JPS60249380A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS60249380A
JPS60249380A JP10455084A JP10455084A JPS60249380A JP S60249380 A JPS60249380 A JP S60249380A JP 10455084 A JP10455084 A JP 10455084A JP 10455084 A JP10455084 A JP 10455084A JP S60249380 A JPS60249380 A JP S60249380A
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor laser
semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10455084A
Other languages
Japanese (ja)
Inventor
Yuichi Ono
小野 佑一
Shinichi Nakatsuka
慎一 中塚
Kazuhisa Uomi
魚見 和久
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10455084A priority Critical patent/JPS60249380A/en
Publication of JPS60249380A publication Critical patent/JPS60249380A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the visible light semiconductor laser of high reliability and low threshold value by a method wherein the active layer of a semiconductor laser is brought into a multi-quantum well structure consisting of a GaAs well layer and a GaAs barrier layer, and the thickness of each layer is made specific. CONSTITUTION:An N type Ga1-xAlxAs clad layer 2 the first semiconductor layer, a multi-quantum well layer 3 the second semiconductor layer consisting of an undoped GaAs layer and an undoped Ga0.8Al0.2As, a P type Ga1-xAlxAs clad layer 4 the third semiconductor layer, and an N type GaAs layer 5 the fourth semiconductor layer are successively grown on an N type GaAs substrate 1. Next, a P<+> region 6 is formed, and an N-side electrode 7 and a P-side electrode 8 are formed; then, a semiconductor laser of about 300mum resonator length is formed by cleavage. The active layer is brought into a multi-quantum well structure consisting of a GaAs well layer and a Ga0.8Al0.2As barrier layer, and their thicknesses are each set 3nm+ or -1nm, 5nm+ or -1nm. This construction yields the titled device of high reliability which efficiently oscillates with a visible light of 790nm or less.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、信頼性の高い、特に発光波長が可視域で発振
する低しきい埴生導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a highly reliable low-threshold clay conductor laser that oscillates with an emission wavelength in the visible range.

〔発明の背景〕[Background of the invention]

半導体レーザのうちその活性層が2つ以上の物質の超薄
膜で構成される、つまり童子井戸型レーザ(Multi
 −Quantum Weel−Laser)において
は、その童子サイズ効果により、発光波長が短波長化さ
れるとか、低しきい値動作するといった利点をもっでお
り、特に井戸層(Well Mj )にGaArAs層
を用いるとより短波長化が容易となっていたが、この場
合はGaArAs層のアロイクラスタやディスオーダ等
の欠陥の導入がしばしばあり、レーザの信頼性が悪く、
実用化のための障害となっていた。
Among semiconductor lasers, the active layer is composed of ultra-thin films of two or more substances, that is, Dojido lasers (Multi
-Quantum Weel-Laser) has the advantage of shortening the emission wavelength and operating at a low threshold due to its Doji size effect, and in particular uses a GaArAs layer for the well layer (Well Mj). However, in this case, defects such as alloy clusters and disorders in the GaArAs layer were often introduced, resulting in poor laser reliability.
This was an obstacle to practical application.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記の欠点を克服し、高信頼で低しきい
値の可視光半導体レーザを得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks and to obtain a highly reliable and low threshold visible light semiconductor laser.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明はGa AJ As
系半導体レーザのクラッド層ではさまれた活性層fGa
As井戸層とGa 1. Al 、 As障壁層(x=
0.2〜0.4)を各々井戸(たとえば7層)。障害(
たとえば6層)とした多重童子井戸型構造とし、かつ発
珈波長f 790 nm以下の可視光とするため井戸層
厚を3±1 nm、障壁層を5±lnm とすることに
より、従来法の欠点であった信頼性の劣子点を見服し、
可視光で高信頼度の半導体レーザを得たものである。
In order to achieve the above object, the present invention utilizes Ga AJ As
active layer fGa sandwiched between cladding layers of a system semiconductor laser
As well layer and Ga 1. Al, As barrier layer (x=
0.2-0.4) in each well (for example, 7 layers). hindrance(
For example, by adopting a multiple Doji well type structure with 6 layers) and setting the well layer thickness to 3±1 nm and the barrier layer to 5±1 nm in order to emit visible light with an emission wavelength of f790 nm or less, the conventional method Having given up on the inferiority of reliability, which was a drawback,
This is a highly reliable semiconductor laser that uses visible light.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実画例を図面とともに説明する。 Next, an actual example of the present invention will be explained with reference to the drawings.

