JPH02290245A - Manufacture of powder material - Google Patents

Manufacture of powder material

Info

Publication number
JPH02290245A
JPH02290245A JP1110334A JP11033489A JPH02290245A JP H02290245 A JPH02290245 A JP H02290245A JP 1110334 A JP1110334 A JP 1110334A JP 11033489 A JP11033489 A JP 11033489A JP H02290245 A JPH02290245 A JP H02290245A
Authority
JP
Japan
Prior art keywords
powder
raw material
plasma
particles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1110334A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamanouchi
山之内 宏
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1110334A priority Critical patent/JPH02290245A/en
Publication of JPH02290245A publication Critical patent/JPH02290245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a powder material of high fluidity by feeding raw material powder into a plasma jet, melting said raw material powder and turning the same into spraying state, cooling said powder in molten and spraying state and turning the same into powder. CONSTITUTION:A plasma jet is generated by a plasma torch 1, to which raw material powder 4 (example: ceramic powder) is fed to turn the powder 4 into the molten and spraying state. Said raw material flow in the molten and spraying state is fed into liquid 9 such as water or oil and cooled to turn into powder. Powder particles thus manufactured are of spherical shape and a powder material of enhanced fluidity can be manufactured easily.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はセラミック粉末や金属粉末などの粉末材科を
得る方法に関し、特に流動性の良い粉末材料を得るため
の方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for obtaining powder materials such as ceramic powders and metal powders, and particularly to a method for obtaining powder materials with good fluidity.

従来の技術 耐熱性や耐摩耗性が特に要求される工業製品の材料とし
てセラミック粉末や金属粉末が使用され、これらの44
 71を成形かつ焼結して製品としていることは周知の
通りである。これらの粉末材料のうちセラミック粉末の
製造方法としては、可溶性の金閥塩溶液に適当な沈澱剤
を加えて金属塩を沈1殿さ♂、さらに溶媒を除去する沈
澱法が一般的であり、また沈澱法においては、沈′R物
の水洗・濾過が困難なこと、沈澱剤が不純物として混入
する場合があることなどの不都合があるために、特別な
場合には溶t!LWS発法が採用されでいる。これは、
金属塩溶液を加熱室に噴霧して急速に乾燥さける噴霧乾
燥法や、金li!塩溶液を低温の有機溶液上に噴霧して
液滴を瞬間的に凍結させ、その凍結物を低温減圧下で袢
華させて脱水後に熱分解づる凍結乾燥法、あるいは噴霧
した金属塩溶液を瞬間的に熱分解させる噴霧熱分解法な
どの方法である。
Conventional technology Ceramic powders and metal powders are used as materials for industrial products that require particularly high heat resistance and wear resistance.
It is well known that 71 is molded and sintered into a product. Among these powder materials, ceramic powder is generally produced by a precipitation method in which a suitable precipitant is added to a soluble metal salt solution to precipitate the metal salt, and then the solvent is removed. In addition, in the precipitation method, there are disadvantages such as difficulty in washing and filtering the precipitate with water, and the possibility that the precipitant may be mixed in as an impurity. The LWS method has been adopted. this is,
The spray drying method, in which a metal salt solution is sprayed into a heating chamber to avoid rapid drying, and gold li! A salt solution is sprayed onto a low-temperature organic solution to instantaneously freeze the droplets, and the frozen material is then dehydrated and then thermally decomposed using a freeze-drying method, or the sprayed metal salt solution is instantaneously frozen. methods such as the spray pyrolysis method that thermally decomposes the material.

