JP7501189B2 - 制御装置、工作機械、制御方法、及び制御プログラム - Google Patents

制御装置、工作機械、制御方法、及び制御プログラム Download PDF

Info

Publication number
JP7501189B2
JP7501189B2 JP2020123668A JP2020123668A JP7501189B2 JP 7501189 B2 JP7501189 B2 JP 7501189B2 JP 2020123668 A JP2020123668 A JP 2020123668A JP 2020123668 A JP2020123668 A JP 2020123668A JP 7501189 B2 JP7501189 B2 JP 7501189B2
Authority
JP
Japan
Prior art keywords
coefficient
angle
axis
drive unit
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020123668A
Other languages
English (en)
Other versions
JP2022020269A (ja
Inventor
直人 寺阪
弦 寺田
太樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2020123668A priority Critical patent/JP7501189B2/ja
Publication of JP2022020269A publication Critical patent/JP2022020269A/ja
Application granted granted Critical
Publication of JP7501189B2 publication Critical patent/JP7501189B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Description

本発明は制御装置、工作機械、制御方法、及び制御プログラムに関する。
従来の工作機械を制御する制御装置は制御対象の内部モデルを定義し、制御対象に指令を与えた場合の出力速度と実際の速度の誤差を小さくするように内部モデルの物理定数(例えば、イナーシャ)を推定する。制御対象は例えば、被削材を積載する台を水平面に対し傾斜する駆動源である。特許文献1の制御装置は、所定周期毎に取得した電流戻り値と推定電流値とより推定誤差を計算し、所定周期毎に検出した速度戻り値と推定誤差とを用いて制御対象の推定イナーシャと推定摩擦とを更新する。
特開2011-72178号公報
工作機械の台は、切削液、冷却液等の液体を供給する為のロータリージョイント、被加工物を保持するチャック等の治具の可動部を直線方向に駆動する為の油圧回転シリンダ等の積載物を着脱できる。従来の制御装置は台に積載物を付加した時、積載物の付加によりイナーシャなどの物理定数が変化し、推定した内部モデルの物理定数と差が拡大する。故に、制御装置は工作機械を適切に制御できない時がある。
本発明の目的は、台に積載物を付加した時にも、被削材を保持する台を回動する工作機械を従来よりも適切に制御できる制御装置、工作機械、制御方法、及び制御プログラムを提供することである。
請求項1の制御装置は被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置において、前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出部と、前記駆動部のねじり剛性係数と、前記係数算出部が算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正部と、前記補正部が補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御部とを備える。該制御装置は、台に付加した積載物の回転モーメント係数、駆動部のねじり剛性係数、基準面に対する台の指令角度に基づき、角度誤差分、指令角度を補正する。制御装置は台に付加した積載物の影響を考慮して駆動部を駆動することで、台に積載物を付加した時にも従来の装置よりも適切に工作機械を制御できる。
請求項2の制御装置は前記ねじり剛性係数と、前記回転モーメント係数と、前記指令角度とに基づいて、前記角度誤差を算出する誤差算出部を更に備え、前記補正部は、前記指令角度を前記誤差算出部が算出した前記角度誤差で補正する。制御装置は角度誤差を算出せずに指令角度を角度誤差分補正する装置よりも、指令角度を角度誤差分補正する処理を簡単にできる。
請求項3の制御装置の前記係数算出部は、所定の駆動条件に応じて前記駆動部に出力した出力結果と、複数の変数の一つとして前記回転モーメント係数を含む前記駆動部の内部モデルを前記所定の駆動条件に適用して導出した導出結果との誤差が最小となるように前記複数の変数を算出することで、前記回転モーメント係数を算出する。該制御装置は出力結果と導出結果に基づき、積載物の回転モーメント係数を算出できる。制御装置は内部モデルの複数の変数の内、回転モーメント係数以外の変数の影響を除いて回転モーメント係数を算出できる。
請求項4の制御装置の前記係数算出部は、前記台に前記積載物を付加しない状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第一駆動量を取得し、前記台に前記積載物を付加した状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第二駆動量を取得し、前記第二駆動量から前記第一駆動量を差し引いた差分に前記駆動部の減速比を積算することで前記回転モーメント係数を算出する。該制御装置は第二駆動量から第一駆動量を差し引いた差分に駆動部の減速比を積算するという比較的簡単な処理で、積載物の回転モーメント係数を算出できる。
請求項5の工作機械は被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部と、請求項1~3の何れかに記載の制御装置とを備える。該工作機械は、工作機械が備える請求項1~3の何れかの制御装置に応じた効果を奏する。
請求項6の制御方法は被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械の制御方法において、前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出工程と、前記駆動部のねじり剛性係数と、前記係数算出工程で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正工程と、 前記補正工程で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御工程とを備える。該制御方法は請求項1の制御装置と同様の効果を奏する。