第1図は本発明による半導体レーザの一実施例を示すレ
ーザ光の進行方向に垂直な面での断面図、第2図は特に
既牛専体レーザの活性層部分を詳細に説明するための断
面構造とその材料組成分布図を示すものである。
FIG. 1 is a sectional view taken in a plane perpendicular to the traveling direction of the laser beam, showing an embodiment of the semiconductor laser according to the present invention, and FIG. 2 is a cross-sectional view showing an example of the semiconductor laser according to the present invention. It shows a cross-sectional structure and its material composition distribution map.

第1図ζこおいて、n型GaAs基板1上に第1半導体
層であるn型Ga、−、AJ、クラッド層2(X=0.
45、厚さ1.5〜2.0μm)、第2千導体層である
アンドープGaAsとアンドープG2゜、AJ、2AS
からなる多重量子井戸層3(井戸層厚2〜4nm。
In FIG. 1, an n-type GaAs substrate 1 is covered with an n-type GaAs substrate 1, which is a first semiconductor layer, and a cladding layer 2 (X=0.
45, thickness 1.5-2.0 μm), undoped GaAs as the 2,000th conductor layer and undoped G2°, AJ, 2AS
A multi-quantum well layer 3 (well layer thickness: 2 to 4 nm).

障壁層厚4〜6nm)、第3半導体層であるP型(・G
a 1−、 AZ 、 Asクラッド14(X=0.4
5、厚さ0.5〜1.5μm)、第4半導体層であるn
型GaAs層5(厚さ0,5〜1.0μm)を順次周知
のMB法或いはMOCVD法で成長させる。なお、クラ
ッド層は従来の半導体レーザにおけるそれの考え方に従
って設けて良い。次いで選択拡散法によりZnを上記n
型GaAsの一部にストライプ状に幅約3μmの戸領域
6を形成し、次いでn側電極7およびP側電極8を形成
したのち、へき開法によって共振器長約300μmの半
導体レーザを形成した。
The barrier layer thickness is 4 to 6 nm), and the third semiconductor layer is P type (・G
a1-, AZ, As clad 14 (X=0.4
5, thickness 0.5-1.5 μm), n which is the fourth semiconductor layer
A type GaAs layer 5 (thickness 0.5 to 1.0 .mu.m) is sequentially grown using the well-known MB method or MOCVD method. Note that the cladding layer may be provided according to the concept of conventional semiconductor lasers. Next, Zn was added to the above n by selective diffusion method.
A striped region 6 having a width of about 3 μm was formed in a part of the GaAs mold, and then an n-side electrode 7 and a p-side electrode 8 were formed, and then a semiconductor laser having a cavity length of about 300 μm was formed by a cleavage method.

また多重量子井戸層3を第2図に用いて詳細に説明する
と、既n型Ga1−xAl!8ASクラッド層2(X=
0.45)上に第2図に示す様に3omのGaAs井戸
層9と5omのGa 1.AI!、 As層10(y=
−0,2)を交互に形成し、最終的に7層の井戸層と6
層の障壁層を形成する。本構造を活性層とする半導体レ
ーザチップをマウントし、動作させたところ、発振波長
780nm、l、きい値電流50〜60mA、光出力は
10mWtで良好な直線性を示した。また7 0’0,
10mW連続動作による寿命試験の結果、2000時間
を超えても、顕著な劣化は認められなかった。
Further, the multiple quantum well layer 3 will be explained in detail using FIG. 2. Already n-type Ga1-xAl! 8AS cladding layer 2 (X=
0.45) As shown in FIG. AI! , As layer 10 (y=
-0, 2) are formed alternately, and finally 7 well layers and 6 well layers are formed.
forming a barrier layer of layers. When a semiconductor laser chip having this structure as an active layer was mounted and operated, it exhibited good linearity with an oscillation wavelength of 780 nm, 1, a threshold current of 50 to 60 mA, and an optical output of 10 mWt. Also 7 0'0,
As a result of a life test using continuous operation at 10 mW, no significant deterioration was observed even after 2000 hours.

