JP7500143B2 - 空調システムにおける熱源機の制御装置及び制御方法及びプログラム - Google Patents

空調システムにおける熱源機の制御装置及び制御方法及びプログラム Download PDF

Info

Publication number
JP7500143B2
JP7500143B2 JP2021050993A JP2021050993A JP7500143B2 JP 7500143 B2 JP7500143 B2 JP 7500143B2 JP 2021050993 A JP2021050993 A JP 2021050993A JP 2021050993 A JP2021050993 A JP 2021050993A JP 7500143 B2 JP7500143 B2 JP 7500143B2
Authority
JP
Japan
Prior art keywords
outlet temperature
heat source
hot water
flow rate
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021050993A
Other languages
English (en)
Other versions
JP2022149055A (ja
Inventor
成一 阿立
秀和 倉増
和幸 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyudenko Corp
Original Assignee
Kyudenko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyudenko Corp filed Critical Kyudenko Corp
Priority to JP2021050993A priority Critical patent/JP7500143B2/ja
Publication of JP2022149055A publication Critical patent/JP2022149055A/ja
Application granted granted Critical
Publication of JP7500143B2 publication Critical patent/JP7500143B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、例えばオフィスビル等で使用される空調機(二次側)に循環させる流体の温度を調整する熱源機(一次側)を制御する空調システムにおける熱源機の制御装置及び制御方法及びプログラムに関するものである。
従来、オフィスビル等の空調システムの熱源機として、モジュール型ヒートポンプチラー(以下、「チラー」と称する)を採用する例が増えている。モジュール型ヒートポンプチラーとは、空調システムの空調負荷に応じて、モジュール化されたヒートポンプチラーの増減を可能としたものである。
その理由は、第一に、上記チラー(一次側)には、空調機(二次側)を制御するチラーの製造メーカ側のコントローラ(以下、「標準コントローラ」と呼ぶ)が付属しており、チラーの運転の制御を全て標準コントローラで実現でき、手軽に導入することができ、第二に、同じ能力のチラーを複数台設置(モジュール化)によって故障のリスクを分散し、冷却塔が不要なため循環させる冷却水の水質管理が不要であって運用が容易である、等のメリットがあるからであると考えられる。
特開2013-40705号公報
ところで、上記従来のチラーは、標準コントローラでは、冷温水のチラーの出口温度は、通常は設計値としてピーク期対応の固定値(例えば冷房は7℃、暖房は45℃)となっており、標準コントローラにて、チラーの容量制御、モジュール台数の制御を行っていた。よって、人間が手動にてチラーの出口温度を変更しない限り、通年変わることはなく、特に、中間期或いは低負荷時に無駄が生じていた。これは、チラーに限るものではなく、ターボ冷凍機、吸収式冷温水発生機などの他熱源機でも同様である。
また、熱源機の出口温度が固定(一般的には、冷房時は7℃、暖房時は45℃)であるところ、空調機側の空調負荷熱量を演算により求め、負荷熱量比と設定温度の冷温水設定温度特定テーブルに基づいて、冷房時は5℃~15℃、暖房時は35℃~55℃に自動的に制御し、これにより省エネルギーを図る空調システムが提案されている(特許文献1)。
しかしながら、上記特許文献1の空調システムは、熱源機の出口設定温度を冷房時で5~15℃(暖房時35~55℃)と自動で出力することとなっているが、熱供給事業等において冷水(温水)温度を一定の値に保持(温度補償)する必要があるような制約がある熱源設備において上限(下限値)が変動する場合に柔軟に対応できないことや、ピーク期において比較的空調負荷が高い場合、冷水(温水)の設計値をオーバーして、熱源機が過剰な運転となり機器の負担増および増エネルギーとなってしまう恐れがある。また、上記特許文献1では、熱源機の出口温度設定を変更することにより二次側流量の増加による影響がないという前提になっているが、対象となる空調システムの機器の構成、運用方式または二次側の制御方法によっては、二次側(空調機)の流量が増加し、搬送動力が増えて、二次側(空調機、二次ポンプなど)を含む空調システム全体の省エネルギーが得られないおそれがある。これらについての対策が考慮されていない点等、課題が見受けられる。
本発明は、空調システムにおいて、空調機側(二次側)の冷温水出入口温度と流量を取得し、二次側の状況を考慮して、上記標準コントローラの冷温水出口温度をピーク期、中間期に応じて、基本的に設計値に基づいて、無理のないように最適な冷温水出口温度に制御して、無駄をなくし、熱源機(一次側)だけではなくて空調システム全体が省エネルギーとなるように図ることを実現した空調システムの熱源機の制御装置及び制御方法及びプログラムを提供すること目的とする。
以下冷房時を先に記載し、暖房時はかっこ書内に記載する。
上記の目的を達成するため本発明は、