請求項7の制御プログラムは、被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置が実行可能な制御プログラムにおいて、前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出処理と、前記駆動部のねじり剛性係数と、前記係数算出処理で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正処理と、前記補正処理で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御処理とを前記制御装置に実行させる指示を含む。該制御プログラムは請求項1の制御装置と同様の効果を奏する。
工作機械1の斜視図。 支持装置8の斜視図。 制御装置40と工作機械1の電気的構成を示すブロック図。 駆動回路55の制御系を示す図。 第一実施形態の主処理の流れ図。 (A)基準面Rに対しA軸台20が0(rad)である時のA軸台20の模式図、(B)基準面Rに対しA軸台20が指令角度K1の位置にA軸台20を回動する場合の角度誤差K2の模式図。 制御装置40の機能を示す機能ブロック図。 二段の移動平均フィルタFIR1、FIR2を適用した時の角速度曲線と角加速度曲線の図。 第一実施形態の主処理の評価結果を示すグラフ。 第二実施形態の係数算出処理の流れ図。 基準面Rに対しA軸台20がπ/2(rad)(垂直)である時のA軸台20の模式図。 第二実施形態の主処理の流れ図。
本発明の第一、第二実施形態を、図面を参照し順に説明する。以下説明は、図中に矢印で示す左右、前後、上下を使用する。工作機械1の左右方向、前後方向、上下方向は夫々、工作機械1のX軸方向、Y軸方向、Z軸方向である。右方向、前方向、上方向は夫々、正方向であり、左方向、後方向、下方向は夫々、負方向である。図1に示す工作機械1は、工具により被削材W(図2参照)の切削加工と旋削加工ができる複合機である。
図1~図3を参照し、第一、第二実施形態の工作機械1の構造を説明する。工作機械1は基台2、Y軸移動機構(図示略)、X軸移動機構(図示略)、Z軸移動機構(図示略)、移動体15、立柱5、主軸ヘッド6、主軸(図示略)、支持装置8、工具交換装置9、制御箱(図示略)、制御装置40(図3参照)等を備える。基台2は架台11、主軸基台12、右側基台13、左側基台14等を備える。架台11は前後方向に長い略直方体状の構造体である。主軸基台12は前後方向に長い略直方体状に形成し、架台11上面後方に設ける。右側基台13は架台11上面右前方に設ける。左側基台14は架台11上面左前方に設ける。右側基台13と左側基台14は夫々、上面に支持装置8を支持する。
Y軸移動機構は主軸基台12上面に設け、Y軸モータ62(図3参照)等を備える。Y軸移動機構はY軸モータ62の駆動により、略平板状の移動体15をY軸方向に移動する。X軸移動機構は移動体15上面に設け、X軸モータ61(図3参照)等を備える。X軸移動機構はX軸モータ61の駆動により、立柱5をX軸方向に移動する。立柱5は、Y軸移動機構、移動体15、X軸移動機構により、基台2上をX軸方向とY軸方向に移動する。Z軸移動機構は立柱5前面に設け、Z軸モータ63(図3参照)等を備える。Z軸移動機構はZ軸モータ63の駆動により、主軸ヘッド6をZ軸方向に移動する。主軸(図示略)は主軸ヘッド6内部に設け、主軸下部に工具装着穴(図示略)を備える。工具装着穴は工具を装着する。故に、X軸移動機構、Y軸移動機構、Z軸移動機構は夫々、主軸に装着した工具に対して被削材Wを相対的に、X軸方向、Y軸方向、Z軸方向に移動する。主軸は主軸ヘッド6上部に設けた主軸モータ66(図3参照)で回転する。該時、主軸に設けた工具は、被削材Wに対して回転する。
工具交換装置9は立柱5と主軸ヘッド6周囲を取り巻く略円環状である。工具交換装置9はZ軸移動機構が主軸ヘッド6を昇降する間に、主軸に現在装着する工具を交換する。制御箱は工作機械1を覆うカバー(図示略)の外壁に取り付ける。制御装置40は制御箱の内側に格納する。制御装置40はNCプログラムに基づき工作機械1の動作を制御する。工作機械1を覆うカバーは外壁面に操作盤10(図3参照)を備える。操作盤10は操作部18と表示部19を備える。操作部18は制御装置40の各種設定を行う。表示部19は各種画面、メッセージ、警報等を表示する。
支持装置8は右側基台13と左側基台14の上面に固定する。図2の如く、支持装置8はA軸台20、左側支持台27、駆動部28、回転台29、C軸駆動部30等を備える。A軸台20は積載物200、300を取り外し可能に付加できる。積載物200はA軸台20に対しA軸側(台側)に付加する治具201、被削材Wを含む。治具201はチャック、平治具等の被削材Wを固定する器具である。積載物300はA軸台20に対しA軸側とは反対側(尾側)に付加する回転シリンダ、ロータリージョイントを含む。ロータリージョイントは切削液、冷却液等の液体を供給する。回転シリンダは被削材Wを保持するチャック等の治具の可動部を直線方向に駆動する。
A軸台20は台部21、右連結部22、左連結部23を備える。台部21は、基準面R(図6参照)に対するA軸台20の角度が0(rad)の時、上面が基準面Rと平行となる平面視略長方形状の板状部である。基準面Rは水平面と平行な仮想面である。右連結部22は台部21の右端部から右斜め上方に延び且つ駆動部28と回動可能に連結する。右連結部22はその右端面から右方に突出する略円柱状の支軸32を有する。左連結部23は台部21の左端部から左斜め上方に延び且つ後述する左側支持台27と回動可能に連結する。左連結部23はその左端面から左方に突出する略円柱状の支軸31を有する。左側支持台27はA軸台20右側に位置する。左側支持台27は支軸31を回転可能に支持する。左側支持台27の底部は、左側基台14(図1参照)の上面に固定する。
駆動部28はA軸台20右側に位置する。駆動部28は右側支持台26、A軸モータ65等を備える。右側支持台26の底部は、右側基台13(図1参照)の上面に固定する。右側支持台26はA軸出力軸67を介して右連結部22の支軸32を回転可能に支持する。右連結部22の支軸32とA軸モータ65の出力軸は、A軸出力軸67を介して互いに連結する。A軸モータ65の出力軸が回転すると、A軸台20はA軸を中心に連結部22、23と一体に回動する。A軸はX軸方向と平行であり、側面視で支軸31、32の中心を通る。駆動部28は工具に対して被削材Wを、A軸を中心として回転する。A軸台20はA軸回りに任意角度で傾くことで、主軸に装着する工具に対して被削材WをA軸回りの任意方向に傾ける。
