steps on the first layer of the oxide superconducting thin film.
(2)CuまたはCu酸化物、MaまたはMa酸化物、
およびLnまたはLn酸化物を蒸着源とした三元同時蒸
着膜は、クラスタ・イオンビーム蒸着法により作成され
る特許請求の範囲第1項記載の酸化物超電導薄膜作成法
(2) Cu or Cu oxide, Ma or Ma oxide,
2. The method for producing an oxide superconducting thin film according to claim 1, wherein the ternary co-deposited film using Ln or Ln oxide as a deposition source is produced by a cluster ion beam deposition method.
JP62322172A 1987-12-17 1987-12-17 Formation of oxide superconducting thin film Pending JPH01161628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322172A JPH01161628A (en) 1987-12-17 1987-12-17 Formation of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322172A JPH01161628A (en) 1987-12-17 1987-12-17 Formation of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01161628A true JPH01161628A (en) 1989-06-26

Family

ID=18140739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322172A Pending JPH01161628A (en) 1987-12-17 1987-12-17 Formation of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01161628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214064A (en) * 1990-03-23 1992-08-05 Internatl Business Mach Corp <Ibm> Method for production of oriented polycrystalline superconducting ceramic oxide
JPH0597588A (en) * 1991-03-27 1993-04-20 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of oxide superconductor film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214064A (en) * 1990-03-23 1992-08-05 Internatl Business Mach Corp <Ibm> Method for production of oriented polycrystalline superconducting ceramic oxide
JPH0597588A (en) * 1991-03-27 1993-04-20 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of oxide superconductor film

Similar Documents

Publication Publication Date Title
US7718574B2 (en) Biaxially-textured film deposition for superconductor coated tapes
JP2711253B2 (en) Superconducting film and method for forming the same
JPH0772349B2 (en) Method and apparatus for producing large area compound thin film
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
JPH01161628A (en) Formation of oxide superconducting thin film
JPH0297427A (en) Production of oxide superconducting thin film
JPH05116940A (en) Process for forming thin film of metal oxide on substrate
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JPH01275434A (en) Production of high temperature superconducting oxide film
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JPS63301424A (en) Manufacture of oxide superconductor membrane
JPH0764678B2 (en) Method for producing superconducting thin film
JP2567416B2 (en) Preparation method of superconducting thin film
JP2529347B2 (en) Preparation method of superconducting thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor
JP2567446B2 (en) Preparation method of superconducting thin film
JPH0261910A (en) Superconducting material wire and its manufacture
JPH01160827A (en) Preparation of oxide superconducting thin film
JP2668532B2 (en) Preparation method of superconducting thin film
JP2736062B2 (en) Method for producing oxide superconductor thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JP2919956B2 (en) Superconducting member manufacturing method
JP2501616B2 (en) Preparation method of superconducting thin film