また金属粉の製造方法の一例として、溶融さ−さた鉄ま
たは鋼を小孔から流出させ、その流出口に向Cプて高圧
の水もしくはガスを吹き付けて溶湧を粉化する方法が知
られている。
Another known method for producing metal powder is to flow molten iron or steel through a small hole and spray high-pressure water or gas toward the outlet to pulverize the molten metal powder. It is being

発明が解決しようとリる課題 ところで粉末材料を焼結に先立ってプレス成形する場合
、成形品の嵩密度を高めるなどの成形性を向上させるた
めに、粉末l利の流動性が良いことが要求される。粉末
材利の流動性を左右する主要囚は、その粒子の形状であ
って、粒子の形状が球形に近いほど流動性が良好になり
、したがってセラミック粉末の製造方法のうち前)ホし
た噴霧乾燥法は、粉末が球状の凝集体となるので、流動
性の良い粉末祠料を得る貞では優れている。しかしなが
らこの方法で得られる球状の粉末は、飽くまでも凝果休
であるために、粉末の製造から実際の使用までの間に凝
集状態がTI!!壊されることが多く、そのために実際
の使用時には粒子の形状が球状ではなくなり、流動性が
損われることが多分にあった。このような事情は前述し
た噴霧熱分解法でも同様である。また前述したセラミッ
ク粉末の他の¥J造方法で得た粉末番よふるい分けや造
粒などの処理を施すが、これらの処理によって球状の粒
子をjqることは困梵であり、またたとえ球状の粒子の
扮木を{qることができても、それは凝集体どして球状
をなすしのであるため、実際の使用に先立って破壊され
て流動性が損われる問題がある。
Problems to be Solved by the Invention When press-forming a powder material prior to sintering, it is required that the powder has good fluidity in order to improve moldability such as increasing the bulk density of the molded product. be done. The main factor that affects the fluidity of powder materials is the shape of the particles, and the closer the shape of the particles is to a spherical shape, the better the fluidity is. This method is excellent for obtaining a powdered abrasive material with good fluidity because the powder becomes spherical aggregates. However, since the spherical powder obtained by this method is still agglomerated, the agglomerated state is TI! ! They are often broken, and as a result, during actual use, the shape of the particles is no longer spherical, often resulting in loss of fluidity. This situation also applies to the above-mentioned spray pyrolysis method. In addition, the ceramic powder obtained by other J manufacturing methods is subjected to treatments such as sieving and granulation, but it is difficult to remove spherical particles through these treatments, and even if the spherical particles Even if it is possible to shape the particles, since they are aggregates and have a spherical shape, there is a problem that they are destroyed before actual use and fluidity is impaired.

他方、前述した金属粉の製造方法は溶融金属を霧化ざせ
lζ状態で冷7i1J−!jるから、粉末の粒子を球状
にすることができるが、原1Jlどなる金属を予め溶融
し、溶融状態を維持しつつ霧化する必要があるために設
備が大型化し、またエネルギコストが高くなる不都合が
ある。
On the other hand, the above-mentioned method for producing metal powder involves atomizing molten metal in a cold state. However, it is necessary to melt the metal in advance and atomize it while maintaining the molten state, which increases the size of the equipment and increases the energy cost. There is an inconvenience.

この発明は上記の事情を背積としてなされたもので、粒
子を球状と寸ることにより流動性を高めた粉末材料を簡
単に製造することのできる方法を提供することを目的と
するものである。
This invention was made in view of the above-mentioned circumstances, and aims to provide a method for easily producing a powder material with improved fluidity by sizing the particles into spherical shapes. .

課題を解決するための手段 この発明の方沫は、上記の目的を達成J一るために、プ
ラズマジェット中に原料粉末を供給してその原料粉末を
溶融かつ霧化状態とするとともに、その溶融かつ霧化状
態の原料流を冷却して粉末とすることを特徴とする方法
である。
Means for Solving the Problems In order to achieve the above-mentioned object, the method of the present invention is to supply raw material powder into a plasma jet to melt and atomize the raw material powder, and to melt and atomize the raw material powder. This method is characterized in that the raw material stream in an atomized state is cooled to form a powder.