回転台29は台部21上面略中央に回転可能に設ける。回転台29は円盤状に形成し、A軸台20上面略中央に設ける。C軸駆動部30は台部21下面に設け且つ台部21の略中央に設けた穴(図示略)を介して回転台29と連結する。C軸駆動部30は内部に回転軸(図示略)、C軸モータ64(図3参照)等を備える。回転軸は回転台29に対して直交する方向に延びる。回転軸は回転台29に固定する。C軸モータ64のローターは回転軸に固定する。故に、C軸モータ64が回転軸を回転すると、回転台29はC軸を中心に回転する。回転台29上面は積載物200を固定する。C軸駆動部30は工具に対して被削材Wを、C軸を中心として回転する。
図3を参照し、第一、第二実施形態の制御装置40と工作機械1の電気的構成を説明する。制御装置40はCPU41、ROM42、RAM43、記憶部44、入出力部45、駆動回路51~56を備える。工作機械1はX軸モータ61、Y軸モータ62、Z軸モータ63、C軸モータ64、A軸モータ65、主軸モータ66、エンコーダ71~76を備える。以下、駆動回路51~56を区別しない時、駆動回路50と総称する。X軸モータ61、Y軸モータ62、Z軸モータ63、C軸モータ64、A軸モータ65、主軸モータ66を区別しない時、モータ60と総称する。エンコーダ71~76を区別しない時、エンコーダ70と総称する。
CPU41は工作機械1の動作を制御する。ROM42は後述する主処理(図5、図12参照)を実行する為の制御プログラム等を記憶する。RAM43は各種処理実行中に発生する各種データを記憶する。記憶部44はNCプログラム等を記憶する。入出力部45は駆動回路50、エンコーダ70、操作部18、表示部19と電気的に接続し、駆動回路50、エンコーダ70、操作部18、表示部19との間で各種信号の入出力を行う。
駆動回路50は、CPU41が出力する指令に基づき、モータ60にパルス信号を出力する。エンコーダ70は、対応するモータ60の出力軸の回転角度を検出し、該検出信号を駆動回路50及び入出力部45に出力する。モータ60は何れもサーボモータである。エンコーダ70は一般的な絶対値エンコーダである。
図4を参照し、駆動回路55の制御系を説明する。制御装置40のCPU41はNCプログラムのA軸送り指令に基づき所定周期毎の目標角度の時系列データ(後述)を生成し、各データに応じた角度指令を、駆動回路55に出力する。角度指令はデータが示す目標角度にA軸台20を回動する時のA軸モータ65の出力軸の回転角を示す。エンコーダ75はA軸モータ65の出力軸の現在の回転角情報を戻り値として駆動回路55に出力する。駆動回路50は該戻り値と該角度指令に基づき、A軸モータ65に出力する駆動電流を制御する。具体的には駆動回路55は加算器50Aで戻り値と角度指令との角度偏差を算出し、該角度偏差に角度比例ゲインを乗じて角速度指令を算出する。駆動回路55は加算器50Bで算出した角速度指令と実際の角速度、即ち戻り値を微分器50Cで微分した角速度戻り値との角速度偏差を算出する。駆動回路55は加算器50Dで算出した角速度偏差に角速度比例ゲインを乗じた電流指令と、角速度偏差を積分器50Eで積分してその積分結果に角速度積分ゲインを乗じた電流指令を加算し、トルク指令を生成する。駆動回路55はトルク指令を示すパルス信号により、A軸モータ65を駆動する。
図5~図8を参照し、第一実施形態の制御装置40のCPU41が実行する主処理を説明する。主処理は制御装置40の電源がONである時、記憶部44に記憶した制御プログラムをCPU41が読出し実行することにより開始する。
図5の如く、CPU41は記憶部44に記憶したNCプログラムを一行読出す(S1)。CPU41はS1で読出したプログラムがA軸送り指令である時、A軸送り指令が指示する指令角度θ(rad)に応じた角度誤差ΔQ(θ)(rad)を算出する(S2)。指令角度θは基準面Rに対するA軸台20の角度で表す。図6(A)の如く、角度θが0である時、A軸台20が有する面の内、A軸と対向する面は基準面Rと平行であり、A軸台20の重心CがA軸に対し、鉛直下向き方向に位置する。角度はA軸台20が図6(A)に示す位置から左側面視反時計回りに回動する場合の角度をプラスの角度とする。A軸送り指令は水平面に平行な基準面Rに対するA軸台20の指令角度θ迄、A軸台20をA軸周りに回動することを指示する。角度誤差ΔQ(θ)はA軸送り指令で指示する指令角度θに対応する量だけ駆動部28を駆動した時の、積載物をA軸台20に付加したことに因る角度の誤差である。
CPU41は式(1)を用い角度誤差ΔQ(θ)を算出する。式(1)において、E(deg/N・m)は駆動部28のねじり剛性係数であり、駆動部28に固有な値である。Eは予め記憶部44が記憶する。Fθsin(θ)(N・m)はA軸台20、C軸駆動部30、及びA軸台20に付加した積載物の回転モーメントの合計である。Fθ(N・m)は指令角度θに応じた回転モーメントを算出する為の係数であり、記憶部44が記憶する。回転モーメント(N・m)は、回転モーメント係数Fθ(N・m)に指令角度θの正弦を乗じて算出する。回転モーメント係数FθはA軸台20に積載物を付加した状態で実行する前回のS5の処理によりCPU41が算出し、S10で記憶部44に記憶する。CPU41が前回のS5を実行していない時、記憶部44は回転モーメント係数Fθの初期値を記憶する。回転モーメント係数Fθの初期値は、A軸台20に積載物を付加しない時の回転モーメントを算出する為の係数であり、A軸台20とC軸駆動部30の回転モーメント係数Fθ1である。
ΔQ(θ)=E×Fθsin(θ) ・・・式(1)
図6(B)の如く、指令角度θがK1(rad)である時、CPU41は例えば角度誤差をK2(rad)と算出する。CPU41はS2で算出した角度誤差ΔQ(θ)を用い、指令角度θを補正する(S3)。CPU41は例えば、指令角度θから角度誤差ΔQ(θ)を差し引いて、指令角度θを補正する。CPU41はS1で読出したプログラムがA軸送り指令でない時、S2、S3を省略してよい。
CPU41はS1で読出したNCプログラムの指令がA軸早送り指令であるか否かを判断する(S4)。A軸早送り指令は水平面に平行な基準面Rに対するA軸台20の指令角度θ迄、A軸台20をA軸周りに早送り条件で回動することを指示する。早送り条件は工作機械1で設定可能な最大角速度Vmaxでモータ60が回転する条件である。CPU41はS1で読出したNCプログラムの指令がA軸早送り指令であると判断する時(S4:YES)、CPU41はS3で補正した指令角度θに関するA軸早送りと、駆動部28の内部モデルの変数算出を実行する(S5)。CPU41は、S5で補正したA軸早送り指令に応じて駆動回路55に出力する目標角度の時系列データを、記憶部44に記憶したFIR1、FIR2(図8参照)の時定数T1、T2に基づき決定し、決定した目標角度の時系列データの各データに対応する角度指令を駆動回路55に出力することでA軸早送りを実行する。CPU41は、駆動回路55がA軸モータ65に対して出力するトルクuと、エンコーダ75の戻り値xを後述の内部モデルの評価関数に適用し、駆動部28の内部モデルの複数の変数を算出する。
