JP2735190B2 - Molecular beam epitaxy growth method and growth apparatus - Google Patents

Molecular beam epitaxy growth method and growth apparatus

Info

Publication number
JP2735190B2
JP2735190B2 JP62082364A JP8236487A JP2735190B2 JP 2735190 B2 JP2735190 B2 JP 2735190B2 JP 62082364 A JP62082364 A JP 62082364A JP 8236487 A JP8236487 A JP 8236487A JP 2735190 B2 JP2735190 B2 JP 2735190B2
Authority
JP
Japan
Prior art keywords
growth
group
molecular beam
gas
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62082364A
Other languages
Japanese (ja)
Other versions
JPS63248796A (en
Inventor
直規 古畑
広信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62082364A priority Critical patent/JP2735190B2/en
Publication of JPS63248796A publication Critical patent/JPS63248796A/en
Application granted granted Critical
Publication of JP2735190B2 publication Critical patent/JP2735190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はIII−V族化合物半導体の分子線エピタキシ
ャル成長方法及び成長装置に関する。 〔従来の技術〕 最近、III−V族化合物半導体を用いた高速素子、光
素子、光−電子集積回路(OEIC)の開発が急速に発展
し、それに伴う素子製作プロセスも複雑化している。 分子線エピタキシャル成長方法(MBE法)は、高精度
に膜厚を制御でき、しかも高品質のIII−V族化合物半
導体の薄膜が得られるので、上記のようなデバイス作製
には重要な成長技術である。 従来の分子線エピタキシャル成長装置は10-10Torr程
度の超高真空容器内に、薄膜を構成する元素ごとに分子
線源を設け、それらの分子線源の温度を制御して各々適
当なビーム強度の分子線を得、これらを所定温度に加熱
された基板上に付着堆積させて所望の組成の薄膜を成長
させる構造になっている。 ところが、より高い特性を持つデバイスや、より複雑
なプロセスの必要なデバイスを作製するためには、従来
のMBE装置、成長方法では対応できなくなってきている
のが実情である。 最近、浅川らが発表しているように、ECRイオン源を
用いると、高真空下でのエッチングが可能になってきた
(応用物理、第54巻 第11号,1985)。 この方法を利用すると、エッチング装置とMBE装置と
を組合せて高真空下での結晶表面のエッチングと成長と
を行うことができる。 従って、例えば成長途中の結晶表面を一度、大気中に
さらし、表面に不純物が付いた状態で再成長してエッチ
ングによって除去できるので、良好な界面が得られる。 〔発明が解決しようとする問題点〕 しかしながら、高真空中でIII−V族化合物半導体を
エッチングした場合、V族元素が表面から脱離するとい
う問題がおきる。特にエッチング時に基板温度を200℃
以上に設定している場合は顕著である。 従って、エッチングによって表面の不純物は除去でき
てもV族抜けによる新たな欠陥が発生し、界面の電気的
特性等を劣化させる原因となっている。 本発明の目的はこれら問題点を解消し、良好な再結晶
界面を得る方法とその装置を提供することにある。 〔問題点を解決するための手段〕 本発明の分子線エピタキシャル成長方法は、III−V
族化合物半導体の分子線エピタキシャル成長方法におい
て、反応性ガスとV族元素を含む水素化物ガスとを混合
したガスをイオン化して高真空下で基板表面をエッチン
グする工程と、III−V族化合物半導体をエピタキシャ
ル成長する工程とを少なくともそれぞれ1回含むことを
特徴とする。 また本発明のIII−V族化合物半導体の分子線エピタ
キシャル成長装置は、真空容器に、導入ガスをイオン化
する装置と、反応性ガスを供給するラインと、V族元素
を含む水素化物ガスを供給するラインとを備えたことを
特徴とする。 〔作用〕 本発明ではMBE成長室内あるいは成長室と同一の超高
真空が維持できる連結された容器内に反応性ガスとV族
を含む化合物ガスを導入してイオン化し、V族雰囲気中
でエッチングを行い、再成長を開始することにより高真
空中でエッチングしてもV族抜けがおこらず、良好な再
成長界面が得られる。 〔実施例〕 以下に本発明の実施例を図によって説明する。 第1図は本発明の実施例に用いた装置の概略図であ
る。本発明装置は超高真空対応の成長室1と、該成長室
1内に設置した排気装置2と加熱機構を有する基板ホル
ダー3と、ヌードイオンゲージ4と、成長室1内に臨ま
せたIII族元素原料セル5,V族元素原料セル6,ドーパント
原料セル7および反応性ガスを導入するマスフローコン
トローラ8とV族化合物ガスを導入するマスフローコン
トローラ9と、導入ガスをイオン化するECRイオン源10
とによって構成されている。 本実施例では、III族元素としてGa,V族元素としてAs,
n型ドーパントとしてSiを用い、第3図に示すガリウム
砒素電界効果トランジスタの製作を試みた。 成長室1内で、まず活性層形成のため、半絶縁性ガリ
ウム砒素基板上13に基板温度600℃でわずかにSiをドー
ピングして、キャリア濃度2×1014cm-3程度のn型高純
度層14を1μm成長させた。 これを成長室1から一旦取出し、その上にWSiからな
る耐熱性ゲート電極15とSiO2の側壁16を形成し、再び成
長室1に戻し、厚さ1000Å、キャリア濃度5×1018cm-3
のSiドープn型高濃度ガリウム砒素層17を成長させた。 本実施例においては、n型高濃度層を成長させる前に
1cc/minのCl2ガスと1cc/minのAsH3をECRイオン源10に通
し、これをイオン化して結晶表面のドライエッチングを
5分間行っている。 深さ方向のキャリア濃度をC−V法により測定した結
果を第4図に示す。 第4図に明らかなように、本成長法によると、n型高
濃度層と高純度層との界面には、なんらキャリア濃度の
変化は見られないが、V族ガスを供給しない従来方法に
よると、界面にキャリア濃度の低い部分ができており、
これが抵抗を高くする原因となっている。 なお、以上実施例に用いた装置は、成長室1にECRイ
オン源10を取付けた構造であるが、あるいは第2図に示
すようにエッチング室11と成長室1とに容器を分離し、
どちらも高真空に引き、その間にゲートバルブ12を取付
けた構造を用い、エッチングと成長とを別個の室で行っ
てもよい。 反応性ガスをイオン化する装置としては、本実施例で
用いたECRイオン源だけでなくイオン銃のようなもので
もよく、反応性ガスも塩素(Cl2)だけでなく、塩酸(H
Cl)、塩化炭素(CCl4)でもよく、V族化合物ガスもア
ルシン(AsH3)だけでなく、ホスフィン(PH3)、トリ
エチル砒素(As(C2H5)等も、要旨を逸脱しない範
囲で使用可能である。 また、エッチングおよび成長するIII−V族化合物半
導体は、GaAsだけでなく、InGaAs,AlGaAsなど混晶やInP
のような他のIII−V族化合物でも同様な結果が得られ
るのはいうまでもない。 〔発明の効果〕 以上述べたように本発明によれば高真空中でエッチン
グし、再成長させて良好な再成長界面が得られ、ひいて
はデバイス特性を向上できる効果を有する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for molecular beam epitaxial growth of III-V compound semiconductors. 2. Description of the Related Art In recent years, the development of high-speed devices, optical devices, and opto-electronic integrated circuits (OEICs) using III-V compound semiconductors has been rapidly developed, and the device manufacturing process has been complicated accordingly. The molecular beam epitaxial growth method (MBE method) is an important growth technique for the above-described device fabrication because the film thickness can be controlled with high accuracy and a high-quality thin film of a III-V compound semiconductor can be obtained. . A conventional molecular beam epitaxial growth apparatus provides a molecular beam source for each element constituting a thin film in an ultra-high vacuum vessel of about 10 -10 Torr, and controls the temperature of the molecular beam source to obtain an appropriate beam intensity. The structure is such that molecular beams are obtained, and these are adhered and deposited on a substrate heated to a predetermined temperature to grow a thin film having a desired composition. However, in order to fabricate a device having higher characteristics or a device that requires a more complicated process, the actual situation is that the conventional MBE apparatus and the growth method cannot respond. As recently announced by Asakawa et al., The use of an ECR ion source has enabled etching under high vacuum (Applied Physics, Vol. 54, No. 11, 1985). When this method is used, etching and growth of a crystal surface under high vacuum can be performed by combining an etching apparatus and an MBE apparatus. Therefore, for example, the crystal surface in the course of growth is once exposed to the air, and can be removed again by etching after re-growth with the surface having impurities, thereby obtaining a good interface. [Problems to be Solved by the Invention] However, when a group III-V compound semiconductor is etched in a high vacuum, there is a problem that a group V element is eliminated from the surface. Especially when etching, substrate temperature is 200 ℃
