JPH01120085A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01120085A
JPH01120085A JP27760487A JP27760487A JPH01120085A JP H01120085 A JPH01120085 A JP H01120085A JP 27760487 A JP27760487 A JP 27760487A JP 27760487 A JP27760487 A JP 27760487A JP H01120085 A JPH01120085 A JP H01120085A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
semiconductor
type impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27760487A
Other languages
Japanese (ja)
Inventor
Yuzaburo Ban
雄三郎 伴
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27760487A priority Critical patent/JPH01120085A/en
Priority to US07/168,256 priority patent/US4843031A/en
Publication of JPH01120085A publication Critical patent/JPH01120085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simplify 4 process by a method wherein, while an n-type impurity raw material and a p-type impurity raw material are supplied simultaneously and a desired part is irradiated with a beam, a semiconductor layer is epitaxially grown on a second clad layer so that a structure identical to a structure after formation of a conventional Zn diffusion region can be formed by one epitaxial growth operation. CONSTITUTION:A first clad layer 2 whose conductivity type is identical to that of a substrate 1, an active layer 3 and a second clad layer 4 whose conductivity type is opposite to that of tbe substrate 1 are epitaxially grown on the semiconductor substrate 1 of a first conductivity type. Then, while an n-type impurity raw material and a p-type impurity raw material are supplied simultaneously and desired parts are irradiated with beams 11, semiconductor layers 5, 10 are epitaxially grown on the second clad layer 4. After that, a first electrode layer 8 is formed on the semiconductor layers 5, 10 and a second electrode layer 9 is formed on the rear of the semiconductor substrate 1. For example, when an n-type GaAs layer 5 is to be grown, an n-type impurity raw material Si(CH3)4 and a p-type impurity raw material Zn(CH3)2 are supplied simultaneously and an ArF excimer laser beam 11 of a stripe-like pattern is irradiated simultaneously; a p-type layer 10 is formed in a non-irradiated part and an n-type layer 5 is formed in an irradiated part.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信分野、光計測分野、光情報処理分野の
光源として有用な半導体レーザの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor laser useful as a light source in the optical communication field, optical measurement field, and optical information processing field.

従来の技術 近年、様々な分野で半導体レーザの需要が高まり、各所
で研究開発が活発に行われている。これまで、数十種類
の半導体レーザの構造が提案され、そのなかのいくつか
は製造プロセスのなかで、Znに代表されるp型不純物
の拡散工程があシ、その良し悪しがレーザ特性全天きく
左右している。
BACKGROUND OF THE INVENTION In recent years, demand for semiconductor lasers has increased in various fields, and research and development has been actively conducted in various places. Up to now, several dozen types of semiconductor laser structures have been proposed, and some of them involve a diffusion step of p-type impurities, typically Zn, during the manufacturing process, and the quality of this process depends on the overall laser characteristics. It affects my hearing.

例えば、活性層に平行方向のキャリアと光の閉じ込めの
だめの、Zn拡散ストライプや、またTTS(Tran
sverse Junction 5tripe)型レ
ーザに代表される横方向注入型レーザのZn拡散等であ
る。
For example, Zn diffusion stripes for confining carriers and light parallel to the active layer, or TTS (Tran)
This includes Zn diffusion in a lateral injection type laser, typified by a sverse junction (5tripe) type laser.

従来、この拡散ストライプ型手導体レーザは、例えばA
lGaAa/GaAs系を例にとると、第4図に示すよ
うな工程で製造されていた。
Conventionally, this diffused stripe type hand conductor laser has been used, for example, in A
Taking the lGaAa/GaAs system as an example, it was manufactured by the process shown in FIG.

(A)  n型G a A s基板1上にn型AIG&
A4(クラッド層)2 、GaAs層(活性層)3.p
型AlGaAs層(クラッド層)4.n型G a A 
s層(キャップ層)5を順次エピタキシャル成長する。
(A) n-type AIG&
A4 (cladding layer) 2, GaAs layer (active layer) 3. p
Type AlGaAs layer (cladding layer)4. n-type G a A
S-layers (cap layers) 5 are epitaxially grown in sequence.

(B)  n型G a A s層5上にSiO2膜6を
堆積し、次にフォトリソグラフィー工程を用いて一部を
ストライプ状に化学的エツチングにより窓をあける。
(B) A SiO2 film 6 is deposited on the n-type GaAs layer 5, and then a window is formed in a stripe pattern by chemical etching using a photolithography process.