図7、図8を参照し、A軸早送り指令に基づくA軸早送りを説明する。図7の如く、CPU41はS1で読込みNCプログラムからA軸早送り指令を取得する(P1)。CPU41はA軸台20をS3で補正した指令角度θ迄回動する為、目標角度の時系列データを決定する(P2)。CPU41は所定周期で目標角度のデータに応じた角度指令を駆動回路55に出力する。該角度指令は目標角度迄A軸台20を回動する為のA軸モータ65の回転角、駆動条件を示す。
図8(A)、図8(B)の如く、CPU41はA軸早送り指令の指令角度θ迄A軸台20を一定の最大角速度Vmaxで回動する場合のA軸台20の角速度の時系列変化を示す波形(角速度波形と称す)を設定する。次にCPU41は図8(B)に示す角速度波形に二種類の移動平均フィルタFIR1、FIR2を順に適用し、角速度波形が示す角速度の変化を平滑化する。FIR1は図8(B)に示す角速度波形に適用し、FIR1の時定数T1の期間で角速度が0からVmax迄加速し、最大角速度Vmaxを維持した後、時定数T1の期間で角速度をVmaxから0迄減速するよう、角速度波形を平滑化する。FIR2は図8(C)に示すFIR1を適用した角速度波形に適用し、図8(D)の如く、角速度波形の内の加速期間と減速期間の開始部分と終了部分で角速度の変化を平滑化する。該時、角速度波形の加速期間と減速期間の長さは夫々FIR2の時定数T2ずつ増加し、(T1+T2)とする。
CPU41はFIR1とFIR2を適用して得た図8(D)の角速度波形に基づき、所定周期毎の目標角度を決定する。CPU41は決定した目標角度のデータに応じた角度指令rを所定周期で駆動回路55に出力する。駆動回路55はCPU41が所定周期で出力する角度指令rに基づき、A軸モータ65を駆動する。A軸モータ65はA軸台20を目標角度迄A軸周りに回動する。A軸台20は所定周期毎に目標角度迄回動する動作を繰り返す。A軸台20はA軸早送り指令により指定した指令角度に最終的に到達する。
CPU41は支持装置8の内部モデルの複数の変数を以下のように算出する。内部モデルは、複数の変数の一つとしてA軸台20に付加した積載物の回転モーメント(偏荷重)を含む。積載物の回転モーメントは支持装置8のA軸台20の回転角度に応じて変動し、積載物の回転モーメントを解消する方向にA軸モータ65を回転しようとする力又はトルクを示す。図6(A)の如く、A軸台20の重心Cを定義する時、A軸台20の重心Cに対して鉛直下向き方向に積載物の回転モーメントによる力が作用する。
支持装置8の内部モデルは、複数の変数を用い適宜設定すればよく、例えば、式(2)で表す。式(2)において、θは基準面Rに対するA軸台20の角度である。θ(上付き一つドット)は角度の一回時間微分(角速度(rad/s))を示す。θ(上付き二つドット)は角度の二回時間微分(角加速度(rad/s))を示す。u(N・m)は駆動回路55がA軸モータ65に対して出力するトルク、J(kg・m)は支持装置8に関する慣性モーメントである。
Figure 0007501189000001
式(2)でfは式(3)の関係を満たす。Fは支持装置8に関するクーロン摩擦係数(N・m)である。sign関数は、実数に対しその符号に応じて1、-1、0の何れかを返す符号関数である。Dは支持装置8に関する粘性摩擦係数(N・m/(rad/s))である。
Figure 0007501189000002
駆動回路55が出力するトルクuは式(2)の内部モデルを用いて推定できる。推定誤差e(ρ)は式(4)により導出できる。ρは算出する変数、xはエンコーダ75からの戻り値、GLPFは微分ノイズを除去する為のローパスフィルタである。上付きのTは転置行列であることを示す。例えば、ρはρの転置行列を示す。
e(ρ)=GLPFu-ρx ・・・式(4)
式(4)でρ、xは式(5)、式(6)の関係を満たす。ρで表す複数の変数(慣性モーメントJ、粘性摩擦係数D、クーロン摩擦係数F、回転モーメント係数Fθ)をモデル変数とも言う。
Figure 0007501189000003
Figure 0007501189000004
図7の如く、CPU41は評価関数|e(ρ)|が最小になるρを逐次最小二乗法により決定する(P3)。今回取得した戻り値をk番目の戻り値、前回取得した戻り値を(k-1)番目の戻りとする時、今回算出する変数をサーカムフレックス付きのρ(ρ^と表記する)(k)、今回の推定誤差e(ρ)をε(k)、今回の共分散行列をP(k)と置いた時、ρ^(k)、ε(k)、P(k)は式(7)~式(9)で表す。
Figure 0007501189000005
Figure 0007501189000006
Figure 0007501189000007
ρ^(k)、ε(k)、P(k)は何れも式(7)~式(9)に基づき、前回の該ρ^(k―1)、ε(k―1)、P(k―1)、今回のトルクu(k)、戻り値x(k)を用いて逐次的に算出できる。故にCPU41は、駆動回路55がA軸モータ65に対して出力するトルクuと、エンコーダ75の戻り値xを内部モデルに適用し、式(7)~式(9)を所定周期毎計算し、評価関数|e(ρ)|が最小になるρ、即ちモデル変数(慣性モーメントJ、粘性摩擦係数D、クーロン摩擦係数F、回転モーメント係数Fθ)を逐次的に算出する(P3)。CPU41は処理をS1に戻す。
CPU41は読出したNCプログラムの指令がA軸早送り指令ではないと判断した時(S4:NO)、CPU41はS1で読出したNCプログラムの指令が、工作機械1の動作を停止する指令か否かを判断する(S7)。CPU41は工作機械1の動作を停止する指令でないと判断時(S7:NO)、S1で読出した指令に応じた処理を実行し(S8)、処理をS1に戻す。工作機械1の動作を停止する指令と判断時(S7:YES)、CPU41はS5でモデル変数を算出済みであるか否かを判断する(S9)。S5でモデル変数を算出済みである時(S9:YES)、CPU41はS5で算出したモデル変数を記憶部44に記憶し、モデル変数を更新する(S10、P4)。S5でモデル変数を算出済みでない時(S9:NO)又はS10の次に、CPU41は以上で主処理を終了する。
図9を参照し、第一実施形態の主処理の評価結果を説明する。評価では上記第一実施形態の主処理を実行することにより、A軸台20に積載物を付加した時にも、被削材Wを保持するA軸台20を回動する工作機械1をA軸早送り指令の指令角度θに従来よりも適切に回動できるかを確認した。工作機械1が上記第一実施形態の主処理を実行する場合を実施例とし、工作機械1が主処理の内S2、S3を実行しない場合を比較例とした。実施例と比較例を以下の五条件で駆動し、指令角度と誤差の関係を比較した。誤差はS5でA軸台20を回動した後の実際のA軸台20の角度(rad)から指令角度(rad)を差し引いた角度である。第一条件は積載物を付加しない条件である。第二条件は、A軸台20の尾側に積載物A1を付加した条件である。第三条件は、A軸台20の尾側に積載物A2を付加した条件である。第四条件は、A軸台20の尾側に積載物A3を付加した条件である。第五条件は、A軸台20の台側に積載物A4を付加した条件である。各条件の積載物の重量は35~600(N)の範囲の値であり、積載物A1~A4の順に値が大きい。