ここで、プラズマジェットは直流アーク中にガスを流す
ことにより得ることができ、あるいはガスに高周波の電
磁場をかけることにより冑ることができる。またプラズ
マガスとしてはArやHeなどの不活性なガスが好まし
く、またH2やN2等も使用することができる。さらに
プラズマジェッ1−の温度は対象とする粉末の種類によ
って決めれば良く、例えばセラミック粉末を対象とづる
場合には3000″C以上とする。そして溶融かつ霧化
した原料の冷入1jは、例えば水や油等の液体中に原科
流を直接送り込み、あるいは液体を入れたヂャンバー内
でその液体に向けて原料流を噴射づることによって行な
うことができる。
Here, the plasma jet can be obtained by flowing a gas through a DC arc, or can be cooled by applying a high-frequency electromagnetic field to the gas. Further, as the plasma gas, an inert gas such as Ar or He is preferable, and H2, N2, etc. can also be used. Furthermore, the temperature of the plasma jet 1- may be determined depending on the type of target powder, for example, in the case of ceramic powder, it is set to 3000''C or higher. This can be done by directly feeding the raw material stream into a liquid such as water or oil, or by injecting the raw material stream towards the liquid within a chamber containing the liquid.

作     用 この発明の方法では、プラズマジェッ1〜中に供給され
た原料粉末は加熱されて溶融し、その状態で噴射される
I;めに液滴となって球状を呈することになり、さらに
その状態で冷ム1jされて固化するために、球状の粉末
材料が1qられる。
Function: In the method of the present invention, the raw material powder supplied into the plasma jet 1 is heated and melted, and when it is injected in that state, it becomes a droplet and takes on a spherical shape. The spherical powder material 1q is cooled to solidify by cold combing.

実  施  例 この発明を実施ηるための装冒の概略について先ず述べ
ると、この発明の方法は原料粉末をプラズマによって溶
融・霧化する方法であって、その手段として例えば第1
図に慨略的に示すように溶射用のプラズマトーチ1を使
用ザることがでさる。
Embodiment First, the outline of the charging method for carrying out the present invention will be described.The method of the present invention is a method of melting and atomizing raw material powder by plasma, and as a means for this, for example,
As schematically shown in the figure, a plasma torch 1 for thermal spraying can be used.

このプラズマトーチ1としては、アークを発生させてプ
ラズマを生じさtる形式のもの、あるいは高周波による
電磁場でプラズマを生じさせる形式のもののいずれも使
用することができる。プラズマガス2の供給路3より下
流側(噴射口側)に原料粉末4の供給路5が設けられて
おり、プラズマガス2は直流アークあるいは高周波電1
l場によってプラズマジェットとなって噴射口6から噴
射される。ここでプラズマガス2としは基本的には、原
料粉末4に対して不活性なガスを使用することになり、
例えばArガスやl−1eガスが使用される。
As the plasma torch 1, either one that generates plasma by generating an arc or one that generates plasma using an electromagnetic field generated by high frequency waves can be used. A supply path 5 for raw material powder 4 is provided downstream (on the injection port side) of a supply path 3 for plasma gas 2, and plasma gas 2 is supplied by direct current arc or high frequency electric current 1.
The plasma becomes a plasma jet due to the L field and is ejected from the injection port 6. Here, the plasma gas 2 basically uses a gas that is inert to the raw material powder 4.
For example, Ar gas or l-1e gas is used.

また原料粉末4の種類および得るべき粉末材料7の種類
によっては、N2ガスやH2ガスなどを一使用すること
ができる。他方、プラズマジェット中に供給される原料
粉末4は、セラミック粉末ヤ金属粉末など得るべき粉末
材料によって適宜に選択され、またその原料粉末がどの
ような製造方法によって製漬されたかは問わない。この
原料粉末ぺはプラズマジェットによって加熱されて溶融
し、その状態で噴射されるから、微細な液摘となる。
Further, depending on the type of raw material powder 4 and the type of powder material 7 to be obtained, N2 gas, H2 gas, etc. can be used. On the other hand, the raw material powder 4 supplied into the plasma jet is appropriately selected depending on the powder material to be obtained, such as ceramic powder or metal powder, and it does not matter what manufacturing method the raw material powder is prepared by. This raw material powder is heated and melted by a plasma jet, and is injected in that state, resulting in a fine liquid extraction.