This is remarkable when the above is set. Therefore, even if the impurities on the surface can be removed by etching, a new defect due to the loss of Group V occurs, causing deterioration of the electrical characteristics of the interface. An object of the present invention is to solve these problems and to provide a method and an apparatus for obtaining a good recrystallization interface. [Means for Solving the Problems] The molecular beam epitaxial growth method according to the present invention comprises a III-V
In the method of molecular beam epitaxial growth of a group III compound semiconductor, a step of ionizing a gas obtained by mixing a reactive gas and a hydride gas containing a group V element and etching the substrate surface under a high vacuum; And epitaxially growing step at least once each. Further, the apparatus for molecular beam epitaxial growth of a group III-V compound semiconductor of the present invention comprises a device for ionizing an introduced gas, a line for supplying a reactive gas, and a line for supplying a hydride gas containing a group V element to a vacuum vessel. And characterized in that: [Action] In the present invention, a reactive gas and a compound gas containing group V are introduced into a MBE growth chamber or a connected vessel capable of maintaining the same ultra-high vacuum as the growth chamber to ionize and etch in a group V atmosphere. By performing re-growth and starting the re-growth, even if etching is performed in a high vacuum, the V-group does not escape and a good re-growth interface can be obtained. Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of an apparatus used in an embodiment of the present invention. The apparatus of the present invention includes a growth chamber 1 compatible with an ultra-high vacuum, an exhaust device 2 installed in the growth chamber 1, a substrate holder 3 having a heating mechanism, a nude ion gauge 4, and a III facing the growth chamber 1. Group element source cell 5, Group V element source cell 6, dopant source cell 7, mass flow controller 8 for introducing reactive gas, mass flow controller 9 for introducing group V compound gas, and ECR ion source 10 for ionizing the introduced gas
And is constituted by. In this embodiment, Ga as a group III element, As as a group V element,
An attempt was made to fabricate a gallium arsenide field effect transistor shown in FIG. 3 using Si as an n-type dopant. In the growth chamber 1, n-type high-purity with a carrier concentration of about 2 × 10 14 cm -3 is formed by doping Si on a semi-insulating gallium arsenide substrate 13 at a substrate temperature of 600 ° C. to form an active layer. Layer 14 was grown 1 μm. This once taken out from the growth chamber 1, the upper heat-resistant gate electrode 15 and the SiO 2 sidewalls 16 made of WSi is formed on the back again to the growth chamber 1, a thickness of 1000 Å, a carrier concentration of 5 × 10 18 cm -3
The Si-doped n-type high concentration gallium arsenide layer 17 was grown. In this embodiment, before growing the n-type high concentration layer,
1 cc / min of Cl 2 gas and 1 cc / min of AsH 3 are passed through the ECR ion source 10 and ionized to dry-etch the crystal surface for 5 minutes. FIG. 4 shows the result of measuring the carrier concentration in the depth direction by the CV method. As is apparent from FIG. 4, according to the present growth method, no change in the carrier concentration is observed at the interface between the n-type high-concentration layer and the high-purity layer, but the conventional method without supplying the group V gas is used. And a portion with a low carrier concentration is formed at the interface,
This causes the resistance to be high. The apparatus used in the above embodiment has a structure in which the ECR ion source 10 is attached to the growth chamber 1, or the vessel is separated into the etching chamber 11 and the growth chamber 1 as shown in FIG.
In both cases, the etching and the growth may be performed in separate chambers by using a structure in which a high vacuum is applied and the gate valve 12 is attached between them. As a device for ionizing the reactive gas, not only the ECR ion source used in the present embodiment but also an ion gun may be used. The reactive gas is not only chlorine (Cl 2 ) but also hydrochloric acid (H
Cl), carbon chloride (CCl 4 ), and group V compound gas not only arsine (AsH 3 ) but also phosphine (PH 3 ), triethyl arsenic (As (C 2 H 5 ) 3 ), etc. It can be used to the extent that it does not. In addition, the group III-V compound semiconductors to be etched and grown are not only GaAs, but also mixed crystals such as InGaAs, AlGaAs, and InP.
It goes without saying that similar results can be obtained with other group III-V compounds such as [Effects of the Invention] As described above, according to the present invention, a good regrowth interface can be obtained by etching and regrowth in a high vacuum, and the device characteristics can be improved.

