JPS63228787A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS63228787A
JPS63228787A JP6290587A JP6290587A JPS63228787A JP S63228787 A JPS63228787 A JP S63228787A JP 6290587 A JP6290587 A JP 6290587A JP 6290587 A JP6290587 A JP 6290587A JP S63228787 A JPS63228787 A JP S63228787A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
semiconductor laser
active layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6290587A
Other languages
Japanese (ja)
Inventor
Yoichi Sasai
佐々井 洋一
Yuzaburo Ban
雄三郎 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6290587A priority Critical patent/JPS63228787A/en
Priority to US07/168,256 priority patent/US4843031A/en
Publication of JPS63228787A publication Critical patent/JPS63228787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simplify the structure and make the production easy by epitaxially growing a semiconductor active layer while selectively applying laser light to the semiconductor substrate surface, thereby forming a semiconductor layer of a different forbidden band width. CONSTITUTION:A semiconductor substrate 1 is heated while it is supplied with AsH3; after the growth temperature is reached, AsH3, TMG, TMA and H2Se are supplied to grow, for instance, an N-type AlxGa1-xAs clad layer 2, and an epitaxial growth is made while excimer laser light is selectively applied to the substrate 1 surface, thereby forming a semiconductor layer 7 of a different forbidden band width in the semiconductor active layer. Then, TMG, TMA, AsH3 and DMZ gasses are supplied to grow a P-type AlGaAs clad layer 4, aud finally, a P-type GaAs contact layer 5 is grown, completing the production of a semiconductor wafer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信分野ならびに光デイスク関連分野で有
用となる波長安定化光源である半導体レーザの製造方法
、特に複合共振器型半導体レーザの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor laser, which is a wavelength-stabilized light source useful in the optical communication field and optical disk related field, and in particular, a method for manufacturing a compound cavity type semiconductor laser. It is related to.

従来の技術 近年、半導体レーザの発振波長安定化のため、半導体レ
ーザの内部に複数の共振器構造を有する複合共振器型半
導体レーザの研究開発が活発に行なわれている。
2. Description of the Related Art In recent years, in order to stabilize the oscillation wavelength of semiconductor lasers, research and development have been actively conducted on composite resonator semiconductor lasers having a plurality of resonator structures inside the semiconductor laser.

以下に従来の主たる複合共振器型半導体レーザの構造と
作製プ占セスについて説明する。
The structure and manufacturing process of the conventional main compound cavity type semiconductor laser will be explained below.

第6図は複合共振器型半導体レーザの1つである内部干
渉型(IRI)半導体レーザの構造図である。この構造
はAppl、Phys、 Let ter、 (7プラ
イフイジー)クス Vター)Vol、40.P、571
 に記載されているがエビ層構造ばGaAs基板1上に
Aly;Ga1−XAaN型クラッド層2、GaAs活
性層3、AlXGa 1−xAB P型クラッド層4、
GaAsP型コンタクト層5が順次積層されている。ま
たGaAtr基板1表面には6上の山6が形成され、山
6を境にして2つの共振器L1  とL2に分割される
。これは山e付近で有効屈折率が増大し、レーザ活性層
内を導波するレーザ光が山6付近で内部反射が起きるた
めである。50.51は電極である。
FIG. 6 is a structural diagram of an internal interference type (IRI) semiconductor laser, which is one of the composite cavity type semiconductor lasers. This structure is described in Appl, Phys, Letter, Vol. 40. P, 571
However, in the case of a shrimp layer structure, on a GaAs substrate 1, an Aly;Ga1-XAaN type cladding layer 2, a GaAs active layer 3, an AlXGa1-xAB P type cladding layer 4,
GaAsP type contact layers 5 are sequentially laminated. Further, six peaks 6 are formed on the surface of the GaAtr substrate 1, and the resonators are divided into two resonators L1 and L2 with the peaks 6 as a boundary. This is because the effective refractive index increases near the peak e, and internal reflection of the laser light guided in the laser active layer occurs near the peak 6. 50.51 is an electrode.

また第6図は複合共振器型半導体レーザの1つであるI
PCレーザといわれる断面構造図である。
Figure 6 shows I, one of the composite cavity type semiconductor lasers.
It is a cross-sectional structural diagram called a PC laser.