比較例の指令角度と誤差との関係を図9(A)に示し、実施例の指令角度と誤差との関係を図9(B)に示す。図9(A)、図9(B)の縦軸は誤差(rad)をαを用いる相対値で示し、横軸は指令角度(rad)を示す。誤差(rad)は指令角度(rad)の値を超えない。第一条件~第五条件の指令角度と誤差との関係を、結果81~85に示す。図9(A)、図9(B)の如く、比較例、実施例共に結果81で示す第一条件は指令角度が-π/6~2π/3(rad)の範囲で、誤差の絶対値はαに収まる。比較例では、結果82で示す第二条件、結果83で示す第三条件、結果84で示す第四条件は、積載物の重量が大きいほど、積載物の重量が小さい条件に比べ、誤差が大きく、且つ、指令角度が-π/6~π/2(rad)迄の範囲では、指令角度の絶対値が大きいほど、指令角度の絶対値が小さい場合よりも、誤差が大きい。結果85で示す第五条件の場合は、指令角度の絶対値が大きいほど、指令角度の絶対値が小さい場合よりも、誤差の絶対値が大きい。一方実施例では、結果82で示す第二条件、結果83で示す第三条件、結果84で示す第四条件、結果85で示す第五条件の何れの条件でも、角度が-π/6~2π/3(rad)の範囲で、誤差の絶対値はαに収まる。以上から、第一実施形態の制御装置40は主処理を実行することでA軸台20に積載物200、300を付加した時にも、被削材Wを保持するA軸台20を回動する工作機械1を従来よりも適切に制御できることが確認できた。制御装置4はA軸台20の台側に積載物200を付加する場合と、A軸台20の尾側に積載物300を付加する場合の双方で被削材Wを保持するA軸台20を回動する工作機械1を適切に制御できることが確認できた。
図10、図11を参照し、第二実施形態の制御装置40のCPU41が実行する係数算出処理を説明する。係数算出処理は制御装置40の電源がON、且つ、作業者が開始の指示を入力した時に、記憶部44に記憶した制御プログラムをCPU41が読出し実行することにより開始する。
図10の如く、CPU41はA軸台20に積載物を付加しない状態でA軸モータ65を駆動し、基準面Rに対するA軸台20の角度がπ/2(rad)の角度にA軸台20を回動する(S21)。図11の如く、CPU41はエンコーダ75の出力値により、基準面Rに対するA軸台20の角度がπ/2(rad)であると判断した時、A軸モータ65の駆動を停止する。角度θがπ/2(rad)である時、A軸台20が有する面の内、A軸と対向する面は基準面Rと垂直であり、A軸台20の重心CがA軸に対し、前方に位置する。CPU41はA軸台20に積載物を付加しない状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時のA軸モータ65の第一駆動量を取得する(S22)。CPU41はA軸モータ65を駆動し、A軸台20に積載物を付加する角度迄、A軸台20を回動する(S23)。A軸台20に積載物を付加(固定)する位置は適宜定めればよく、例えば、基準面Rに対するA軸台20の角度が0(rad)の位置である。
CPU41はA軸台20に積載物を付加したか否かを判断する(S24)。積載物は作業者がA軸台20に付加してもよく、作業者は積載物をA軸台20に付加後、操作部18を操作して固定作業が終了したことを示す終了信号を入力してもよい。積載物はロボットがA軸台20に固定してもよく、ロボットは積載物をA軸台20に固定後、制御装置40に終了信号を入力してもよい。CPU41は終了信号を検出したか否かに応じて、A軸台20に積載物を固定したか否かを判断する。CPU41はA軸台20に積載物を固定する迄、S24で待機する(S24:NO)。CPU41はA軸台20に積載物を固定したことを検出した時(S24:YES)、CPU41はS21と同様に、A軸台20に積載物を付加した状態でA軸モータ65を駆動し、基準面Rに対するA軸台20の角度をπ/2(rad)の位置にA軸台20を回動する(S25)。CPU41は、A軸台20に積載物を付加した状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時のA軸モータ65の第二駆動量を取得する(S26)。CPU41は、S26で取得した第二駆動量からS22で取得した第一駆動量を差し引いた差分にA軸モータ65の減速比を積算することで積載物の回転モーメント係数を算出する(S28)。A軸モータ65の減速比は、予め記憶部44に記憶する。CPU41は算出した積載物の回転モーメント係数を記憶部44に記憶する。CPU41は以上で係数算出処理を終了する。
図12を参照し、第二実施形態の制御装置40のCPU41が実行する主処理を説明する。主処理は制御装置40の電源がON時、記憶部44に記憶した制御プログラムをCPU41が読出し実行することにより開始する。図12では図5の第一実施形態の主処理と同様の処理に同じ符号を付与する。図12の如く、第二実施形態の主処理は、S2、S55の処理に替えて、S32、S35の処理を実行し、S9、S10の処理を実行しない点で第一実施形態の主処理と互いに異なり、他の処理は第一実施形態の主処理と互いに同じである。以下、第一実施形態と互いに異なるS32、S35の処理を説明する。
CPU41はS1の次にS28で算出した基準面Rに対するA軸台20の角度がπ/2(rad)である時の積載物の回転モーメントを用い角度誤差ΔQ(θ)を算出する(S32)。CPU41はS28で算出した基準面Rに対するA軸台20の角度がπ/2(rad)である時の積載物の回転モーメントを回転モーメント係数Fθ2とし、式(1)の回転モーメント係数Fθに変えて回転モーメント係数Fθ2を用い、角度誤差ΔQ(θ)を算出する。CPU41は第一実施形態と同様に、S32で算出した角度誤差ΔQ(θ)を用い、指令角度θを補正する(S3)。
CPU41は読出したNCプログラムの指令がA軸早送り指令であると判断した時(S4:YES)、CPU41はS3で補正した指令角度θに関するA軸早送りを実行する(S35)。CPU41は、S3で補正したA軸早送り指令に応じて駆動回路55に出力する目標角度の時系列データを、記憶部44に記憶したFIR1、FIR2(図8参照)の時定数T1、T2に基づき決定し、決定した目標角度の時系列データを駆動回路55に出力することで早送りを実行する。CPU41は予め設定し記憶部44が記憶した時定数T1、T2は用いて角度指令rを決定する。CPU41は第一実施形態の内部モデルの複数の変数を算出する処理は実行しない。以上から、第二実施形態の主処理により、CPU41は主処理とは別途行う係数算出処理で算出した積載物の回転モーメントを用いて、指令角度θを補正できる。図示しないが、第二実施形態の制御装置40は主処理を実行することで図9の第一実施形態の制御装置40の評価結果と同様の評価結果を示す。