づなわちNイヒされる。なお、プラズマジェットの温度
d>よび速度はプラズマトーチ1の形式および原料粉末
4の種類によって異なるが、例えば直流アークプラズマ
によってセラミック粉末を溶融しかつIll QJする
場合には、プラズマ温度は3000゜C以上でその速度
は50m /秒程度とする。
In other words, it will be canceled. Note that the temperature d> and speed of the plasma jet vary depending on the type of plasma torch 1 and the type of raw material powder 4, but for example, when ceramic powder is melted by DC arc plasma and subjected to Ill QJ, the plasma temperature is 3000°C. In the above, the speed is approximately 50 m/sec.

上述したプラズマトーチ1は冷却チt・ンバー8に接続
されており、その内部には冷UJts体として水もしく
は油等の液体9が収容されている。したがって溶融かつ
霧化された原料粉末4はその液体9中に哨射されて急冷
され、固化する。その場合、原科粉末の液滴は表面張力
によって球状となり、そのまま固化させられるから、粒
子が球状をなJ粉末を得ることができる。また粒径も均
一化される。
The plasma torch 1 described above is connected to a cooling chamber 8, in which a liquid 9 such as water or oil is accommodated as a cold UJts body. Therefore, the molten and atomized raw material powder 4 is injected into the liquid 9, rapidly cooled, and solidified. In this case, the droplets of the original powder become spherical due to surface tension and are solidified as they are, so that J powder with spherical particles can be obtained. Furthermore, the particle size is also made uniform.

つぎに実施例を示す。Next, examples will be shown.

実施例■ 直流アーク式のプラズマトーチにプラズマガスとしてA
rガスを供給してプラズマジェットを生じさせ、これに
原料粉末として8%モルイットリア安定化ジルコニア(
口水化学11.’ill 5A■製)を供給した。プラ
ズマジIツ1・の温度{よ中心部で3500’C,外周
部で3000℃、速度は約45077L /秒、原料粉
末の流vJ度は、5秒程度であり、供給吊は10i7/
分とした。また冷却手段として15゜Cの水を用意し、
その中に直接プラズマジェットを吹き込んだ。
Example ■ A as a plasma gas in a DC arc type plasma torch
A plasma jet is generated by supplying r gas, and 8% mole yttria-stabilized zirconia (
Mouth water chemistry 11. 'ill 5A■) was supplied. The temperature of the plasma generator 1 is 3500'C at the center and 3000°C at the outer periphery, the speed is about 45077L/sec, the flow rate of raw powder is about 5 seconds, and the supply speed is 10i7/sec.
It was a minute. Also, prepare water at 15°C as a cooling means.
A plasma jet was blown directly into it.

青られた粉末材料を乾燥させた後に流動度を計測したと
ころ、その値は2秒となった。また粒径の均一性を調べ
るために、ふるい分けを行なったところ、粒径が揃って
いることが認められた。さらにその粉末材科を100W
の超音波バスに入れ、超音波により衝撃力を加えた後に
流e度の試験を行なったところ、従前と同様な流動度を
示し、粒子が容易には破壊されないことが認められた。
After drying the blued powder material, the flow rate was measured and the value was 2 seconds. In addition, when sieving was performed to examine the uniformity of particle size, it was found that the particle sizes were uniform. Furthermore, the powder material is 100W
When the particles were placed in an ultrasonic bath and a flow rate test was conducted after applying an impact force using ultrasonic waves, the particles showed the same flow rate as before, and it was confirmed that the particles were not easily destroyed.

