JPH01113914A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01113914A
JPH01113914A JP27009887A JP27009887A JPH01113914A JP H01113914 A JPH01113914 A JP H01113914A JP 27009887 A JP27009887 A JP 27009887A JP 27009887 A JP27009887 A JP 27009887A JP H01113914 A JPH01113914 A JP H01113914A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
protective film
amorphous carbon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27009887A
Other languages
Japanese (ja)
Inventor
Yoshinori Honda
好範 本田
Makoto Kito
鬼頭 諒
Yuichi Kokado
雄一 小角
Makiko Ito
伊藤 真貴子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27009887A priority Critical patent/JPH01113914A/en
Publication of JPH01113914A publication Critical patent/JPH01113914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the resistance to sliding with a head and corrosion resistance and to obtain a magnetic recording medium having high durability and reliability by providing a protective film consisting of amorphous carbon to the recording medium. CONSTITUTION:This magnetic disk is formed by providing an underlying layer 2, a magnetic recording layer 3 and the protective film 4 on a substrate 1. The amorphous carbon film having a high density, high hardness and poor wettability with water, i.e., low energy surface is formed as the protective film 4 of the magnetic layer by using a bias plasma CVD method as a technique for forming the protective film 4 to be provided to the magnetic recording medium. The magnetic recording medium which is provided with the protective film capable of improving the sliding resistance and the durability and has the excellent durability and a reliability is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置または磁気ドラム装置などに
用いられる磁気記録媒体に係り、特にアモルファスカー
ボン保護膜を有する耐摺動性ならびに耐食性に優れた信
頼性の高い磁気記録媒体に関する◇ 〔従来の技術〕 一般に、記録再生用磁気ヘッド(以下ヘッドと呼ぶ)と
磁気記録媒体で構成される磁気記録装置の記録再生方法
において、記録再生の開始前に、ヘッド七磁気記録媒体
面とを接触状態でセットした後、磁気記録媒体を回転し
て、ヘッドと磁気記録媒体面との間に薄い空気層のギャ
ップを作り、この状態で記録再生する、いわゆるコンタ
クト・スタート・ストップ方式(以下C8Sと呼ぶ)が
採用されている。このC8Sでは、磁気記録媒体の回転
開始時および回転停止時には、ヘッドと磁気記録媒体面
は接触し、摩擦状態となる。この、接触摩擦状態におけ
るヘッドと磁気記録媒体との間に生ずる接触摩擦力は、
ヘッドおよび磁気記録媒体を摩耗させ、ついにはヘッド
および磁性媒体に傷が発生し、いわゆるヘッドクラッシ
ュが生じる。才た、上記の接触摩擦状態においてヘッド
のわずかな姿勢の変化がヘッドにかかる荷重を不均一に
させ、ヘッドおよび磁気記録媒体の表面に傷をつける場
合もある。また、磁気記録媒体の磁気記録層(磁性層)
が金属である場合(例えばCo−Ni系磁性層など)は
、高湿度下に2いて水分の付着および侵入°によって電
池作用が生じ腐食が発生する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium used in a magnetic disk device or a magnetic drum device, and in particular, a magnetic recording medium that has an amorphous carbon protective film and has excellent sliding resistance and corrosion resistance. Regarding highly reliable magnetic recording media ◇ [Prior art] In general, in the recording and reproducing method of a magnetic recording device consisting of a magnetic head for recording and reproducing (hereinafter referred to as a head) and a magnetic recording medium, before the start of recording and reproducing. After the head is set in contact with the magnetic recording medium surface, the magnetic recording medium is rotated to create a thin air gap between the head and the magnetic recording medium surface, and recording and reproduction is performed in this state. A contact start-stop system (hereinafter referred to as C8S) is adopted. In this C8S, when the magnetic recording medium starts rotating and stops rotating, the head and the magnetic recording medium surface come into contact, creating a frictional state. The contact friction force generated between the head and the magnetic recording medium in this contact friction state is:
This wears out the head and the magnetic recording medium, and eventually causes scratches on the head and the magnetic medium, resulting in a so-called head crash. In the above-mentioned contact friction state, a slight change in the posture of the head causes the load applied to the head to become uneven, which may cause damage to the surface of the head and the magnetic recording medium. Also, the magnetic recording layer (magnetic layer) of a magnetic recording medium
If it is made of metal (for example, a Co--Ni magnetic layer), if it is exposed to high humidity, the adhesion and intrusion of moisture will cause a battery effect and cause corrosion.