上記実施例はn型基板を用いたが、P型基板を用いても
各半導体の41!型を逆にすれば同様に実施することが
できる。また半導体材料をGaAJAs系としたが、I
nGaAsP/InP系あるいはInGaAIP/1n
GaP系等他の材料を用いても上記実施例と同様に実施
することができる。
Although the above embodiment uses an n-type substrate, even if a p-type substrate is used, each semiconductor has 41! The same process can be performed by reversing the mold. In addition, although the semiconductor material was GaAJAs-based, I
nGaAsP/InP system or InGaAIP/1n
Even if other materials such as GaP are used, the same implementation as in the above embodiment is possible.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように半導体レーザの活性層をGaAs
井戸層とGa o、 、 At 62 As #壁層と
から成る多重量子井戸構造とし、かつその厚みを各々3
nm′th1 nm、5 nm±1 ”n mとするこ
とにより、1 790nm以下の可視光で効率良く発振
し、かつ信頼性の高い半導体レーザが得られる。
In the present invention, as described above, the active layer of a semiconductor laser is made of GaAs.
A multi-quantum well structure consisting of a well layer and a GaO, , At 62 As # wall layer, each with a thickness of 3
By setting the values to nm'th1 nm and 5 nm±1'' nm, a semiconductor laser that oscillates efficiently with visible light of 1790 nm or less and has high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体レーザ装置の一実施例を示
す断面図、第2図は上記半導体レーザの活性層部の多重
量子井戸構造の詳細を説明する断面構造とその材料組成
分布を示す図である。
FIG. 1 is a cross-sectional view showing an embodiment of a semiconductor laser device according to the present invention, and FIG. 2 is a cross-sectional view showing the details of the multi-quantum well structure of the active layer portion of the semiconductor laser and its material composition distribution. It is.

Claims (1)

【特許請求の範囲】 1 半導体レーザ装置において、その活性層部分が2つ
以上の物質の超薄膜構造で構成される場合に、第1の物
質がGaAsでその厚さが3nm±1nmの値をもち、
他の物質がGa1−、AI!、As (x =0.2〜
0.4)でその厚さが5nm±lnmの値をもつことを
特徴とする半導体レーザ装置。 2、活性層内の超薄膜構造が有機金属熱分解法かもしく
は分子ビームエピタキシャル成長法によって形成されて
いることに%徴とする特許請求の範囲第1項記載の半導
体レーザ装置。
[Claims] 1. In a semiconductor laser device, when the active layer portion thereof is composed of an ultra-thin film structure of two or more materials, the first material is GaAs and the thickness thereof is 3 nm±1 nm. rice cake,
Other substances are Ga1-, AI! , As (x = 0.2~
0.4) and a thickness of 5 nm±lnm. 2. The semiconductor laser device according to claim 1, wherein the ultra-thin film structure in the active layer is formed by metal organic pyrolysis or molecular beam epitaxial growth.
JP10455084A 1984-05-25 1984-05-25 Semiconductor laser device Pending JPS60249380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10455084A JPS60249380A (en) 1984-05-25 1984-05-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10455084A JPS60249380A (en) 1984-05-25 1984-05-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60249380A true JPS60249380A (en) 1985-12-10

Family

ID=14383579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10455084A Pending JPS60249380A (en) 1984-05-25 1984-05-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60249380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120085A (en) * 1987-11-02 1989-05-12 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser
US5181086A (en) * 1990-05-17 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Strained superlattice semiconductor structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120085A (en) * 1987-11-02 1989-05-12 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser
US5181086A (en) * 1990-05-17 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Strained superlattice semiconductor structure

Similar Documents

Publication Publication Date Title
JPH04229689A (en) Light emitting semiconductor diode and its manufacture
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP2558768B2 (en) Semiconductor laser device
JPH05102604A (en) Semiconductor laser device
US6396863B1 (en) High-power semiconductor laser device having index-guided structure with InAlGaP current confinement layer
JPH08250807A (en) Semiconductor laser device
JPH0856045A (en) Semiconductor laser device
JPH11186665A (en) Semiconductor light emitting element
JPS60249380A (en) Semiconductor laser device
JPS6083389A (en) Surface luminescent laser oscillator
JP2833962B2 (en) Semiconductor laser and its manufacturing method
JP3197050B2 (en) Method for manufacturing semiconductor laser device
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH1154834A (en) Semiconductor laser element
JP2812068B2 (en) Semiconductor laser
JPH0437598B2 (en)
JPH0728093B2 (en) Semiconductor laser device
JP3674139B2 (en) Visible semiconductor laser
JPS61236185A (en) Preparation of semiconductor laser element
JP2636071B2 (en) Semiconductor laser
JPH01108789A (en) Surface emission semiconductor laser element
JP3189900B2 (en) Semiconductor laser device
JPS6083388A (en) Semiconductor laser
JPH03153090A (en) Semiconductor laser
JPH0576794B2 (en)