実施例■ 直流アーク式のプラズマトーチにプラズマガスとしてA
rとN2との混合ガスを供給してブラス゛マジェットを
生じさせ、これに原料粉末としてLaCrO3 (日本
化学I@l業@製}を供給した。
Example ■ A as a plasma gas in a DC arc type plasma torch
A mixed gas of r and N2 was supplied to produce a brass jet, and LaCrO3 (manufactured by Nippon Kagaku I@l Industry@) was supplied as a raw material powder to this.

プラズマジェットの温度は外周部4000℃、速度は約
500m /秒、原料粉末の流vJ度は、25秒程度で
あり、供給量は15g/分とした。また冷届手段として
20゜Cの水を用意し、その中に直接プラズマジェット
を吹き込んだ。
The temperature of the plasma jet was 4000° C. at the outer periphery, the speed was about 500 m 2 /sec, the flow vJ degree of the raw material powder was about 25 seconds, and the supply rate was 15 g/min. In addition, water at 20°C was prepared as a cooling means, and a plasma jet was directly blown into it.

得られた粉末材料を乾燥させた後に流初度を計測したと
ころ、その値は5秒となった。また粒径の均一性を調べ
るために、ふるい分りを行なったところ、粒径が揃って
いることが認められた。さらにその粉末材料を100 
Wの眉音波バスに入れ、語音波により函撃力をh口えた
後に流動度の試験を行なったところ、従前と同様な流動
反を示し、粒子が容易には破壊されないことがル2めら
れた。
After drying the obtained powder material, the flow rate was measured and the value was 5 seconds. In addition, when sieving was performed to examine the uniformity of particle size, it was found that the particle sizes were uniform. Furthermore, the powder material is 100
When the particles were placed in a W eyebrow sonic bath and a flow rate test was conducted after the boxing force was controlled by sound waves, they showed the same flow resistance as before, indicating that the particles were not easily destroyed. Ta.

実施例■ 直流アーク式のプラズマトーチにプラズマガスとしてA
rと1−12との混合ガスを供給してプラズマジェット
を生じさせ、これに原料粉末として1−aMno3を供
給した。プラズマジェットの温度は3000℃、速度は
約4som /秒、原料粉末の流1jjJ度は、50秒
程度であり、供給吊は5g/分とした。また冷10手段
として25゜Cの水を用意し、その中に直接プラズマジ
ェットを吹き込んだ。
Example ■ A as a plasma gas in a DC arc type plasma torch
A mixed gas of r and 1-12 was supplied to generate a plasma jet, and 1-aMno3 was supplied as a raw material powder to this. The temperature of the plasma jet was 3000° C., the speed was about 4 som 2 /sec, the flow rate of the raw powder was about 50 seconds, and the supply speed was 5 g/min. In addition, water at 25°C was prepared as a cooling means, and a plasma jet was directly blown into the water.

得られた粉末材科を乾燥させた後に流動度を計測したと
ころ、その値は10秒となった。また粒径の均一性を調
べるために、ふるい分けを行なったところ、粒径が揃っ
ていることが認められた。さらにその粉末材料を200
W超音波バスに入れて超音波により衝撃力を加えた後に
流動度の試験を行なったところ、従萌と同様な流動度を
示し、粒子が容易には破壊されないことが認められた。
After drying the obtained powder material, the fluidity was measured and the value was 10 seconds. In addition, when sieving was performed to examine the uniformity of particle size, it was found that the particle sizes were uniform. Furthermore, the powder material is 200
When a flowability test was conducted after placing the particles in a W ultrasonic bath and applying an impact force using ultrasonic waves, the particles showed a flowability similar to that of Jumoe, and it was observed that the particles were not easily destroyed.

発明の効果 以上の説明から明らかなようにこの発明の方法によれば
、流動性に優れ、しかし外部からの衝撃などを受けても
流動性が損われることがなく、また粒径の均一なセラミ
ックや金属の粉末材料を1!7ることができ、さらに従
来一般のプラズマトーヂを使用して簡単に実施できる。
Effects of the Invention As is clear from the above explanation, the method of the present invention allows ceramics to be produced which have excellent fluidity, do not lose their fluidity even when subjected to external impacts, and have uniform particle sizes. It is possible to reduce the amount of powdered materials such as metals and metals by 1 to 7 times, and it can be easily carried out using a conventional general plasma torch.