(C”l  Z n A l! 2を拡散源として石英
封管法によpZnの選択拡散を行う。なおこの場合、Z
nの拡散フロントは、p型AlGaAg層4中に位置さ
せる。
(C”l Z n A l! Selective diffusion of pZn is carried out by the quartz sealed tube method using 2 as a diffusion source. In this case, Z
The n diffusion front is located in the p-type AlGaAg layer 4.

(D)SiO2膜6を化学的エツチングによシ除去し、
次にn型G a A s層6上、およびn型G a A
 s基板1の裏面にそれぞれA u /Z nを用いて
p型電極8、A u /G eハiを用いてn型電極9
を形成する。
(D) removing the SiO2 film 6 by chemical etching,
Next, on the n-type Ga As layer 6 and on the n-type Ga As layer 6,
A p-type electrode 8 is formed using A u /Z n and an n-type electrode 9 is formed using A u /G e high on the back surface of the s-substrate 1.
form.

このように、Zn拡散ストライプは、SiO2膜をマス
クとして石英封管法によシ形成されていた。
In this way, the Zn diffusion stripes were formed by the quartz tube method using the SiO2 film as a mask.

またZn拡散深さは、温度と時間によシ制御されていた
Furthermore, the Zn diffusion depth was controlled by temperature and time.

またTJS型レーザの場合のZn拡散も、上記したZn
拡散ストライプ型レーザと同様、エピタキシャル成長後
、所望の部分に石英封管法で行われ、拡散源さは温度と
時間で制御されていた。
Furthermore, the Zn diffusion in the TJS type laser is also
Similar to the diffused stripe type laser, epitaxial growth was performed on the desired area using the quartz sealed tube method, and the diffusion source was controlled by temperature and time.

発明が解決しようとする問題点 しかしながら上記の様な方法で製造したZn拡散ストラ
イプ型半導体レーザは、Znをストライプ状に選択拡散
しその拡散フロントをp型A7GaAs層中に位置させ
る必要があるため、その製造工程が複雑となシ、また再
現性の点で問題があった。
Problems to be Solved by the Invention However, in the Zn diffused stripe type semiconductor laser manufactured by the method described above, it is necessary to selectively diffuse Zn in a stripe shape and position the diffusion front in the p-type A7GaAs layer. The manufacturing process was complicated and there were problems with reproducibility.

また拡散は400℃〜500℃で行われるので、熱履歴
がレーザ特性の劣化をもたらす1つの原因となっていた
Further, since diffusion is performed at 400° C. to 500° C., thermal history has been one of the causes of deterioration of laser characteristics.

また、TTS型レーザのZn拡散の場合も同様の問題点
を有していた。
Further, the Zn diffusion of a TTS type laser also had similar problems.

問題点を解決するための手段 本発明は、上記した従来の問題点を解消するため、第一
の伝導型を有する半導体基板上に、前記半導体基板と同
じ伝導型の第1のクラッド層、前記第1のクラッド層上
に活性層、前記活性層上に前記第1のクラッド層と反対
の伝導型のg2のクラッド層を順次エピタキシャル成長
する工程と、前記第2のクラッド層上に、n型およびp
型不純物原料を同時に供給し、かつ所望の部分に光照射
を行ないながら半導体層をエピタキシャル成長する工程
と前記半導体層上に第1の電極層、前記半導体基板の前
記第1のクラッド層、活性層、第2のクラッド層、半導
体層が形成されていない表面に第2の電極層を形成する
工程とを用いてZn拡散ストライプ型半導体レーザを製
造するものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention provides, on a semiconductor substrate having a first conductivity type, a first cladding layer having the same conductivity type as the semiconductor substrate; A step of sequentially epitaxially growing an active layer on the first cladding layer, a cladding layer of G2 having the opposite conductivity type to the first cladding layer on the active layer, and growing an n-type and a G2 cladding layer on the second cladding layer; p
A step of epitaxially growing a semiconductor layer while simultaneously supplying a type impurity raw material and irradiating a desired portion with light, a first electrode layer on the semiconductor layer, the first cladding layer of the semiconductor substrate, an active layer, A Zn-diffused stripe type semiconductor laser is manufactured using a step of forming a second cladding layer and a second electrode layer on the surface where no semiconductor layer is formed.