これらの厚粍および腐食を防ぐために、種々の保護膜を
磁性層上に設ける方法が提案されている。
In order to prevent these thickening and corrosion, methods of providing various protective films on the magnetic layer have been proposed.

例えば、グラファイトをターゲットとしてArガス。For example, Ar gas using graphite as a target.

ArガスにH21N2t 02e CH4、CI(sO
Hなどを添加した雰囲気中でスパッタリングを行いカー
ボン保護膜を形成させる方法、S OG (5i(OH
)z+メタノール溶媒)をスビンコートシ、焼き付けて
5in2楔とし、その上にパーフルオロアルキルエーテ
ルなどの潤滑油を塗布する方法などが検討されているが
、いずれも十分な耐摺動性ならびに耐食性を得るまでに
は至らなかった。
H21N2t 02e CH4, CI(sO
SOG (5i(OH
) Z + methanol solvent) is coated with a 5in2 wedge and baked to form a 5in2 wedge, and a method of applying lubricating oil such as perfluoroalkyl ether on top of it is being considered, but in either case, it will not work until sufficient sliding and corrosion resistance is achieved. It didn't reach that point.

また、炭化水素ガスを用いてプラズマCVD法によって
、磁性層上に炭素質の膜を形成させて保り膜としている
場合もあるoしかし、プラズマCVD法によって得られ
た炭素質の保護膜は、たとえRB’プラズマを用いたと
しても基板側に電圧がかからないため、有機質の農にな
り易く、通常のプラズマ重合膜に近い組成のものとなり
、良質の炭素質の保a膜を形成させることができなかっ
た。な右、この種の保護膜に関連する公知文献として、
例えは時開11861−50671号公報9%開昭60
−157726号公報などが挙げられる。
In some cases, a carbonaceous film is formed on the magnetic layer by the plasma CVD method using hydrocarbon gas to serve as a protective film.However, the carbonaceous protective film obtained by the plasma CVD method is Even if RB' plasma is used, since no voltage is applied to the substrate side, it is easy to form an organic material, and the composition is close to that of a normal plasma polymerized film, making it possible to form a high-quality carbonaceous a-retaining film. There wasn't. On the right, known documents related to this type of protective film include:
For example, Jikai Publication No. 11861-50671 9% Kaisho 60
-157726, etc.

〔発明が暦法しようとする問題点〕[Problems that the invention attempts to solve with the calendar system]

上述したごとく、従来技術における強磁性金属薄膜を磁
性層とする磁気記録媒体において、ヘッドとの耐摺動性
ならびに耐食性が悪く、ヘッドクラッシュなどによる磁
気記録媒体の損傷あるいは高湿度環境下における腐食作
用による磁気特性の劣化などが生じ易く、磁気記録媒体
としての耐久性ならびに信頼性に欠けるという欠点があ
った。
As mentioned above, conventional magnetic recording media in which the magnetic layer is a ferromagnetic metal thin film have poor sliding resistance with the head and poor corrosion resistance, resulting in damage to the magnetic recording media due to head crashes or corrosion in high-humidity environments. This has the disadvantage that magnetic properties tend to deteriorate due to oxidation, resulting in a lack of durability and reliability as a magnetic recording medium.

本発明の目的は、上記従来技術の欠点を解消し、強磁性
金属薄膜を磁性層とする磁気記録媒体において、従来技
術において考慮されていなかった保護膜の密度、硬さお
よび水に対する濡れ性(表面エネルギ)8指標として、
耐摺動性と耐食性七を大幅に向上させるこ七のできる保
護膜を設けた耐久性および信頼性に優れた磁気記録媒体
を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a magnetic recording medium having a ferromagnetic metal thin film as a magnetic layer, with the density, hardness, and water wettability of the protective film, which were not considered in the prior art. surface energy) as 8 indicators,
The object of the present invention is to provide a magnetic recording medium with excellent durability and reliability, which is provided with a protective film that greatly improves sliding resistance and corrosion resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的は、磁気記録媒体に設ける保MMの成
膜十法七してバイアスプラズマCVD法を用いることに
より、密度が高く、硬さが大きく、かつ水の濡れ性の悪
い、つまり低エネルギ表面を持つ、アモルファスカーボ
ン膜を磁性層の保護膜として形成させることにより、達
成される。
The purpose of the present invention is to provide a film with high density, high hardness, and poor water wettability, that is, low This is achieved by forming an amorphous carbon film with an energetic surface as a protective film for the magnetic layer.