そしてまたこの発明の方法は既存の粉末材料の流動性の
改善J3よび粒径の均一化に有用な方法である。
The method of the present invention is also useful for improving the flowability of existing powder materials and for uniformizing the particle size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの允明の方法の実施状況を′ll略的に示1
図である。 1・・・プラズマトーブー、 2・・・プラズマガス、
4・・・原料粉末、 7・・・粉末材料、 9・・・液
体。
Figure 1 schematically shows the implementation status of this method by Masaaki.
It is a diagram. 1... Plasma tobu, 2... Plasma gas,
4... Raw material powder, 7... Powder material, 9... Liquid.

Claims (1)

【特許請求の範囲】[Claims]  プラズマジェット中に原料粉末を供給してその原料粉
末を溶融かつ霧化状態とするとともに、その溶融かつ霧
化状態の原料流を冷却して粉末とすることを特徴とする
粉末材料の製造方法。
A method for producing a powder material, which comprises supplying a raw material powder into a plasma jet to melt and atomize the raw material powder, and cooling the molten and atomized raw material stream to form a powder.
JP1110334A 1989-04-28 1989-04-28 Manufacture of powder material Pending JPH02290245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110334A JPH02290245A (en) 1989-04-28 1989-04-28 Manufacture of powder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110334A JPH02290245A (en) 1989-04-28 1989-04-28 Manufacture of powder material

Publications (1)

Publication Number Publication Date
JPH02290245A true JPH02290245A (en) 1990-11-30

Family

ID=14533114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110334A Pending JPH02290245A (en) 1989-04-28 1989-04-28 Manufacture of powder material

Country Status (1)