第1に、一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とが熱交換されることにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御装置において、上記熱源機の設計出口温度Tsoを設定変更し得るコントローラが設けられ、上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段と、上記中間期/ピーク期判別手段により判別された中間期において、上記空調機の要求熱量qrを、上記熱源機の制御周期の前時刻設定出口温度pTsと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出可能な熱量演算手段と、上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別可能な熱量判別手段と、上記熱量判別手段にて上記空調機の上記要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合において、設計還り温度をTroとして当該設計還り温度Troを上記設計出口温度Tsoより5℃~7℃高い温度(5℃~7℃低い温度)に設定され、上記測定された流量をFとした場合、
冷房時の冷水出口温度 Ts=Tro-(qr/F)
(暖房時の温水出口温度 Ts=Tro+(qr/F))
上記冷水出口温度(上記温水出口温度)Tsを上記式の演算で求められる出口温度演算手段と、上記冷水(温水)出口温度Tsが、上記設計出口温度Tsoより高い(低い)か否か判断可能な出口温度比較手段と、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより1℃以上高い(低い)場合にのみ、上記熱源機の上記設計出口温度Tsoを上記出口温度演算手段で求めた上記冷水(温水)出口温度Tsに設定変更可能な設定変更手段と、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoと等しいか低い(等しいか高い)場合は、上記熱源機の上記設計出口温度Tsoを維持することが可能な設定維持手段とを有するものであり、上記動作を上記制御周期毎に繰り返すものである空調システムの熱源機の制御装置により構成される。
上記コントローラは本発明に係るコントローラ(17)である。上記中間期/ピーク期判断手段による判断は、季節的な面と、空調機の空調負荷が熱源機の定格能力の80%未満の場合の何れかに基づいて判断される。上記制御周期は、例えば30分毎である。前時刻設定出口温度pTsは、例えば、前時刻に設定した熱源機の出口温度であり、当初は設計出口温度Tsoの7[℃](暖房時は45[℃])となり、制御周期以後は、前回の時刻(例えば30分前)に出口温度演算手段にて求めた熱源機の出口温度Tsとなる。熱源機の設計出口温度Tsoは、冷房時は例えば7[℃]であり、暖房時は例えば45[℃]である。上記往き配管と還り配管の流量Fは、空調機の弁が2方弁の場合は二次側の流量、空調機の弁が3方弁の場合は一次側の流量が選択される。このように構成すると、中間期において、空調機の要求熱量が熱源機で制御可能と判断された場合において、熱源機の出口温度を、冷房時は設計出口温度Tsoより1℃以上高い値(暖房時は設計出口温度Tsoより1℃以上低い値)に設定変更し得るため、空調システム全体として省エネルギー化を実現することができる。
第2に、上記熱源機内に一次側ポンプを有すると共に、上記往き配管側に二次側ポンプを有する2ポンプ方式の空調システムの熱源機の制御装置において、上記中間期/ピーク期判別手段により判別された上記中間期において、上記コントローラは、上記熱量演算手段の前段において、測定した冷水(温水)の上記熱源機側の一次側流量F1と、上記空調機側の二次側流量F2を検出し、上記二次側流量F2が上記一次側流量F1より大きいか否かを判別可能な流量比較手段と、上記流量比較手段の比較により、上記二次側流量F2が上記一次側流量F1より大きい場合に、二次側流量の増加率を演算により求めることが可能な二次側流量増加率演算手段と、上記二次側流量増加率演算手段にて演算した上記二次側流量F2の上記増加率が予め設定した基準値より高いか否かを判断する増加率比較手段が設けられ、上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より高い場合は、上記増加率比較手段が上記設定維持手段に対して上記熱源機の上記設計出口温度Tsoを維持する指令が与えられ、上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より低い場合にのみ、上記増加率比較手段は、上記熱源演算手段に対して通常の制御を行う旨の指令を与えるものであり、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより高い(低い)場合にのみ、上記設定変更手段により上記熱源機の上記設計出口温度Tsoが上記出口温度演算手段で求めた上記冷水(温水)出口温度Tsに設定変更されるように構成されたものである第1記載の空調システムの熱源機の制御装置により構成される。
2ポンプ方式の場合、空調機側(二次側)の流量が増加することが予測されるが、二次側流量が増加すると、空調システム全体としての省エネルギー効果が減少する。よって、二次側流量の増加率を演算により求め、当該増加率を基準値(例えば110%)と比較し、増加率が基準値より増加している場合は、熱源機の出口温度を設計出口温度Tsoのままとし、上記増加率が基準値を下回っている場合にのみ、熱源機の出口温度を設計出口温度Tsoより上昇(暖房時は下降)させることができるので、無駄な動作を行わずに空調システムの効率を向上させることができる。
第3に、一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とが熱交換されることにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御装置において、上記熱源機の設計出口温度Tsoを設定変更し得るコントローラが設けられ、上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段と、上記中間期/ピーク期判別手段により判別されたピーク期において、上記空調機の要求熱量qrを、上記熱源機の設計出口温度Tsoと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出可能な熱量演算手段と、上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別可能な熱量判別手段と、上記熱量判別手段にて上記空調機の上記要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合において、上記熱源機の冷水(温水)の出口温度を、上記設計出口温