また、本発明は半絶縁性半導体基板上に第1のクラッド
層、活性層、第2のクラッド層、キャップ層を順次、n
型およびp型不純物原料を同時に供給し、かつ前記半導
体基板の一部分を光照射しながらエピタキシャル成長す
る工程と前記キャップ層上の光照射部と非照射部にそれ
ぞれ第1の電極層と第2の電極層とを形成する工程とを
用いて、横方向注入型半導体レーザを製造するものであ
る。
Further, the present invention provides a first cladding layer, an active layer, a second cladding layer, and a cap layer on a semi-insulating semiconductor substrate in order.
A step of simultaneously supplying type and p-type impurity raw materials and performing epitaxial growth while irradiating a part of the semiconductor substrate with light, and forming a first electrode layer and a second electrode on a light irradiated part and a non-irradiated part on the cap layer, respectively. A lateral injection type semiconductor laser is manufactured using the steps of forming a layer and a layer.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

エピタキシャル成長、特に有機金属熱分解法によるエピ
タキシャル成長において、熱分解効率よりも光分解効率
の方が大きいn型不純物原料と、光照射効果がほとんど
ないp型不純物原料とを同時に供給して、基板表面に光
を照射すると、光照射部でn型層、非照射部でp型層の
エピタキシャル成長が可能である。そこで、従来の半導
体レーザ構造においてp型不純物拡散領域がある部分の
エピタキシャル成長を行う場合、p型不純物領域以外の
部分に光を照射すると、光照射部はn型、非照射部はp
型となシ、エピタキシャル成長終了時点で、所望の部分
にp型領域が形成されている。
In epitaxial growth, especially epitaxial growth using organometallic pyrolysis, an n-type impurity raw material whose photolysis efficiency is higher than its thermal decomposition efficiency and a p-type impurity raw material which has almost no light irradiation effect are simultaneously supplied to the substrate surface. When irradiated with light, it is possible to epitaxially grow an n-type layer in the light-irradiated area and a p-type layer in the non-irradiated area. Therefore, when performing epitaxial growth on a part of a conventional semiconductor laser structure where there is a p-type impurity diffusion region, if light is irradiated to a part other than the p-type impurity region, the light-irradiated part is n-type and the non-irradiated part is p-type.
At the end of epitaxial growth, a p-type region is formed in a desired portion.

従って例えば、Zn拡散ストライプ型半導体レーザの場
合は、最後のキャップ層成長の際、上記したn型および
p型不純物原料を同時に供給してストライブ部以外の部
分に光照射を行うことによシ、ストライプ状p型領域が
形成される。また、横方向注入型半導体レーザの場合は
、最初のクラッド層の成長からキャップ層の成長まで、
上記したn型およびp型不純物原料を同時に供給して、
基板の半分を光照射することによシ、光照射部でn型、
非照射部でp型となシ横方向注入型レーザ構造となる。
Therefore, for example, in the case of a Zn diffused stripe type semiconductor laser, when growing the final cap layer, the above-mentioned n-type and p-type impurity raw materials are simultaneously supplied and the parts other than the stripe part are irradiated with light. , a striped p-type region is formed. In addition, in the case of lateral injection semiconductor lasers, from the initial cladding layer growth to the cap layer growth,
By simultaneously supplying the above n-type and p-type impurity raw materials,
By irradiating half of the substrate with light, the light irradiation part becomes n-type,
The non-irradiated portion is p-type, resulting in a lateral injection type laser structure.

実施例 拡散 本発明によるAIGaAa/GaAs系右7ブトライプ
型半導体レーザの製造工程を第1図に示す。この場合、
光励起有機金属熱分解気相成長法によシ、レーザ構造の
エピタキシャル成長を行った。その除用いたエピタキシ
ャル成長装置の結晶成長室を第2図に示す。
EXAMPLE Diffusion The manufacturing process of an AIGaAa/GaAs-based right 7-but-tripe type semiconductor laser according to the present invention is shown in FIG. in this case,
A laser structure was epitaxially grown using photo-excited metal-organic pyrolysis vapor phase epitaxy. FIG. 2 shows the crystal growth chamber of the epitaxial growth apparatus used.

Al 、Ga 、Asのソース材料として、それぞれA
l(CH3)3、Ga(CH3)3、A s H3を、
またn型。
As source materials for Al, Ga, and As, A
l(CH3)3, Ga(CH3)3, As H3,
Also n type.

p型不純物原料としてそれぞれS 1(CH3) 4、
Zn(CH3)2を、またキャリアガスとしてH2を用
いた。
As p-type impurity raw materials, S 1 (CH3) 4,
Zn(CH3)2 and H2 were used as carrier gas.