これはElectronias Letters  (
エレクトo=スクレターズ)  VOl、2I  P、
374に記載されているが、N型InP基板1o上にI
nGaAs P光導波層11、InP分離層12、I 
rD aAs P 活性層13、InP P型クラッド
層14、InGaAsP P型コンタクト層16が順次
形成されている。そして、InP分離層12より上に積
層されているエピタキシャル層を選択的に除去して図の
ように活動部101と受動部100の2つに分割し、2
つの共振器L1とL2 を設けた複合共振器型半導体レ
ーザを形成し半導体レーザに比べ発振波長が安定で優れ
た特性を有している。しかしながら、レーザ構造図を見
てわかるように素子構造は複雑で歩留り向上もあまり期
待できない。
This is Electronics Letters (
Elect o=Screters) VOl, 2I P,
374, I on the N-type InP substrate 1o
nGaAs P optical waveguide layer 11, InP separation layer 12, I
An rDaAsP active layer 13, an InP P-type cladding layer 14, and an InGaAsP P-type contact layer 16 are formed in this order. Then, the epitaxial layer laminated above the InP isolation layer 12 is selectively removed and divided into two parts, an active part 101 and a passive part 100, as shown in the figure.
A composite resonator type semiconductor laser having two resonators L1 and L2 is formed, and the oscillation wavelength is stable and has excellent characteristics compared to a semiconductor laser. However, as can be seen from the diagram of the laser structure, the device structure is complex and yield improvement cannot be expected much.

問題点を解決するための手段 本発明は、上記した従来の問題点を解消するため、半導
体レーザの活性層内に禁止帯幅の異なる半導体層を一部
設けて、複合共振器型構造を形成する。またその禁止帯
幅の異なる領域の形成は半導体ウェハー表面にレーザ光
を選択的に照射しながら通常のエピタキシャル成長、例
えば有機金属気相法による結晶成長を行う事により、半
導体レーザの活性層を製造する方法である。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention provides a method of forming a composite resonator type structure by providing some semiconductor layers having different forbidden band widths in the active layer of a semiconductor laser. do. In addition, regions with different forbidden band widths can be formed by selectively irradiating the semiconductor wafer surface with laser light and performing normal epitaxial growth, such as crystal growth using metal organic vapor phase method, to manufacture the active layer of the semiconductor laser. It's a method.

作   用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

有機金属気相成長法によるエピタキシャル成長中にレー
ザ光を基板表面に照射することにより、レーザ光の照射
部のみ結晶を成長させたり、あるイハ組成、キャリア濃
度、伝導型を変化させることが可能である。したがって
、例えばA6θa 、 −XAs混晶を成長する場合は
レーザ光を照射するとM濃度比Xが増大することから、
半導体レーザの活性層を成長する際、選択的にレーザ光
を照射してやれば、半導体ウェハー内にM組成の異なる
、つまり禁止帯幅の異なる半導体層が形成される。この
手法を用いて半導体レーザウェハーを作製してやれば、
単純なエビ構造の複合共振器型半導体レーザが作製可能
となる。
By irradiating the substrate surface with laser light during epitaxial growth using organometallic vapor phase epitaxy, it is possible to grow crystals only in the area irradiated with laser light, or to change a certain IHA composition, carrier concentration, and conductivity type. . Therefore, for example, when growing an A6θa, -XAs mixed crystal, the M concentration ratio X increases when laser light is irradiated.
When growing the active layer of a semiconductor laser, if laser light is selectively irradiated, semiconductor layers with different M compositions, that is, different band gap widths, are formed in the semiconductor wafer. If a semiconductor laser wafer is manufactured using this method,
It becomes possible to fabricate a complex cavity type semiconductor laser with a simple shrimp structure.

実施例 本発明による複合共振器型半導体レーザの構造と、その
製造方法は以下に述べる実施例によって実現される。
Embodiments The structure of a composite resonator semiconductor laser according to the present invention and its manufacturing method are realized by the embodiments described below.

第1図に、第1の実施例の複合共振器型(IRI型)半
導体レーザの構造断面図を示す。ここで図中の記号は説
明を簡単にするため共通のものに対しては第5図と同じ
記号にしである。第1図と第6図の異なる点は山6の所
にAl! XGa 、−XA8活性層3内に組成Xの異
なるAlyGa1−yAsAs半導体層設けている点に
ある。組成Yは組成Xよりも大きく、いわゆる禁止帯幅
を大きくしている。しだがって半導体レーザの共振器方
向に対して中間に実効屈折率の増大した領域が形成され
複合共振器L1.L2が実現できる。
FIG. 1 shows a cross-sectional view of the structure of a composite resonator type (IRI type) semiconductor laser according to a first embodiment. Here, in order to simplify the explanation, the symbols in the figure are the same as those in FIG. 5 for common items. The difference between Figures 1 and 6 is that there is Al at mountain 6! The point is that an AlyGa1-yAsAs semiconductor layer having a different composition X is provided in the XGa, -XA8 active layer 3. The composition Y is larger than the composition X, increasing the so-called forbidden band width. Therefore, a region with an increased effective refractive index is formed in the middle with respect to the direction of the resonator of the semiconductor laser, and the composite resonator L1. L2 can be realized.