【図面の簡単な説明】 第1図は本発明装置の一実施例の概略図、第2図は他の
実施例の概略図、第3図は本発明の一実施例で作製され
たガリウム砒素電界効果トランジスタの断面図、第4図
はGaAs成長層のキャリア濃度の表面から基板方向への深
さ分布を示す図である。 1……成長室、2……排気装置 3……基板ホルダー、4……ヌードイオンゲージ 5……III族元素原料セル、6……V族元素原料セル 7……ドーパント原料セル 8……反応ガス用マスフローコントローラ 9……V族ガス用マスフローコントローラ 10……ECRイオン源、11……エッチング室 12……ゲートバルブ 13……半絶縁性ガリウム砒素基板 14……n型高純度ガリウム砒素層 15……耐熱性ゲート電極、16……SiO2側壁 17……Siドープ高濃度n型GaAs層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of one embodiment of the apparatus of the present invention, FIG. 2 is a schematic view of another embodiment, and FIG. 3 is gallium arsenide manufactured in one embodiment of the present invention. FIG. 4 is a cross-sectional view of a field-effect transistor, and FIG. 4 is a diagram showing a depth distribution of the carrier concentration of the GaAs growth layer from the surface toward the substrate. REFERENCE SIGNS LIST 1 Growth chamber 2 Exhaust device 3 Substrate holder 4 Nude ion gauge 5 Group III element source cell 6 Group V element source cell 7 Dopant source cell 8 Reaction Gas mass flow controller 9 ... Group V gas mass flow controller 10 ... ECR ion source 11, Etching chamber 12 ... Gate valve 13 ... Semi-insulating gallium arsenide substrate 14 ... N-type high purity gallium arsenide layer 15 ...... refractory gate electrode, 16 ...... SiO 2 sidewalls 17 ...... Si-doped high-concentration n-type GaAs layer