最初、結晶成長室内のカーボン製サセプター16上に設
置されたn型層 a A s基板1の温度を高周波加熱
によシ成長温度750℃まで昇温する。なおこの際、G
 a A s基板1表面のサーマルダメージを防ぐため
にA s H3を20cc/min供給した。そしてそ
の後、第1図に示すように、n型層 I G a A 
s層2 、GaAs層3、p型層 I G a A s
層4、n型GaAs+層6、を順次、下表に示す成長条
件によシ成長を行ない半導体レーザ構造を作成した。
First, the temperature of the n-type layer a As substrate 1 placed on the carbon susceptor 16 in the crystal growth chamber is raised to the growth temperature of 750° C. by high-frequency heating. At this time, G
In order to prevent thermal damage to the surface of the a As substrate 1, As H3 was supplied at 20 cc/min. After that, as shown in FIG. 1, the n-type layer I Ga A
s layer 2, GaAs layer 3, p-type layer I Ga As
Layer 4 and n-type GaAs+ layer 6 were sequentially grown under the growth conditions shown in the table below to create a semiconductor laser structure.

なおこの場合全流量としては51/min、成長時の結
晶成長室内圧としては100Torrである。
In this case, the total flow rate is 51/min, and the internal pressure of the crystal growth chamber during growth is 100 Torr.

また前述したようにn型層 a A s層5成長の場合
、n型不純物原料5t(CH3)4とp型不純物原料Z
n(CH3)2とを同時に供給し第1図Bに示すように
、それらの供給開始と同時に、ヌトライプ状パターン(
この場合、ストライプ部が非照射部で、パターン幅10
μmである)のArFエキシマレーザ光1光合1.es
W/crAのパワーで、基板表面に対して垂直方向から
照射した。
Moreover, as mentioned above, in the case of growing the n-type layer aAs layer 5, the n-type impurity raw material 5t(CH3)4 and the p-type impurity raw material Z
As shown in FIG. 1B, a nutripe-like pattern (
In this case, the stripe part is a non-irradiated part and the pattern width is 10
μm) ArF excimer laser beam 1 beam combination 1. es
Irradiation was performed from a direction perpendicular to the substrate surface with a power of W/crA.

この結果、GaAsキャンプ層6の非照射部にはキャリ
ア濃度6 X 1017cm−’のp型層10照射部に
はキャリア濃度5X10ffl  のn型層が形成でき
、ストライプ状Zn拡散と同じ構造となった。
As a result, a p-type layer 10 with a carrier concentration of 6 x 1017 cm-' was formed in the non-irradiated part of the GaAs camp layer 6, and an n-type layer with a carrier concentration of 5 x 10ffl was formed in the irradiated part, resulting in the same structure as striped Zn diffusion. .

そして最後に、n型層 a A sキャラプ層6上にA
u/Znを用いてp型電極8を、またn型GaAs基板
1の裏面にA u /G e /N iを用いてn型電
極9を形成した。
Finally, on the n-type layer a A s character layer 6,
A p-type electrode 8 was formed using u/Zn, and an n-type electrode 9 was formed on the back surface of the n-type GaAs substrate 1 using A u /G e /N i.

以上のような本実施例によれば、−回のエピタキシャル
成長で、Zn拡散ストライプ型半導体レーザ構造が形成
でき、Zn拡散の工程が省略でき製造プロセスの簡略化
が大いにはかれた。またレーザ特性の劣化を誘起するG
 a A s活性層3中へのZnが拡散が生じなかった
According to this embodiment as described above, a Zn-diffused stripe type semiconductor laser structure can be formed by - times of epitaxial growth, and the Zn-diffusion step can be omitted, greatly simplifying the manufacturing process. In addition, G induces deterioration of laser characteristics.
Zn did not diffuse into the aAs active layer 3.

次に本発明による第2の実施例、すなわちA I G 
a A s /G a A s系横方向注入型半導体レ
ーザの場合について説明する。その製造工程を第3図に
示す。なお第3図において、第1図と同一部分には同一
番号を付す。
Next, a second embodiment according to the present invention, namely A I G
The case of an aAs/GaAs-based lateral injection type semiconductor laser will be described. The manufacturing process is shown in FIG. In FIG. 3, the same parts as in FIG. 1 are given the same numbers.

この場合、レーザ構造のエピタキシャル成長に用いた成
長方法、ソース材料、不純物原料、キャリアガス、およ
び、成長直前までの基板処理方法。
In this case, the growth method used for epitaxial growth of the laser structure, source material, impurity raw material, carrier gas, and substrate processing method immediately before growth.