また、第2図に第2の実施例の複合共振器型(I PC
型)半導体レーザの構造断面図を示す。
In addition, FIG. 2 shows a composite resonator type (I PC) of the second embodiment.
Figure 2 shows a cross-sectional view of the structure of a semiconductor laser (type).

第2図と第6図の異なる点は、本実施例では光導波層1
1ならびに分離層が無く、また受動部100においては
、メサ構造にならずプレーナ構造になっている点にある
。しかし、本実施例では活動部101へ注入する電流の
効率化のため受動部のコンタクト層表面に絶縁膜9を施
している。また本実施例において、活性層3内に本レー
ザの共振器方向の受動部100側に禁止帯幅の大きな領
域8が設けられている。この半導体層8は第6図中の光
導波層11に対応する。したがって複合共振部は領域8
を境にして2つの共振器L1とL2 が形成される。
The difference between FIG. 2 and FIG. 6 is that in this example, the optical waveguide layer 1
1 and a separation layer, and the passive part 100 has a planar structure instead of a mesa structure. However, in this embodiment, an insulating film 9 is provided on the surface of the contact layer of the passive part in order to increase the efficiency of the current injected into the active part 101. Further, in this embodiment, a region 8 with a large bandgap width is provided in the active layer 3 on the side of the passive section 100 in the direction of the resonator of the laser. This semiconductor layer 8 corresponds to the optical waveguide layer 11 in FIG. Therefore, the composite resonance part is in the region 8
Two resonators L1 and L2 are formed with the boundary between them.

以上のように、本発明の構造は従来の構造に比べ非常に
単純な構造となり、製造プロセスが簡単になり素子分留
りの向上が期待できる。
As described above, the structure of the present invention is much simpler than the conventional structure, the manufacturing process is simplified, and an improvement in element fractionation can be expected.

これら本実施例の半導体レーザの活性層の製造方法は以
下に述べる実施例によって実現される。
The method of manufacturing the active layer of the semiconductor laser of this embodiment is realized by the embodiments described below.

第3図に本発明の半導体レーザ活性層の作製に用いる装
置、すなわち有機金属気相成長法の結晶成長室にエキシ
マレーザ光を導入した場合の模式図を示す。2oは結晶
成長室、21は結晶成長室のレーザ光入射窓、22,2
3.24は原料ガスの導入口、25は排気口、26は高
周波コイル、27はカーボン製サセプタである。また1
は半導体基板で、28はレーザ光をパターニングするマ
スクである。ここでマスク28は成長室2oの外に設置
しているが、あえてその必要は無く、成長室20の中に
置いても良い。
FIG. 3 is a schematic diagram showing the case where excimer laser light is introduced into the apparatus used for manufacturing the semiconductor laser active layer of the present invention, that is, the crystal growth chamber for metalorganic vapor phase epitaxy. 2o is a crystal growth chamber, 21 is a laser beam entrance window of the crystal growth chamber, 22, 2
3.24 is an inlet for raw material gas, 25 is an exhaust port, 26 is a high frequency coil, and 27 is a carbon susceptor. Also 1
28 is a semiconductor substrate, and 28 is a mask for patterning laser light. Although the mask 28 is placed outside the growth chamber 2o here, it is not necessary and may be placed inside the growth chamber 20.