な詔、ここで述べるバイアスプラズマCVD法とは高周
波電圧、低周波電圧または交流電圧を基板に印加するこ
とによって基板側に自己バイアスを生じさせるものであ
り、この自己バイアスによって従来技術によるプラズマ
CVD法によって成膜した炭素質の保護膜よりも密度が
高く、硬さが大きく、かつ水の濡れ性の悪いアモルファ
スカーボン保護膜を得るこ七ができ、磁気記録媒体の耐
摺動性ならびに耐食性を一段と向上させることができる
The bias plasma CVD method described here is a method in which a self-bias is generated on the substrate side by applying a high-frequency voltage, a low-frequency voltage, or an alternating current voltage to the substrate. This makes it possible to obtain an amorphous carbon protective film that has a higher density, greater hardness, and poor water wettability than the carbonaceous protective film formed by the method, and further improves the abrasion resistance and corrosion resistance of magnetic recording media. can be improved.

〔作用〕[Effect]

本発明の磁気記録媒体に設けるアモルファスカーボン保
護膜の指標として、その密就、硬さおよび累に対する濡
れ性(表面エネルギ)は、それぞれ次のように作用する
ものと考えられる。
As indicators of the amorphous carbon protective film provided in the magnetic recording medium of the present invention, its density, hardness, and wettability (surface energy) are considered to function as follows.

保!!!膜の密度はアモルファスカーボン膜の緻密度を
示しており、酸化性のガス(例えばOx e H2Oな
ど)の透過性を左右するものであり、保護膜の密度が大
きい程酸化性のガスの透過を防止し耐食性を向上させる
ことになる。保護膜の硬さは、ヘッドのC8S時に接触
*謙が生じるため、保護膜の硬さか大きいa摩耗し難く
耐摩耗性向上の指標となる。さらに、水の濡れ性(表面
エネルギ)は高湿度環境下における水分の侵入の目安と
なり、撥水性となる程、耐食性が向上することlこなる
Safe! ! ! The density of the film indicates the density of the amorphous carbon film, and it affects the permeability of oxidizing gases (for example, Oxe H2O, etc.), and the higher the density of the protective film, the better the permeation of oxidizing gases. This will prevent corrosion and improve corrosion resistance. The hardness of the protective film is determined by the hardness of the protective film, since contact occurs during C8S of the head. Furthermore, water wettability (surface energy) is a measure of moisture intrusion in a high humidity environment, and the more water repellent the material, the better the corrosion resistance.

また、アモルファスカーボン保護膜の形成手法として、
バイアスプラズマCVD法を採用することにより、従来
のプラズマCVD法に比べ、成膜された保護膜は高密度
、高硬度、低表面エネ□ルギを確保することができる。
In addition, as a method for forming an amorphous carbon protective film,
By employing the bias plasma CVD method, the formed protective film can have higher density, higher hardness, and lower surface energy than the conventional plasma CVD method.