全流量、結晶成長室内圧は第1の実施例の場合と全く同
じである。最初、半絶縁性G a A s基板19上に
Al3 G a A s層2、G a A s層3、A
l1GaAs層20、GaA+1層6を順次、下表に示
す成長条件によシ成長を行った。
The total flow rate and the internal pressure of the crystal growth chamber are exactly the same as in the first embodiment. First, on a semi-insulating Ga As substrate 19, Al3 Ga As layer 2, Ga As layer 3, and A
The 11GaAs layer 20 and the GaA+1 layer 6 were sequentially grown under the growth conditions shown in the table below.

この場合も前述したように、エピタキシャル成長中は基
板の半分を基板表面に対して垂直方向から1.ts’W
/adのパワーでArFエキシマレーザ照射した。
In this case as well, as mentioned above, during epitaxial growth, half of the substrate is moved 1. ts'W
ArF excimer laser irradiation was performed with a power of /ad.

この結果、全てのエピタキシャル層の非照射部は、キャ
リアm度5×10 口 のp型層となシ、また照射部は
キャリア濃度6×10 crn Qn型層が形成できた
。(^ 次にレーザ照射部と非照射部との界面をフォトレジスト
をマスクにして、選択エツチングし、G a A aキ
ャップ層6のレーザ照射部と非照射部とを電気的に絶縁
した。(El 最後に、GaAsキャップ層のレーザ照射部上と非照射
部上にそれぞれA u/G e /N iおよびA u
 / Z nを用いて、n型電極とp型電極を形成した
。(q 以上のような本実施例においても、−回のエピタキシャ
ル成長で、横方向注入型半導体レーザ構造が形成でき製
造プロセスの簡略化がはかれた。
As a result, the non-irradiated portions of all the epitaxial layers were formed as p-type layers with a carrier concentration of 5×10 5 m, and the irradiated portions were formed as Qn-type layers with a carrier concentration of 6×10 crn. (^ Next, the interface between the laser irradiated part and the non-irradiated part was selectively etched using a photoresist as a mask, and the laser irradiated part and the non-irradiated part of the Ga A a cap layer 6 were electrically insulated. ( El Finally, A u/G e /N i and A u on the laser irradiated part and non-irradiated part of the GaAs cap layer, respectively.
/ Z n was used to form an n-type electrode and a p-type electrode. (q) Also in this embodiment as described above, a lateral injection type semiconductor laser structure can be formed by - times of epitaxial growth, and the manufacturing process is simplified.

以−上述べた実施例においては、レーザ構造のエピタキ
シャル成長に光励起有機金属熱分解気相成長法を用いた
場合について述べたが、本発明は光励起M B E (
Molecular Beam Epf taxy)法
、光励起MOMBE (Metal Organic 
MolecularBeam Epitaxy)法、光
励起V P E (VaporPhase Epita
xy)法を用いた場合でも実現可能である。また基板照
射用光源としてArFエキシマレーザ光を用いた場合に
ついて述べたが、本発明は、Ar レーザ、 CO2L
/−ザ、He−Cdレーザ、KrFやXeF等のKrF
以外のエキシマレーザを用いた場合でも実現可能である
。また以上述べた実施例はAl1GaAs/GaAs系
半導体レーザの場合について説明したが、本発明はI 
n G a A s P / I n P系。
In the embodiments described above, a case was described in which a photoexcited metal-organic pyrolysis vapor phase epitaxy method was used for epitaxial growth of a laser structure.
Molecular Beam Epf taxy) method, optical excitation MOMBE (Metal Organic
Molecular Beam Epitaxy) method, photoexcitation VPE (VaporPhase Epitaxy) method,
This can also be achieved using the xy) method. In addition, although the case has been described in which ArF excimer laser light is used as the light source for irradiating the substrate, the present invention also uses ArF excimer laser light, CO2L
/-The, He-Cd laser, KrF such as KrF and XeF
It is also possible to use other excimer lasers. Further, although the embodiments described above have been explained in the case of an Al1GaAs/GaAs semiconductor laser, the present invention
nGaAsP/InP system.