この装置を用いて第3図に示すように半導体基板1上に
活性層を作製する場合について以下に説明する。なお説
明を容易にするため用いる基板をGaAs単結晶ウェハ
ーとし、活性層をAlxGa 1−XA8半導体とする
。この場合、Al t GaおよびAsの原料ガスとし
て、それぞれTMA 、TMGおよびAsH3を、キャ
リアガスとして町を用いた。またN型P型ドーピングガ
スとして)(2S6 t D E Zをそれぞれ用いた
。レーザ光としてエキシマレーザlからの193nm光
を用いた。作製プロセスとしては、最初、GaAs基板
1を結晶成長室2o内のカーボン製サセプター27上に
設置する。次にAsH3を供給しながら成長温度まで基
板1を加熱し、成長温度に達した後、AsH3,T M
 G t T M A flらびに)Seを供給してN
型1’Jl−1;G a 1−XAmクラッド層2を成
長する。次に活性層の成長は、TMG 。
The case where an active layer is formed on the semiconductor substrate 1 as shown in FIG. 3 using this apparatus will be described below. Note that for ease of explanation, the substrate used is a GaAs single crystal wafer, and the active layer is an AlxGa 1-XA8 semiconductor. In this case, TMA, TMG, and AsH3 were used as raw material gases for Al t Ga and As, respectively, and Machi was used as a carrier gas. In addition, (2S6tDEZ) (2S6tDEZ) was used as an N-type and P-type doping gas. 193 nm light from an excimer laser 1 was used as a laser beam.As for the manufacturing process, first, a GaAs substrate 1 was placed in a crystal growth chamber 2o. Next, the substrate 1 is heated to the growth temperature while supplying AsH3, and after reaching the growth temperature, AsH3,TM
G t T M A fl and ) by supplying Se and N
Type 1'Jl-1; G a 1-XAm cladding layer 2 is grown. Next, the active layer is grown using TMG.

T M A 、 As%を供給しながらマスク28を介
してエキシマレザ光lを基板1表面に照射する。なお個
々の条件は次表に示す通りである。
The surface of the substrate 1 is irradiated with excimer laser light l through the mask 28 while supplying TMA and As%. The individual conditions are shown in the table below.

基板         GaAs 成長温度       700°C 成長圧力       10100TorrT供給量 
    0.286ccmTMA供給量       
0.128ccmAsH3供給量       101
005c全へ流量        651m レーザ波長        193nmレーザパワー 
      1 、5W/d以上の条件でエピタキシャ
ル成長を行うと、レーザ照射部にはAlaGal−aA
Il  層が非照射部にはAlβGa1−βA8層が第
4図に示すように選択的に形成される。ここでα)β 
で照射部のAlGaAs層3の方がA7濃度が犬すなわ
ち禁止帯幅の大きなエピタキシャル層が同一平面上に実
現される。次にエキシマレーザ光をオフしてTMG 、
TMA。
Substrate GaAs Growth temperature 700°C Growth pressure 10100 TorrT supply amount
0.286ccm TMA supply amount
0.128ccmAsH3 supply amount 101
Flow rate to all 005c 651m Laser wavelength 193nm Laser power
1. When epitaxial growth is performed under conditions of 5 W/d or more, AlaGal-aA is formed in the laser irradiated area.
As shown in FIG. 4, AlβGa1-βA8 layers are selectively formed in the areas where the Il layer is not irradiated. Here α) β
In this case, the AlGaAs layer 3 in the irradiation part has a higher A7 concentration, that is, an epitaxial layer with a larger forbidden band width is realized on the same plane. Next, turn off the excimer laser beam and TMG,
TMA.

As)ち、DMZガスを供給し、P型AlGaAsクラ
ッド層を成長し最後にP型GaAsコンタクト層を成長
して、半導体レーザウェハーの作製が完了する。
As) DMZ gas is supplied, a P-type AlGaAs cladding layer is grown, and finally a P-type GaAs contact layer is grown to complete the fabrication of the semiconductor laser wafer.

以上述べた実施例においては、GaAs −AlGaA
s系の半導体レーザの製造方法について説明したが、I
nP −InGaAsP系。
In the embodiments described above, GaAs-AlGaA
Although we have explained the method for manufacturing an s-based semiconductor laser,
nP-InGaAsP system.