つまり、例えば炭化水素ガスを導入し、プラズマを発生
させた場合、通常のプラズマCVD法では、プラズマ重
合と同様の過程で炭化水素の分解・再結合、堆積により
成膜される。この場合、たとえ高周波(RF)を用いて
も数十ボルト程度のバイアス電圧が基板に印加される程
度であり、バイアスプラズマCVD法のごとく、電圧が
印加される電極側に基板がある場合のように数百〜数千
ボルトの電圧が基板に印加されないため、炭化水素が分
解しイオン化して基板に衝突するエネルギが極めて小さ
い。このため、通常のプラズマCVD法では、炭化水素
をプラズマ中で分解・再結合させることで有機質的な炭
素膜しか得られない。これに対し、バイアスプラズマC
VD法では、電圧が印加される電極側に基板があるので
、基板にプラズマ発生時の電圧が印加され、イオン化さ
れた炭化水素はプラズマ発生時の電圧により加速され、
基板Iこ衝突し堆積される。さらに、基板表面に堆積し
た膜は、随時、加速され衝突するイオンによりたたかれ
、これにより脱水素反応が生じ、緻密な炭素膜が形成さ
れる。このため、上述した保護膜の密度、硬さ、水の濡
れ性が改善され、耐摩耗性、耐食性に優れたアモルファ
スカーボン膜を形成させることができる。本発明のアモ
ルファスカーボン保護膜は、密度が2.0g/cd以上
、硬度(Hv)が2000以上、水に対する濡れ性(接
触角)が′90°以上となり、磁気記録媒体の耐摺動性
、耐食性を大幅に向上させることができる。
That is, for example, when hydrocarbon gas is introduced and plasma is generated, in the normal plasma CVD method, a film is formed by decomposing, recombining, and depositing hydrocarbons in a process similar to plasma polymerization. In this case, even if radio frequency (RF) is used, a bias voltage of about several tens of volts is applied to the substrate, and this is similar to when the substrate is on the electrode side to which the voltage is applied, as in bias plasma CVD method. Since no voltage of several hundred to several thousand volts is applied to the substrate, the energy required for hydrocarbons to decompose, ionize, and collide with the substrate is extremely small. Therefore, in the normal plasma CVD method, only an organic carbon film can be obtained by decomposing and recombining hydrocarbons in plasma. On the other hand, bias plasma C
In the VD method, since the substrate is on the electrode side to which voltage is applied, the voltage at the time of plasma generation is applied to the substrate, and the ionized hydrocarbons are accelerated by the voltage at the time of plasma generation.
The substrate I collides with it and is deposited. Furthermore, the film deposited on the substrate surface is bombarded by accelerated and colliding ions from time to time, which causes a dehydrogenation reaction and forms a dense carbon film. Therefore, the density, hardness, and water wettability of the above-mentioned protective film are improved, and an amorphous carbon film with excellent wear resistance and corrosion resistance can be formed. The amorphous carbon protective film of the present invention has a density of 2.0 g/cd or more, a hardness (Hv) of 2000 or more, a water wettability (contact angle) of 90° or more, and has excellent sliding resistance for magnetic recording media. Corrosion resistance can be significantly improved.

な右、本発明のバイアスプラズマCVD法において、保
護膜の成膜時に印加する低周波とは16〜250kHz
、高周波とは250 kHz以上、交流の場合は50〜
15kllzの範囲の周波数を有する電源を云う。
On the right, in the bias plasma CVD method of the present invention, the low frequency applied when forming the protective film is 16 to 250 kHz.
, high frequency is 250 kHz or more, and for alternating current 50~
Refers to a power supply having a frequency in the range of 15kllz.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面を参照しながらさ
らに詳細に説明する。第1図は本実施例において作製し
た磁気ディスクの断面構造を示す模式図である。図に忽
いて基板1上に下地層2゜磁気記録層3.および保護膜
4を設けた磁気ディスクである。
An embodiment of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing the cross-sectional structure of the magnetic disk manufactured in this example. As shown in the figure, a base layer 2, a magnetic recording layer 3. and a magnetic disk provided with a protective film 4.