AlGaInP/GaAs系等の他のrv−v族化合物
半導体を用いた場合に用いることができるばかりですく
、更にZn5e+Zn5se等のU−M族化合物半導体
を用いた場合や、CuGaSe2.CuAlF32等の
カルコパイライト型化合物半導体を用いた場合にも適用
可能である。またn型およびp型不純物の組合せとして
、本実施例では、Si(CH3)4とz n (CH3
) 2、を用いたが本発明は他の熱分解効率よりも光分
解効率の方が大さいn型不純物原料と光照射効果のほと
んどないp型不純物原料の組合わせの場合に用いること
ができるばかりでなく、光照射効果のほとんどないn型
不純物原料と熱分解効率よりも光分解効率の方が大きい
p型不純物原料の組合わせを用いた場合にも適用可能で
ある。
It can be used not only when other rv-v group compound semiconductors such as AlGaInP/GaAs are used, but also when using U-M group compound semiconductors such as Zn5e+Zn5se, CuGaSe2. It is also applicable when using a chalcopyrite type compound semiconductor such as CuAlF32. Furthermore, in this example, as a combination of n-type and p-type impurities, Si(CH3)4 and z n (CH3
) 2, but the present invention can be used in the case of a combination of an n-type impurity raw material whose photolysis efficiency is higher than other thermal decomposition efficiencies and a p-type impurity raw material which has almost no light irradiation effect. It is also applicable to the case where a combination of an n-type impurity raw material, which has almost no light irradiation effect, and a p-type impurity raw material, whose photolysis efficiency is higher than its thermal decomposition efficiency, is used.

また本実施例は、ストライプ拡散型および横方向注入型
半導体レーザの場合であるが、埋め込み構造や他の種々
のレーザ構造に適用できることは言うまでもない。
Further, although this embodiment deals with a stripe diffusion type semiconductor laser and a lateral injection type semiconductor laser, it goes without saying that the present invention can be applied to a buried structure and various other laser structures.

発明の効果 本発明にかかる半導体レーザは、そのレーザ構造のエピ
タキシャル成長の際、熱分解効率よりも光分解効率の方
が大きいn(1=)型不純物原料と光照射効果のほとん
どないp(→型不純物原料とを同時に供給して、所望の
エピタキシャル層の所望の部分に光照射することによシ
同一のエピタキシャル層中に形成したものである。従っ
て一回のエピタキシャル成長で、従来のZn拡散領域形
成後の構造と同一の構造が形成でき、プロセスの簡略化
が大いにはかれる。また、従来の拡散領域の位置が、光
照射の位置および時間で制御可能なので、その位置精度
特に従来の拡散フロント位置の向上がはかれる。
Effects of the Invention During the epitaxial growth of the laser structure of the semiconductor laser of the present invention, the n(1=) type impurity raw material, which has a higher photodecomposition efficiency than the thermal decomposition efficiency, and the p(→ type) material, which has almost no light irradiation effect, are used. It is formed in the same epitaxial layer by supplying the impurity raw material at the same time and irradiating the desired portion of the desired epitaxial layer with light.Therefore, a single epitaxial growth is required to form a Zn diffusion region in the conventional method. The same structure as the subsequent structure can be formed, greatly simplifying the process.Also, since the position of the conventional diffusion region can be controlled by the position and time of light irradiation, its positional accuracy, especially the position of the conventional diffusion front, can be improved. Improvements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例におけるZn拡散ストラ
イプ型半導体レニザの製造方法を示す工程断面図、第2
図は本発明の実施例においてエピタキシャル成長工程に
用いた光励起有機金属熱分解気相成長装置の結晶成長室
の模式断面図、第3図は本発明の第2の実施例における
横方向注入型半導体レーザの製造方法を示す工程断面図
、第4図は従来のZn拡散ストライプ型半導体レーザの
製造方法を示す工程断面図である。 1・・・・・・n型GaAs基板、2・・・・・・n型
AI G a A s層、3・・・・・・G a A 
s活性層、4・・・・・・p型AlGaAs層、6・・
・・・・n型G a A s層、6・・・・・・S i
 O2膜、7・・・・・・Zn拡散ストライプ、1o・
・・・・・p型G a A s領域、11・・・・・・
ArFエキシマレーザ光、19・・・・・・半絶縁性G
 a A [1基板、20−=−・・n mAI G 
a A s層、21=・・・p型領域。
FIG. 1 is a process cross-sectional view showing a method for manufacturing a Zn-diffused stripe type semiconductor laser according to the first embodiment of the present invention, and FIG.
The figure is a schematic sectional view of the crystal growth chamber of the photoexcited metal organic pyrolysis vapor phase growth apparatus used in the epitaxial growth process in the embodiment of the present invention, and FIG. 3 is the lateral injection type semiconductor laser in the second embodiment of the present invention. FIG. 4 is a cross-sectional view showing a process for manufacturing a conventional Zn-diffused stripe type semiconductor laser. 1...N-type GaAs substrate, 2...N-type AI GaAs layer, 3...GaA
s active layer, 4...p-type AlGaAs layer, 6...
...N-type GaAs layer, 6...S i
O2 film, 7... Zn diffusion stripe, 1o.
...p-type GaAs region, 11...
ArF excimer laser light, 19...semi-insulating G
a A [1 board, 20-=-...n mAI G
aAs layer, 21=...p-type region.