Claims (1)

(57)【特許請求の範囲】 1.III−V族化合物半導体の分子線エピタキシャル成
長方法において、反応性ガスとV族元素を含む水素化物
ガスとを混合したガスをイオン化して高真空下で基板表
面をエッチングする工程と、III−V族化合物半導体を
エピタキシャル成長する工程とを少なくともそれぞれ1
回含むことを特徴とする分子線エピタキシャル成長方
法。 2.真空容器に、導入ガスをイオン化する装置と、反応
性ガスを供給するラインと、V族元素を含む水素化物ガ
スを供給するラインとを備えたことを特徴とするIII−
V族化合物半導体の分子線エピタキシャル成長装置。
(57) [Claims] In a method of molecular beam epitaxial growth of a group III-V compound semiconductor, a step of ionizing a gas obtained by mixing a reactive gas and a hydride gas containing a group V element to etch a substrate surface under a high vacuum; Performing the step of epitaxially growing the compound semiconductor at least one each.
A molecular beam epitaxial growth method characterized by comprising: 2. The vacuum vessel is provided with a device for ionizing an introduced gas, a line for supplying a reactive gas, and a line for supplying a hydride gas containing a group V element III-.
A molecular beam epitaxial growth apparatus for a group V compound semiconductor.
JP62082364A 1987-04-02 1987-04-02 Molecular beam epitaxy growth method and growth apparatus Expired - Lifetime JP2735190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082364A JP2735190B2 (en) 1987-04-02 1987-04-02 Molecular beam epitaxy growth method and growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082364A JP2735190B2 (en) 1987-04-02 1987-04-02 Molecular beam epitaxy growth method and growth apparatus

Publications (2)

Publication Number Publication Date
JPS63248796A JPS63248796A (en) 1988-10-17
JP2735190B2 true JP2735190B2 (en) 1998-04-02

Family

ID=13772527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082364A Expired - Lifetime JP2735190B2 (en) 1987-04-02 1987-04-02 Molecular beam epitaxy growth method and growth apparatus

Country Status (1)

Country Link
JP (1) JP2735190B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714824B2 (en) * 1988-08-10 1998-02-16 富士通株式会社 Molecular beam epitaxial growth method and apparatus for implementing the method
US5400740A (en) * 1992-02-06 1995-03-28 Mitsubishi Chemical Corporation Method of preparing compound semiconductor
JPH0897147A (en) * 1994-09-29 1996-04-12 Mitsubishi Electric Corp Epitaxial crystal growth device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101490A (en) * 1984-10-24 1986-05-20 Sumitomo Electric Ind Ltd Method and apparatus for molecular beam crystal growth

Also Published As

Publication number Publication date
JPS63248796A (en) 1988-10-17

Similar Documents

Publication Publication Date Title
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
JP3093904B2 (en) Method for growing compound semiconductor crystal
JPH06232100A (en) Surface impurity removal of iii-v group semiconductor element
JPH08293505A (en) Compound semiconductor device and its manufacture
JPH06296060A (en) Manufacture of visible light semiconductor laser diode
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US5346581A (en) Method of making a compound semiconductor device
US5400740A (en) Method of preparing compound semiconductor
JP3326704B2 (en) Method of manufacturing III / V compound semiconductor device
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JPH05175150A (en) Compound semiconductor and its manufacture
JP3194327B2 (en) Metalorganic vapor phase epitaxy
KR100601772B1 (en) Method for manufacturing compound semiconductor
JPH0684805A (en) Compound semiconductor crystalline growth method
JP2946280B2 (en) Semiconductor crystal growth method
US5183778A (en) Method of producing a semiconductor device
JP2790013B2 (en) Method for epitaxial growth of III-V compound semiconductor
JP2897107B2 (en) Crystal growth method
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JP2576524B2 (en) Vapor growth method
JP3047523B2 (en) Selective epitaxial growth method
JPH0536895A (en) Manufacture of semiconductor device
JP3316828B2 (en) Semiconductor thin film regrowth method
JPH03245585A (en) Manufacture of semiconductor laser