基板1は、アルミニウム合金または陽極酸化したアルマ
イトあるいはN1−P合金めつき膜を設けたもの、また
はガラス板などを基体上して構成されている0下地層2
は、Cr* Rfkl、 W 、 Ti * Stなど
の金属または合金の薄膜からなり、この下地層2の上に
磁気記録層3として、Co −Ni 、 Co −Ni
 −P*Co−Cr、 Co−Pte Co −Ni−
CrなどのCo系合金膜をスパッタリング法により成膜
し、さらに磁気記録層3上に、炭化水素ガスを含む雰囲
気中で、RFバイアスプラズマCVD法、低周波バイア
スプラズマCVD法によって形成されたアモルファスカ
ーボン保護膜を被覆している。
The substrate 1 includes an aluminum alloy, anodized alumite, an N1-P alloy plated film, or a base layer 2 formed by placing a glass plate or the like on the substrate.
is made of a thin film of metal or alloy such as Cr*Rfkl, W, Ti*St, etc., and a magnetic recording layer 3 of Co-Ni, Co-Ni, etc. is formed on this underlayer 2.
-P*Co-Cr, Co-Pte Co -Ni-
A Co-based alloy film such as Cr is formed by a sputtering method, and amorphous carbon is further formed on the magnetic recording layer 3 by an RF bias plasma CVD method or a low frequency bias plasma CVD method in an atmosphere containing hydrocarbon gas. Covered with a protective film.

−第2図は本実施例において用いたアモルファスカーボ
ン保護膜の形成装置の構造を示す模式図である。そして
、アモルファスカーボン保護膜を形成させる手順として
、まず磁気記録層3を形成させた磁気ディスク基板7を
、電力を印加する電極5に取り付け、対抗電極6に対し
平行に配置して、真空槽9内% I X 10−’To
rr以下に排気した後、ガス導入口8より、炭化水素ガ
スを含むガスを導入し、真空槽9内を所定の圧力に設定
する。この後、電極5にRF、低周波または交流の電源
11により電力を印加して放電を生じせしめ、磁気ディ
スク基板7上にアモルファスカーボン保護膜を形成させ
る。
- FIG. 2 is a schematic diagram showing the structure of the amorphous carbon protective film forming apparatus used in this example. As a procedure for forming an amorphous carbon protective film, first, the magnetic disk substrate 7 on which the magnetic recording layer 3 has been formed is attached to the electrode 5 to which electric power is applied, placed parallel to the counter electrode 6, and placed in the vacuum chamber 9. % I X 10-'To
After evacuation to below rr, a gas containing hydrocarbon gas is introduced from the gas inlet 8 to set the inside of the vacuum chamber 9 to a predetermined pressure. Thereafter, electric power is applied to the electrode 5 by an RF, low frequency, or AC power source 11 to cause discharge, and an amorphous carbon protective film is formed on the magnetic disk substrate 7.

本発明のアモルファスカーボン保護膜の形成可能な電源
としては、RF、低周波または交流電源であり、DC電
源では生成されるアモルファスカーボン保護膜が絶縁性
であるためにプラズマ放電が不安定となり易く、場合に
よっては放電が停止するなど保護膜の形成プロセスが不
安定となるので、DCプラズマは不適当である〇 また、本発明のアモルファスカーボン保護膜の形成にお
いて、使用できる炭化水素ガスは、メタン、エタン、プ
ロパン、エチレン、アセチレン。
Power sources that can form the amorphous carbon protective film of the present invention include RF, low frequency, or AC power; with DC power, the amorphous carbon protective film produced is insulative, so plasma discharge tends to become unstable; In some cases, the process of forming the protective film becomes unstable, such as by stopping the discharge, so DC plasma is unsuitable. In addition, in the formation of the amorphous carbon protective film of the present invention, hydrocarbon gases that can be used include methane, Ethane, propane, ethylene, acetylene.

ブタンなどを挙げることができ、その他、液体状の炭化
水素であるベンゼン、トルエン、キシレン。
Examples include butane, and other liquid hydrocarbons such as benzene, toluene, and xylene.