上記第一、第二実施形態において、工作機械1、A軸台20、制御装置40、CPU41は本発明の工作機械、台、制御装置、制御部の一例である。A軸モータ65は本発明の駆動部の一例である。S5のP3、S28は本発明の係数算出工程、係数算出処理の一例であり、S5のP3、S28を行うCPU41は本発明の係数算出部の一例である。S2、S32は本発明の誤差算出工程、誤差算出処理の一例であり、S2、S32を行うCPU41は本発明の誤差算出部の一例である。S3は本発明の補正工程、補正処理の一例であり、S3を行うCPU41は本発明の補正部の一例である。S5、S35は本発明の駆動制御工程、駆動制御処理の一例であり、S5、S35を行うCPU41は本発明の駆動制御部の一例である。
第一、第二実施形態の制御装置40は、被削材Wを固定するA軸台20を、水平面と平行な軸周りに回動する駆動部28と、駆動部28を制御するCPU41とを備えた工作機械1を制御する。CPU41はA軸台20に付加した積載物の回転モーメント係数を算出する(S5のP3、S28)。CPU41は駆動部28のねじり剛性係数Eと、算出した積載物の回転モーメント係数と、NCプログラムが指令する、水平面に平行な基準面Rに対するA軸台20の指令角度とに基づいて、積載物をA軸台20に付加したことに因る角度誤差分、指令角度を補正する(S2、S32、S3)。CPU41はS3で補正した指令角度に対応する量だけ駆動部28を駆動する(S5、S35)。制御装置40、工作機械1は、A軸台20に付加した積載物の回転モーメント係数、駆動部28のねじり剛性係数E、基準面Rに対するA軸台20の指令角度に基づき角度誤差分指令角度を補正する(S3)。故に制御装置40は、A軸台20に付加した積載物の影響を考慮して駆動部28を駆動することで、A軸台20に積載物を付加した時にも従来の装置よりも適切に工作機械1を制御できる。
第一、第二実施形態の制御装置40のCPU41は駆動部28のねじり剛性係数Eと、回転モーメント係数と、指令角度とに基づいて、積載物をA軸台20に付加したことに因る角度誤差を算出する(S2、S32)。CPU41は指令角度をS2で算出した角度誤差で補正する(S3)。制御装置40は角度誤差を算出せずに指令角度を角度誤差分補正する装置よりも、指令角度を角度誤差分補正する処理を簡単にできる。
第一実施形態の制御装置40のCPU41は、所定の駆動条件に応じて駆動部28に出力した出力結果と、複数の変数の一つとして回転モーメント係数を含む駆動部28の内部モデルを所定の駆動条件(A軸早送り指令)に適用して導出した導出結果との誤差が最小となるように複数の変数を算出することで、積載物の回転モーメント係数を算出する(S5)。第一実施形態の制御装置40、工作機械1は、出力結果と、導出結果とに基づき、積載物の回転モーメント係数を算出できる。制御装置40は、内部モデルの複数の変数の内、回転モーメント係数以外の変数の影響を除いて回転モーメント係数を算出できる。
第二実施形態の制御装置40のCPU41は、A軸台20に積載物を付加しない状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時の駆動部28の第一駆動量を取得する(S22)。CPU41はA軸台20に積載物を付加した状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時の駆動部28の第二駆動量を取得する(S26)。CPU41はS26で取得した第二駆動量からS22で取得した第一駆動量を差し引いた差分に駆動部28の減速比を積算することで積載物の回転モーメント係数を算出する(S28)。第二実施形態の制御装置40、工作機械1は、第二駆動量から第一駆動量を差し引いた差分に駆動部28の減速比を積算するという比較的簡単な処理で、積載物の回転モーメント係数を算出できる。
本発明は上記実施形態に限らない。制御装置40は工作機械1に設ける時に限らず、工作機械1と別体に設けてもよい。例えば制御装置40は工作機械1に接続した装置(PC、専用機等)でもよい。
第一実施形態の制御装置40は駆動部28に関する内部モデルのモデル変数の決定を示したが、工作機械1と異なる機械構成を持つ機械でも、積載物の回転モーメント(偏荷重)を受ける軸(例えば、C軸)周りにA軸台20を回動する駆動部に対して適用できる。積載物の回転モーメント係数を用いて指令角度を補正する方法は適宜変更してよい。回転モーメント係数Fθは、A軸台20とC軸駆動部30の回転モーメント係数Fθ1とA軸台20に付加した積載物200、300の回転モーメント係数Fθ2との和である。角度誤差はA軸周りに回転する全ての要素の回転モーメントによって生じる。故に第一実施形態の如く、制御装置40はA軸台20に付加した積載物200、300を含むA軸周りに回転する全ての要素に応じた回転モーメント係数Fθを用い角度誤差を算出してもよい。A軸台20とC軸駆動部30の回転モーメント係数Fθ1を工作機械1の固有値として用い別途補正する時、第二実施形態の如く、制御装置40はA軸台20に付加した積載物200、300の回転モーメント係数Fθ2を用い角度誤差を算出してもよい。例えば、制御装置40が積載物の回転モーメント係数に基づく補正を行うのとは別に、製造時のピッチ誤差を補正する時、制御装置40のCPU41はピッチ誤差に角度誤差を足し合わせて、ピッチ誤差補正時に、角度誤差の補正を行ってもよい。制御装置40のCPU41は指令角度をθ、補正後の指令角度をθaとした時、式(10)を満たすθaを算出することで、角度誤差を算出せずに、角度誤差分と、指令角度θを補正してもよい。
θa+E×Fθsin(θa)=θ ・・・式(10)
内部モデル、内部モデルの変数は制御対象の構成に応じて適宜変更してよい。CPU41は算出したモデル変数に基づく処理は適宜変更してもよい。制御装置40はエンコーダ70が出力した戻り値に基づくフィードバック制御の他、フィードフォワード制御を実行してもよい。該時、CPU41はフィードフォワード制御の変数を、決定したモデル変数により最適化してもよい。例えば、CPU41は駆動回路55が行うフィードバック制御の角度比例ゲイン、角速度比例ゲイン、角速度積分ゲイン等の制御変数を最適化してもよい。該時、制御装置40は工作機械1を高速且つ高精度に制御できる。第一実施形態の所定の駆動条件は適宜変更してよく、例えば、CPU41はS1で取得したNCプログラムが示す指令がA軸切削送り指令の時にモデル変数を算出してもよい。A軸切削送り指令はA軸台20に付加した被削材Wに対して工具をA軸周りに切削送り条件で相対移動して加工するNCプログラムの指令である。切削送り条件は工作機械1で設定可能な最大角速度Vmaxよりも小さい所定の切削速度でモータ60が回転する条件である。S21、S25の少なくとも何れかで作業者が手動でA軸台20を基準面Rに対しπ/2(rad)(垂直)の位置に移動してもよい。
1 :工作機械
20 :A軸台
40 :制御装置
41 :CPU
44 :記憶部
55 :駆動回路
65 :A軸モータ
75 :エンコーダ
R :基準面