Claims (10)

【特許請求の範囲】[Claims] (1)第一の伝導型を有する半導体基板上に、前記半導
体基板と同伝導型の第1のクラッド層、前記第1のクラ
ッド層上に活性層、前記活性層上に前記第1のクラッド
層と反対の伝導型の第2のクラッド層を順次エピタキシ
ャル成長する工程と、前記第2のクラッド層上に、n型
およびp型不純物原料を同時に供給し、かつ所望の部分
に光照射を行いながら半導体層をエピタキシャル成長す
る工程と、前記半導体層上に第1の電極層、前記半導体
基板の前記第1のクラッド層、活性層、第2のクラッド
層、半導体層が形成されていない表面に第2の電極層を
形成する工程とを備えてなる半導体レーザの製造方法。
(1) A first cladding layer having the same conductivity type as the semiconductor substrate on a semiconductor substrate having a first conductivity type, an active layer on the first cladding layer, and a first cladding layer on the active layer. A step of sequentially epitaxially growing a second cladding layer of a conductivity type opposite to that of the second cladding layer, simultaneously supplying n-type and p-type impurity raw materials onto the second cladding layer, and irradiating a desired portion with light. a step of epitaxially growing a semiconductor layer, a first electrode layer on the semiconductor layer, the first cladding layer, an active layer, a second cladding layer of the semiconductor substrate, and a second 1. A method of manufacturing a semiconductor laser, comprising: forming an electrode layer.
(2)エピタキシャル成長方法が、有機金属熱分解気相
成長法、あるいはハライド気相成長法、あるいはハイド
ライド気相成長法、あるいはガスソース分子線エピタキ
シー法、あるいは分子線エピタキシー法である特許請求
の範囲第1項に記載の半導体レーザの製造方法。
(2) The epitaxial growth method is metal-organic pyrolysis vapor phase epitaxy, halide vapor phase epitaxy, hydride vapor phase epitaxy, gas source molecular beam epitaxy, or molecular beam epitaxy. A method for manufacturing a semiconductor laser according to item 1.
(3)光照射に用いる光源がエキシマレーザ、Arレー
ザ、CO_2レーザ、紫外線ランプである特許請求の範
囲第1項に記載の半導体レーザの製造方法。
(3) The method for manufacturing a semiconductor laser according to claim 1, wherein the light source used for light irradiation is an excimer laser, an Ar laser, a CO_2 laser, or an ultraviolet lamp.
(4)同時に供給するn型およびp型不純物原料のうち
少なく一方が、エピタキシャル成長温度で熱分解効率よ
りも光分解効率の方が大きいものである特許請求の範囲
第1項に記載の半導体レーザの製造方法。
(4) The semiconductor laser according to claim 1, wherein at least one of the n-type and p-type impurity raw materials supplied at the same time has a photodecomposition efficiency higher than a thermal decomposition efficiency at the epitaxial growth temperature. Production method.
(5)n型およびp型不純物原料が、それぞれSi(C
H_3)_4、Zn(CH_3)_2である特許請求の
範囲第4項に記載の半導体レーザの製造方法。
(5) The n-type and p-type impurity raw materials are Si(C
The method for manufacturing a semiconductor laser according to claim 4, wherein the semiconductor laser is H_3)_4 and Zn(CH_3)_2.
(6)半絶縁性半導体基板上に、第1のクラッド層、活
性層、第2のクラッド層、キャップ層を順次n型および
p型不純物原料を同時に供給し、かつ前記半導体基板の
一部分を光照射しながらエピタキシャル成長する工程と
前記キャップ層上の光照射部と非照射部にそれぞれ第1
の電極層と第2の電極層とを形成する工程とを備えてな
る半導体レーザの製造方法。
(6) Simultaneously supplying n-type and p-type impurity raw materials to the first cladding layer, active layer, second cladding layer, and cap layer on a semi-insulating semiconductor substrate, and exposing a portion of the semiconductor substrate to light. A step of epitaxial growth while irradiating, and a step of epitaxial growth while irradiating, and a step of epitaxially growing a first layer on the irradiated area and the non-irradiated area on the cap layer, respectively.
1. A method for manufacturing a semiconductor laser, comprising the steps of forming an electrode layer and a second electrode layer.
(7)エピタキシャル成長方法が、有機金属熱分解気相
成長法、あるいはハライド気相成長法、あるいはハイド
ライド気相成長法、あるいはガスソース分子線エピタキ
シー法、あるいは分子線エピタキシー法である特許請求
の範囲第6項に記載の半導体レーザの製造方法。
(7) The epitaxial growth method is a metal organic pyrolysis vapor phase epitaxy method, a halide vapor phase epitaxy method, a hydride vapor phase epitaxy method, a gas source molecular beam epitaxy method, or a molecular beam epitaxy method. A method for manufacturing a semiconductor laser according to item 6.
(8)光照射に用いる光源がエキシマレーザ、Arレー
ザ、CO_2レーザ、紫外線ランプである特許請求の範
囲第6項に記載の半導体レーザの製造方法。
(8) The method for manufacturing a semiconductor laser according to claim 6, wherein the light source used for light irradiation is an excimer laser, an Ar laser, a CO_2 laser, or an ultraviolet lamp.
(9)同時に供給するn型およびp型不純物原料のうち
少なく一方が、エピタキシャル成長温度で熱分解効率よ
りも光分解効率の方が大きいものである特許請求の範囲
第6項に記載の半導体レーザの製造方法。
(9) The semiconductor laser according to claim 6, wherein at least one of the n-type and p-type impurity raw materials supplied at the same time has a photodecomposition efficiency higher than a thermal decomposition efficiency at the epitaxial growth temperature. Production method.
(10)n型およびp型不純物原料が、それぞれSi(
CH_3)_4、Zn(CH_3)_2である特許請求
の範囲第9項に記載の半導体レーザの製造方法。
(10) The n-type and p-type impurity raw materials are Si(
The method for manufacturing a semiconductor laser according to claim 9, wherein the semiconductor laser is CH_3)_4 and Zn(CH_3)_2.
JP27760487A 1987-03-17 1987-11-02 Manufacture of semiconductor laser Pending JPH01120085A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27760487A JPH01120085A (en) 1987-11-02 1987-11-02 Manufacture of semiconductor laser
US07/168,256 US4843031A (en) 1987-03-17 1988-03-15 Method of fabricating compound semiconductor laser using selective irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27760487A JPH01120085A (en) 1987-11-02 1987-11-02 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01120085A true JPH01120085A (en) 1989-05-12