ペンタン、ヘキサン、ヘプタンなどを蒸気化して使用す
るこ七もできる。そして、これらの炭化水素ガスまたは
蒸気にH2,Arなどのガスを混合して使用してもよい
。アモルファスカーボン保護膜の膜厚範囲は、1100
n以下が好ましく、より好ましい範囲は5〜60nmで
ある。さらに、本発明のアモルファスカーボン保1ap
aを形成させる真空槽内のガス圧力範囲は数mTorr
〜ITorr  の範囲が望ましく、特に望ましい範囲
は5〜500mTorrである0 上述した成膜手法に基づき、種々の成膜条件下でアモル
ファスカーボン保護膜を形成させて磁気ディスクを作製
(実施例1〜10)シ、その耐摺動性および耐食性を評
価した。その結果を第1表に示す。なお、ここで、比較
例として、通常のプラズマCVD法により磁気ディスク
基板7を対抗電極6に取付けて成膜した場合(比較例1
)およびグラファイトをターゲットとして通常のスパッ
タリング法でカーボン膜を形成した場合(比較例2)を
示す。そして、磁気ディスクの耐摺動性はヘッドと50
に回C8Sさせた後の傷の発生状況および出力変動の幅
によって評価し、耐食性は80°C92%R)fの環境
下で5力月放置後のエラーの増加数および保護膜の密度
、硬さ、水に対する濡れ(表面エネルギ)8測定し評価
した。また、磁気ディスク基板の構成としては、基体と
してAI −Mg合金。
It is also possible to vaporize and use pentane, hexane, heptane, etc. These hydrocarbon gases or vapors may be mixed with gases such as H2 and Ar. The thickness range of the amorphous carbon protective film is 1100
It is preferably n or less, and the more preferable range is 5 to 60 nm. Furthermore, the amorphous carbon retainer 1ap of the present invention
The gas pressure range in the vacuum chamber that forms a is several mTorr.
~ ITorr is desirable, and a particularly desirable range is 5 to 500 mTorr.0 Based on the film formation method described above, amorphous carbon protective films were formed under various film formation conditions to produce magnetic disks (Examples 1 to 10). ), its sliding resistance and corrosion resistance were evaluated. The results are shown in Table 1. Here, as a comparative example, a film was formed by attaching the magnetic disk substrate 7 to the counter electrode 6 by the usual plasma CVD method (Comparative Example 1).
) and a case (Comparative Example 2) in which a carbon film was formed by a normal sputtering method using graphite as a target. The sliding resistance of the magnetic disk is 50% compared to the head.
Corrosion resistance was evaluated by the occurrence of scratches and the width of output fluctuation after being subjected to C8S for 5 months at 80°C, 92% Wetness (surface energy) against water was measured and evaluated. Moreover, as for the structure of the magnetic disk substrate, an AI-Mg alloy is used as the base material.

下地層として厚さ200nmOJCr層、磁気記録層と
して厚さ60 nmのCo −Ni合金層を設けた。
A 200 nm thick OJCr layer was provided as an underlayer, and a 60 nm thick Co--Ni alloy layer was provided as a magnetic recording layer.

第1表から明らかなごとく、本発明による磁気ディスク
はいずれも耐摺動性および耐食性が共に大幅に向上し、
極めて耐久性に優れた磁気記録媒体が得られることが分
かる。
As is clear from Table 1, the magnetic disks according to the present invention both have significantly improved sliding resistance and corrosion resistance.
It can be seen that a magnetic recording medium with extremely excellent durability can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明のアモルファスカー
ボン保護膜を設けることにより、ヘッドとの耐摺動性な
らびに耐食性を一段と向上させることができ、耐久性な
らびに信頼性の高い磁気記録媒体が得られる。そして、
アモルファスカーボン保護膜の形成速度が、従来のスパ
ッタリング法に比べ約10〜50倍と速く、かつ安定し
た条件で成膜することができ、また成膜用の炭化水素ガ
スのコストがスパッタリング法によるグラファイトター
ゲットに比べて約115以下と安価であるため、価格の
安い信頼性の高い磁気記録媒体を生産性よく提供するこ
とができる。
As explained in detail above, by providing the amorphous carbon protective film of the present invention, the sliding resistance with the head and the corrosion resistance can be further improved, and a magnetic recording medium with high durability and reliability can be obtained. and,
The formation speed of the amorphous carbon protective film is approximately 10 to 50 times faster than that of the conventional sputtering method, and the film can be formed under stable conditions. Since it is less expensive than the target, at about 115 or less, it is possible to provide an inexpensive and highly reliable magnetic recording medium with high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において作製した磁気ディスク
の断面構造を示す模式図、第2図は本発明の実施例にお
いて用いたアそルファスカーボン保護膜の形成装置の構
造を示す模式図である。 符号の説明 1・・・基板      2・・・下地層3・・・磁気
記録層   4・・・保謙膜5・・・電極      
6・・・対抗電極7・・・磁気ディスク基板
FIG. 1 is a schematic diagram showing the cross-sectional structure of a magnetic disk manufactured in an example of the present invention, and FIG. 2 is a schematic diagram showing the structure of an amorphous carbon protective film forming apparatus used in an example of the present invention. be. Explanation of symbols 1... Substrate 2... Base layer 3... Magnetic recording layer 4... Protective film 5... Electrode
6...Counter electrode 7...Magnetic disk substrate