Country Link
JP (1) JPH02290245A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294242A (en) * 1991-09-30 1994-03-15 Air Products And Chemicals Method for making metal powders
WO2002068342A1 (en) * 2001-02-27 2002-09-06 Phild Co., Ltd. Method and device for manufacturing advanced water containing ultra-fine gold particles
WO2002078884A1 (en) * 2001-03-28 2002-10-10 Phild Co., Ltd. Method and device for manufacturing metallic particulates, and manufactured metallic particulates
JP2005512792A (en) * 2001-12-12 2005-05-12 ドゥ−コープ テクノロジーズ リミテッド Thermal process using cold RF-irradiated liquid as a basic method for producing nano-sized particles
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
JP4488651B2 (en) * 2001-05-23 2010-06-23 高周波熱錬株式会社 Method and apparatus for producing ceramic or metal spherical powder by thermal plasma
CN107129295A (en) * 2017-03-10 2017-09-05 上海航天设备制造总厂 Ceramic feeding powder for preparing automatically cleaning hot-spraying coating and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488899A (en) * 1977-12-08 1979-07-14 Alusuisse Method of dissolving magnetically weak amorphous particle and forming roughly spherical mass body
JPS6345309A (en) * 1986-08-11 1988-02-26 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Production of globular powdery particle
JPS63243212A (en) * 1987-03-16 1988-10-11 ジー・ティー・イー・プロダクツ・コーポレイション Wet metallurgical method for producing finely divided globular high melting point metal base powder
JPS63243211A (en) * 1987-03-16 1988-10-11 ジー・ティー・イー・プロダクツ・コーポレイション Wet metallurgical method for producing finely divided globular noble metal base powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488899A (en) * 1977-12-08 1979-07-14 Alusuisse Method of dissolving magnetically weak amorphous particle and forming roughly spherical mass body
JPS6345309A (en) * 1986-08-11 1988-02-26 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Production of globular powdery particle
JPS63243212A (en) * 1987-03-16 1988-10-11 ジー・ティー・イー・プロダクツ・コーポレイション Wet metallurgical method for producing finely divided globular high melting point metal base powder
JPS63243211A (en) * 1987-03-16 1988-10-11 ジー・ティー・イー・プロダクツ・コーポレイション Wet metallurgical method for producing finely divided globular noble metal base powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294242A (en) * 1991-09-30 1994-03-15 Air Products And Chemicals Method for making metal powders
WO2002068342A1 (en) * 2001-02-27 2002-09-06 Phild Co., Ltd. Method and device for manufacturing advanced water containing ultra-fine gold particles
KR100784737B1 (en) * 2001-02-27 2007-12-13 파일드 가부시키가이샤 Method and device for manufacturing advanced water containing ultra-fine gold particles
US7314499B2 (en) 2001-02-27 2008-01-01 Phild Co., Ltd. Method and device for manufacturing advanced water containing ultra-fine gold particles
KR100830052B1 (en) * 2001-03-28 2008-05-16 파일드 가부시키가이샤 Method and Device for Manufacturing Metallic Particulates
WO2002078884A1 (en) * 2001-03-28 2002-10-10 Phild Co., Ltd. Method and device for manufacturing metallic particulates, and manufactured metallic particulates
US7108735B2 (en) 2001-03-28 2006-09-19 Phild Co., Ltd. Method and device for manufacturing metallic particulates, and manufactured metallic particulates
AU2002242972B2 (en) * 2001-03-28 2006-10-12 Phild Co., Ltd. Method and device for manufacturing metallic particulates, and manufactured metallic particulates
JP4488651B2 (en) * 2001-05-23 2010-06-23 高周波熱錬株式会社 Method and apparatus for producing ceramic or metal spherical powder by thermal plasma
JP2005512792A (en) * 2001-12-12 2005-05-12 ドゥ−コープ テクノロジーズ リミテッド Thermal process using cold RF-irradiated liquid as a basic method for producing nano-sized particles
JP2007503973A (en) * 2003-08-28 2007-03-01 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
JP4754488B2 (en) * 2003-08-28 2011-08-24 テクナ・プラズマ・システムズ・インコーポレーテッド Methods for the synthesis, separation and purification of powder materials
CN107129295A (en) * 2017-03-10 2017-09-05 上海航天设备制造总厂 Ceramic feeding powder for preparing automatically cleaning hot-spraying coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH03183706A (en) Manufacture of titanium particles
JPH06102824B2 (en) Method and apparatus for producing coagulated sprayed product
CN103801704B (en) A kind of be applicable to 3D print molding copper powder, preparation method and its usage
JPS63243212A (en) Wet metallurgical method for producing finely divided globular high melting point metal base powder
TW202128316A (en) Unique feedstocks for spherical powders and methods of manufacturing
US4787934A (en) Hydrometallurgical process for producing spherical maraging steel powders utilizing spherical powder and elemental oxidizable species
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
JP2020105593A (en) Method for producing atomized metal powder
JPS63307202A (en) Wet metallurgical method for producing finely divided copper or copper alloy powder
Goudar et al. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer
JPH02290245A (en) Manufacture of powder material
KR20040067608A (en) Metal powder and the manufacturing method
JP2002508441A (en) Method and apparatus for producing fine powder by melt atomization using gas
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
CA1330622C (en) Hydrometallurgical process for producing finely divided iron based powders
JPH02153031A (en) Making of composite compound material
JP3511082B2 (en) Manufacturing method of metal fine powder
JPH04266475A (en) Production of composite material
CN114990541A (en) High-hardness material coating structure and preparation method thereof
JP2003512280A (en) Method and apparatus for producing powder formed from substantially spherical particles
JPS63266001A (en) Production of composite spherical powder
Zhang et al. Preparing hollow spherical hydroxyapatite powder with a thin shell structure by the plasma process with a heat preservation zone
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
JPS63255306A (en) Wet metallurgical method for producing finely divided globular low melting point metal base powder
KR20200078630A (en) Method for manufacturing atomized metal powder