AlGa I nP−GaAs系、 I nGaAs+
 P−GaAs系その他■−V族半導体結晶に用いるこ
とが可能である。さらに以上述べた実施例ではエピタキ
シャル成長技術として有機金属気相法を用いた場合であ
ったが、ハイドライド気相エピタキシャル法やクロライ
ド気相エピタキシャル法等の他の化合物半導体の気相エ
ピタキシャル成長法を用いた場合でも可能であるばかり
でなく、分子線エピタキシー法や有機金属分子線エピタ
キシー法を用いた場合でも可能である。また以上述べた
実施例においては、レーザとしてエキシマレーザを用い
た場合について説明したが、KrFやXeF等の他のガ
スを用いたエキシマレーザやCoz−ザ、He −Cd
レーザ等を用いた場合でも本発明は実現可能でらる。
AlGa I nP-GaAs system, I nGaAs+
It can be used for P-GaAs-based and other ■-V group semiconductor crystals. Furthermore, in the embodiments described above, metal organic vapor phase method was used as the epitaxial growth technique, but when other compound semiconductor vapor phase epitaxial growth methods such as hydride vapor phase epitaxial method or chloride vapor phase epitaxial method were used. Not only is this possible, but it is also possible when using a molecular beam epitaxy method or an organometallic molecular beam epitaxy method. Furthermore, in the above-described embodiments, an excimer laser was used as the laser, but excimer lasers using other gases such as KrF and XeF, Coz lasers, He-Cd lasers, etc.
The present invention can be realized even when a laser or the like is used.

発明の効果 本発明によれば、従来の構造のものに比べ構造が簡単な
だめ、容易に作製できる特徴がある。例えば従来のIR
I型レーザでは基板に白土の山を形成する場合レジスト
等の残留が有りエビ成長に支障があるが、本発明によれ
ば、その基板加工プロセスを必要としないため、エビ歩
留りが向上する。一方、従来のIPC型レーザでは、受
動部形成のため光導波層ならびに分離層を必要とし、ま
た活動部と受動部の分離のためメサ構造を炸裂していた
が、本発明によれば、光導波層ならびに分離層は必要と
せず、結晶表面が平坦な構造となり、プロセスならびに
エビ歩留りの向上が期待できる。
Effects of the Invention According to the present invention, the structure is simpler and easier to manufacture than those of conventional structures. For example, traditional IR
With the I-type laser, when forming a mountain of white clay on a substrate, there is residual resist, etc., which hinders shrimp growth, but according to the present invention, this substrate processing process is not required, so the shrimp yield is improved. On the other hand, in conventional IPC type lasers, an optical waveguide layer and a separation layer are required to form a passive part, and a mesa structure is exploded to separate an active part and a passive part. No wave layer or separation layer is required, and the crystal surface has a flat structure, which can be expected to improve the process and shrimp yield.

このように、本発明による半導体レーザは、光照射によ
る気相成長技術を用いることによって容易に実現でき、
非常に実用的効果が大きい。また本発明による半導体レ
ーザの性能は従来の半導体レーザと比較し、遜色のない
性能を有することは言うまでもない。
As described above, the semiconductor laser according to the present invention can be easily realized by using vapor phase growth technology using light irradiation.
It has great practical effects. Furthermore, it goes without saying that the performance of the semiconductor laser according to the present invention is comparable to that of conventional semiconductor lasers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例方法によるIRI型半導
体レーザの断面図、第2図は本発明の第2の実施例方法
によるIPC型半導体レーザの断面図、第3図は本実施
例の半導体レーザの製造方法を説明するだめの模式断面
図、第4図は同半導体レーザの活性層の製作工程を示す
断面図、第5図は従来方法によるIRI型半導体レーザ
の断面図、第6図は従来の方法によるIPC型半導体レ
ーザの断面図である。 1・・・・・・半導体結晶基板、3・川・・活性層、7
,8・・・・・・光照射で形成した半導体層、20・・
・・・・成長室、28・・・・・・−’1スク、l・・
・・・・エキシマレーザ光。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 、50 8−蒙り勅;砿さな領域 第3図 f−−一基板 Z7−−−財フ゛ター 第4図 7、b
FIG. 1 is a cross-sectional view of an IRI semiconductor laser according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view of an IPC semiconductor laser according to the second embodiment of the present invention, and FIG. 3 is a cross-sectional view of an IPC semiconductor laser according to the second embodiment of the present invention. FIG. 4 is a schematic cross-sectional view illustrating the manufacturing method of the example semiconductor laser. FIG. 4 is a cross-sectional view showing the manufacturing process of the active layer of the semiconductor laser. FIG. FIG. 6 is a sectional view of an IPC type semiconductor laser manufactured by a conventional method. 1... Semiconductor crystal substrate, 3... Active layer, 7
, 8... Semiconductor layer formed by light irradiation, 20...
...Growth room, 28...-'1 school, l...
...Excimer laser light. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure, 50 8-Emperor; Green area Fig. 3 f--One board Z7--Treasury filter Fig. 4 7, b

Claims (6)