Claims (1)

【特許請求の範囲】 1、非磁性の基板上に、直接もしくは下地層を介して強
磁性金属薄膜からなる磁気記録層を形成させた磁気記録
媒体において、上記磁気記録層の上にアモルファスカー
ボン保護膜を設けたことを特徴とする磁気記録媒体。 2、アモルファスカーボン保護膜は、炭化水素ガスを含
む雰囲気中で、高周波電圧または低周波電圧もしくは交
流電圧を基板に印加し、基板側に自己バイアスを生じさ
せるバイアスプラズマCVD法によつて成膜したもので
あることを特徴とする特許請求の範囲第1項に記載の磁
気記録媒体。 3、基板に印加する高周波電源の周波数は250kHz
以上であり、低周波電源の周波数は16kHz以上、2
50kHz以下であり、交流電源の周波数は50〜15
kHzであることを特徴とする特許請求の範囲第2項に
記載の磁気記録媒体。
[Claims] 1. In a magnetic recording medium in which a magnetic recording layer made of a ferromagnetic metal thin film is formed on a nonmagnetic substrate directly or via an underlayer, an amorphous carbon protection layer is provided on the magnetic recording layer. A magnetic recording medium characterized by being provided with a film. 2. The amorphous carbon protective film was formed by a bias plasma CVD method in which a high frequency voltage, a low frequency voltage, or an alternating current voltage is applied to the substrate in an atmosphere containing hydrocarbon gas to generate a self-bias on the substrate side. The magnetic recording medium according to claim 1, which is a magnetic recording medium. 3. The frequency of the high frequency power supply applied to the board is 250kHz.
Above, the frequency of the low frequency power supply is 16kHz or more, 2
50kHz or less, and the frequency of AC power supply is 50 to 15
The magnetic recording medium according to claim 2, characterized in that the recording frequency is kHz.
JP27009887A 1987-10-28 1987-10-28 Magnetic recording medium Pending JPH01113914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27009887A JPH01113914A (en) 1987-10-28 1987-10-28 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27009887A JPH01113914A (en) 1987-10-28 1987-10-28 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01113914A true JPH01113914A (en) 1989-05-02

Family

ID=17481506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27009887A Pending JPH01113914A (en) 1987-10-28 1987-10-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01113914A (en)

Similar Documents

Publication Publication Date Title
US6855232B2 (en) Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content
US5776602A (en) Magnetic recording medium having a carbon protective film containing nitrogen and oxygen and overcoated with a lubricant
JPS62183023A (en) Magnetic recording medium
JP2549361B2 (en) Magnetic storage media
JPH01113914A (en) Magnetic recording medium
JPS61126627A (en) Magnetic recording medium
JPH0465445B2 (en)
JPH04125841A (en) Protection film of sliding member and its forming method
JPS61117727A (en) Magnetic storage body and its manufacture
KR100244059B1 (en) Magnetic recording medium and method for producing the same
JPS6116028A (en) Magnetic recording medium and its production
JPH071546B2 (en) Method of manufacturing magnetic recording medium
JP3232948B2 (en) Manufacturing method of magnetic recording medium
JP2519962B2 (en) Magnetic recording media
JPS63205813A (en) Magnetic recording medium
JP3183673B2 (en) Magnetic recording media
JPH0869622A (en) Production of magnetic recording medium
JPH0528465A (en) Production of protective film for magnetic disk
JPS61216124A (en) Production of magnetic recording medium
JPH0262888B2 (en)
JPH06195694A (en) Magnetic recording medium and its production
JPH07153064A (en) Magnetic recording medium and its manufacture
JPH11222676A (en) Production of magnetic record medium
JPS6116030A (en) Production of magnetic recording medium
JPH07282445A (en) Production of magnetic recording medium