Family

ID=17585743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27760487A Pending JPH01120085A (en) 1987-03-17 1987-11-02 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01120085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214083A (en) * 1988-02-22 1989-08-28 Toshiba Corp Semiconductor laser device and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115892A (en) * 1981-01-12 1982-07-19 Agency Of Ind Science & Technol Semiconductor laser element
JPS60249380A (en) * 1984-05-25 1985-12-10 Hitachi Ltd Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115892A (en) * 1981-01-12 1982-07-19 Agency Of Ind Science & Technol Semiconductor laser element
JPS60249380A (en) * 1984-05-25 1985-12-10 Hitachi Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214083A (en) * 1988-02-22 1989-08-28 Toshiba Corp Semiconductor laser device and its manufacture

Similar Documents

Publication Publication Date Title
US4843031A (en) Method of fabricating compound semiconductor laser using selective irradiation
JP2960838B2 (en) Semiconductor device and manufacturing method thereof
JPH01120085A (en) Manufacture of semiconductor laser
JPS63227089A (en) Manufacture of multi-wavelength semiconductor laser
EP0480557B1 (en) Method of making P-type compound semiconductor
JPH05190465A (en) Photo-excited vapor growth device
JPH02188912A (en) Selective growth method of iii-v compound semiconductor
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JPH0242769A (en) Manufacture of pin photodiode
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JPH0431391A (en) Epitaxial growth
JPH05226257A (en) Vapor growth method and photo assisted vapor growth apparatus
KR100390394B1 (en) Method for fabricating semiconductor laser diode
JPS62137822A (en) Vapor growth method for semiconductor film
JPH02251915A (en) Production of compound semiconductor optical circuit element
JPS63227090A (en) Semiconductor laser device and manufacture thereof
US20040105475A1 (en) Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JP3703927B2 (en) Semiconductor laser element
JP3316828B2 (en) Semiconductor thin film regrowth method
JPS63228787A (en) Manufacture of semiconductor laser
JPH01215019A (en) Formation of ohmic electrode
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPH01286486A (en) Manufacture of semiconductor laser
JPH0267779A (en) Photoelectronic integrated circuit and its manufacture
JPH11186536A (en) Manufacture of semiconductor quantum dot element