【特許請求の範囲】[Claims] (1)半導体基板表面にレーザ光を選択的に照射しなが
ら、前記半導体基板上に半導体活性層をエピタキシャル
成長させてなる半導体レーザの製造方法。
(1) A method for manufacturing a semiconductor laser, which comprises epitaxially growing a semiconductor active layer on the semiconductor substrate while selectively irradiating the surface of the semiconductor substrate with laser light.
(2)レーザ光がエキシマレーザである特許請求の範囲
第1項記載の半導体レーザの製造方法。
(2) The method for manufacturing a semiconductor laser according to claim 1, wherein the laser beam is an excimer laser.
(3)エピタキシャル成長が有機金属気相成長法である
特許請求の範囲第1項記載の半導体レーザの製造方法。
(3) The method for manufacturing a semiconductor laser according to claim 1, wherein the epitaxial growth is metal organic vapor phase epitaxy.
(4)半導体がIII−V族化合物半導体である特許請求
の範囲第1項記載の半導体レーザの製造方法。
(4) The method for manufacturing a semiconductor laser according to claim 1, wherein the semiconductor is a III-V group compound semiconductor.
(5)半導体レーザの活性層の形成に際し、共振器方向
の中間に禁止帯幅が前記活性層の禁止帯幅より大なる半
導体層を形成する特許請求の範囲第1項記載の半導体レ
ーザの製造方法。
(5) Manufacturing a semiconductor laser according to claim 1, wherein when forming the active layer of the semiconductor laser, a semiconductor layer having a bandgap larger than the bandgap of the active layer is formed in the middle in the cavity direction. Method.
(6)半導体レーザの活性層の形成に際し、共振器方向
の一方の領域に禁止帯幅が前記活性層の禁止帯幅より大
なる半導体層を形成する特許請求の範囲第1項記載の半
導体レーザの製造方法。
(6) The semiconductor laser according to claim 1, wherein when forming the active layer of the semiconductor laser, a semiconductor layer having a bandgap larger than the bandgap of the active layer is formed in one region in the cavity direction. manufacturing method.
JP6290587A 1987-03-17 1987-03-18 Manufacture of semiconductor laser Pending JPS63228787A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6290587A JPS63228787A (en) 1987-03-18 1987-03-18 Manufacture of semiconductor laser
US07/168,256 US4843031A (en) 1987-03-17 1988-03-15 Method of fabricating compound semiconductor laser using selective irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6290587A JPS63228787A (en) 1987-03-18 1987-03-18 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63228787A true JPS63228787A (en) 1988-09-22

Family

ID=13213734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6290587A Pending JPS63228787A (en) 1987-03-17 1987-03-18 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63228787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297187A (en) * 1990-04-17 1991-12-27 Nec Corp High output semiconductor laser element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297187A (en) * 1990-04-17 1991-12-27 Nec Corp High output semiconductor laser element and manufacture thereof

Similar Documents

Publication Publication Date Title
JP2914210B2 (en) Multiple quantum well structure optical semiconductor device and method of manufacturing the same
EP0155152B1 (en) A semiconductor laser
US4843031A (en) Method of fabricating compound semiconductor laser using selective irradiation
US5073893A (en) Semiconductor structure and semiconductor laser device
EP0680119B1 (en) Fabrication process for semiconductor optical device
JPH08125251A (en) Hexagonal system semiconductor ring resonator
US5933443A (en) Semiconductor laser
JPS63228787A (en) Manufacture of semiconductor laser
JPS63227089A (en) Manufacture of multi-wavelength semiconductor laser
JPH0349287A (en) Semiconductor laser device and manufacturing process
JPH04180686A (en) Manufacture of semiconductor laser of window structure
JPH0548215A (en) Semiconductor laser diode and its manufacture
JP2903321B2 (en) Method of manufacturing semiconductor laser device
JPH06181364A (en) Area emission type semiconductor laser and manufacture thereof
JPS63164384A (en) Semiconductor light-emitting device
JPH01226191A (en) Manufacture of algainp buried structure semiconductor laser
JPS6381888A (en) Manufacture of semiconductor laser
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JP3787792B2 (en) Manufacturing method of semiconductor device
JPH0430578A (en) Manufacture of semiconductor quantum box structure
Horikoshi et al. Growth of low dimensional structures for optical application
JPH01120085A (en) Manufacture of semiconductor laser
JPH0269703A (en) Branch type optical waveguide
JPH05259582A (en) Semiconductor growth method and manufacture of semiconductor laser
JPH0936494A (en) Fabrication of compound semiconductor device