Claims (5)

  1. 被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置において、
    前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出部と、
    前記駆動部のねじり剛性係数と、前記係数算出部が算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正部と、
    前記補正部が補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御部と
    前記ねじり剛性係数と、前記回転モーメント係数と、前記指令角度とに基づいて、前記角度誤差を算出する誤差算出部と
    を備え
    前記係数算出部は、所定の駆動条件に応じて前記駆動部に出力した出力結果と、複数の変数の一つとして前記回転モーメント係数を含む前記駆動部の内部モデルを前記所定の駆動条件に適用して導出した導出結果との誤差が最小となるように前記複数の変数を算出することで、前記回転モーメント係数を算出することを特徴とする制御装置。
  2. 前記係数算出部は、
    前記台に前記積載物を付加しない状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第一駆動量を取得し、
    前記台に前記積載物を付加した状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第二駆動量を取得し、
    前記第二駆動量から前記第一駆動量を差し引いた差分に前記駆動部の減速比を積算することで前記回転モーメント係数を算出することを特徴とする請求項に記載の制御装置。
  3. 被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、
    前記駆動部を制御する制御部と
    請求項1又は2に記載の制御装置と
    を備えることを特徴とする工作機械。
  4. 被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置が実行する制御方法において、
    前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出工程と、
    前記駆動部のねじり剛性係数と、前記係数算出工程で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正工程と、
    前記補正工程で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御工程と
    前記ねじり剛性係数と、前記回転モーメント係数と、前記指令角度とに基づいて、前記角度誤差を算出する誤差算出工程と
    を備え
    前記係数算出工程では、所定の駆動条件に応じて前記駆動部に出力した出力結果と、複数の変数の一つとして前記回転モーメント係数を含む前記駆動部の内部モデルを前記所定の駆動条件に適用して導出した導出結果との誤差が最小となるように前記複数の変数を算出することで、前記回転モーメント係数を算出することを特徴とする制御方法。
  5. 被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置が実行可能な制御プログラムにおいて、
    前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出処理と、
    前記駆動部のねじり剛性係数と、前記係数算出処理で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正処理と、
    前記補正処理で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御処理と
    前記ねじり剛性係数と、前記回転モーメント係数と、前記指令角度とに基づいて、前記角度誤差を算出する誤差算出処理と
    を前記制御装置に実行させる指示を含み、
    前記係数算出処理では、所定の駆動条件に応じて前記駆動部に出力した出力結果と、複数の変数の一つとして前記回転モーメント係数を含む前記駆動部の内部モデルを前記所定の駆動条件に適用して導出した導出結果との誤差が最小となるように前記複数の変数を算出することで、前記回転モーメント係数を算出することを特徴とする制御プログラム。
JP2020123668A 2020-07-20 2020-07-20 制御装置、工作機械、制御方法、及び制御プログラム Active JP7501189B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020123668A JP7501189B2 (ja) 2020-07-20 2020-07-20 制御装置、工作機械、制御方法、及び制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123668A JP7501189B2 (ja) 2020-07-20 2020-07-20 制御装置、工作機械、制御方法、及び制御プログラム

Publications (2)

Publication Number Publication Date
JP2022020269A JP2022020269A (ja) 2022-02-01
JP7501189B2 true JP7501189B2 (ja) 2024-06-18

Family

ID=80216244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123668A Active JP7501189B2 (ja) 2020-07-20 2020-07-20 制御装置、工作機械、制御方法、及び制御プログラム

Country Status (1)

Country Link
JP (1) JP7501189B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269839A (ja) 2000-03-23 2001-10-02 Toshiba Mach Co Ltd 多軸工作機械の主軸頭位置誤差補正方法
WO2002100591A1 (en) 2001-05-25 2002-12-19 Heui-Jae Pahk Ultra-precision feeding apparatus
JP2005168166A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 負荷特性演算装置及びモータ制御装置
JP2006215626A (ja) 2005-02-01 2006-08-17 Okuma Corp 位置制御装置
JP2009101444A (ja) 2007-10-22 2009-05-14 Okuma Corp 回転構造物の位置制御方法
JP2010055464A (ja) 2008-08-29 2010-03-11 Osaka Kiko Co Ltd 数値制御工作機械の位置決め制御方法及び位置決め制御装置
JP2020181424A (ja) 2019-04-26 2020-11-05 ブラザー工業株式会社 数値制御装置及び工作機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269839A (ja) 2000-03-23 2001-10-02 Toshiba Mach Co Ltd 多軸工作機械の主軸頭位置誤差補正方法
WO2002100591A1 (en) 2001-05-25 2002-12-19 Heui-Jae Pahk Ultra-precision feeding apparatus
JP2005168166A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 負荷特性演算装置及びモータ制御装置
JP2006215626A (ja) 2005-02-01 2006-08-17 Okuma Corp 位置制御装置
JP2009101444A (ja) 2007-10-22 2009-05-14 Okuma Corp 回転構造物の位置制御方法
JP2010055464A (ja) 2008-08-29 2010-03-11 Osaka Kiko Co Ltd 数値制御工作機械の位置決め制御方法及び位置決め制御装置
JP2020181424A (ja) 2019-04-26 2020-11-05 ブラザー工業株式会社 数値制御装置及び工作機械

Also Published As

Publication number Publication date
JP2022020269A (ja) 2022-02-01

Similar Documents

Publication Publication Date Title
US9785138B2 (en) Robot and robot controller
JP4323542B2 (ja) 学習制御機能を備えた電動機の制御装置
JP4074638B2 (ja) 電動機の制御装置
US10324449B2 (en) Motor controlling method, control device and machine tool
WO2012057235A1 (ja) 数値制御方法
JP5916583B2 (ja) 多関節ロボットのウィービング制御装置
US20140156080A1 (en) Servo control system with position compensation function for driven member
WO2018212305A1 (ja) モータ制御システム、モータ制御システムの制御方法、及びロボットシステム
JP2017124455A (ja) ロボット装置、ロボット制御方法、プログラム及び記録媒体
JP2017209762A (ja) ロボット装置、ロボット制御方法、プログラム、記録媒体及び物品の製造方法
CN110662636A (zh) 减速机角度传递误差辨识***和减速机角度传递误差辨识方法
JP6581162B2 (ja) 加工システム及び加工機の制御方法
JP2017056535A (ja) 加工ツールの位置決め装置及び位置決め方法
JP6490368B2 (ja) 工作機械制御装置、工作機械制御方法、及びプログラム
JP2007072943A (ja) 位置制御装置
JP7501189B2 (ja) 制御装置、工作機械、制御方法、及び制御プログラム
US7129665B2 (en) Control apparatus for feed driving system
JP2016032326A (ja) モータ制御装置、ロボット装置、モータ制御方法、プログラム及び記録媒体
CN111857045B (zh) 数控装置和机床
JP4389980B2 (ja) 多関節型ロボットの制御方法
CN112743509B (zh) 控制方法和计算装置
JP6544851B2 (ja) 位置決め装置のパラメータ設定方法、及びパラメータ設定装置、並びにこのパラメータ設定装置を備えた位置決め装置
JP2024005673A (ja) 数値制御装置、同定方法、及び同定プログラム
JP4699118B2 (ja) 制御装置及び制御方法
JP2024034256A (ja) 数値制御装置、同定方法、及び同定プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520