度Tsoより3℃以上高い(低い)変更後の冷水(温水)出口温度に変更の指示を行う出口温度変更手段と、上記出口温度変更手段の上記指示により上記熱源機の冷水(温水)出口温度を上記変更後の冷水(温水)出口温度に変更する設定変更手段と、予め定めた時間になったかを否かを判別する一定時間判別手段と、上記一定時間判別手段が上記予め定めた時間になったと判断した場合、上記変更後の冷水(温水)出口温度を指定温度幅で下げ(上げ)て、上記設定変更手段に上記熱源機の上記冷水(温水)出口温度を変更後の冷水(温水)出口温度への変更の指示を行う出口温度増減手段と、上記一定時間判別手段による上記予め定めた時間になる度に、上記出口温度増減手段による上記熱源機の上記冷水(温水)出口温度の上記指定温度幅での下げ(上げ)の動作が繰り返し行われ、上記予め定めた時間になる度に、上記設定変更手段による上記熱源機の上記冷水(温水)出口温度の変更が行われ、上記熱電機の変更後の上記冷水(温水)出口温度が、上記熱源機の上記設計出口温度Tsoに一致するまで同様の上記動作が繰り返し行われるものであることを特徴とする空調システムの熱源機の制御装置により構成される。
上記コントローラは本発明に係るコントローラ(17)である。上記中間期/ピーク期判断手段による判断は、季節的な面と、空調機の空調負荷が熱源機の定格能力の80%以上の場合の何れかに基づいて判断される。上記設計出口温度Tsoより3℃以上高い(低い)変更後の冷水(温水)出口温度は、例えば設計出口温度Tso=7℃(暖房時は45℃)に対して4℃高い11℃(暖房時は41℃)に設定される。一定時間判別手段の予め定めた時間は例えば10分である。指定温度幅は例えば1℃であり、冷房の場合は10分毎に11℃から1℃ずつ低下して、熱源機の出口温度が設計出口温度(Tso=7℃)に一致するまで(暖房時は41℃から1℃ずつ上昇させて、熱源機の出口温度が設計出口温度(Tso=45℃)に一致するまで)繰り返し同じ動作が行われる。これにより、ピーク期において、無理なく、空調システム全体として省エネルギー化を行うことができる。
第4に、一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とを熱交換することにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御方法において、上記熱源機の設計出口温度Tsを設定変更し得るコントローラを設け、上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段により判別された中間期において、熱量演算手段が、上記空調機の要求熱量qrを、上記熱源機の制御周期の前時刻設定出口温度pTsと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出し、熱量判別手段が、上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別し、上記熱量判別手段にて上記空調機の上記要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合、出口温度演算手段が、設計還り温度をTroとして当該設計還り温度Troを上記設計出口温度Tsoより5℃~7℃高い温度(5℃~7℃低い温度)に設定し、上記測定した流量をFとした場合、
冷房時の冷水出口温度 Ts=Tro-(qr/F)
(暖房時の温水出口温度 Ts=Tro+(qr/F))
上記冷水出口温度(上記温水出口温度)Tsを上記式の演算で求め、出口温度比較手段が、上記冷水(温水)出口温度Tsが、上記設計出口温度Tsoより高い(低い)か否か判断し、設定変更手段が、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより1℃以上高い(低い)場合にのみ、上記熱源機の上記設計出口温度Tsoを上記出口温度演算手段で求めた冷水(温水)出口温度Tsに設定変更し、設定維持手段が、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoと等しいか低い(等しいか高い)場合は、上記熱源機の上記設計出口温度Tsoを維持し、上記動作を上記制御周期毎に繰り返すものである空調システムの熱源機の制御方法により構成される。
第5に、上記熱源機内に一次側ポンプを有すると共に、上記往き配管側に二次側ポンプを有する2ポンプ方式の空調システムの熱源機の制御方法において、上記中間期/ピーク期判別手段により判別された上記中間期において、上記コントローラは、上記熱量演算手段の前段において、流量比較手段が、測定した冷水(温水)の上記熱源機側の一次側流量F1と、上記空調機側の二次側流量F2を検出し、上記二次側流量F2が上記一次側流量F1より大きいか否かを判別し、上記流量比較手段の比較により、上記二次側流量F2が上記一次側流量F1より大きい場合に、二次側流量増加率演算手段が、二次側流量の増加率を演算により求め、増加率比較手段が、上記二次側流量増加率演算手段にて演算した上記二次側流量F2の増加率が予め設定した基準値より高いか否かを判断し、上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より高い場合は、上記増加率比較手段が上記設定維持手段に対して上記熱源機の上記設計出口温度Tsoを維持する指令を与え、上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より低い場合にのみ、上記増加率比較手段は、上記熱源演算手段に対して通常の制御を行う旨の指令を与えるものであり、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより高い(低い)場合にのみ、上記設定変更手段により上記熱源機の上記設計出口温度Tsoが上記出口温度演算手段で求めた上記冷水(温水)出口温度Tsに設定変更される第4記載の空調システムの熱源機の制御方法により構成される。
第6に、一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とを熱交換することにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御方法において、上記熱源機の設計出口温度Tsを設定変更し得るコントローラを設け、上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段により判別されたピーク期において、熱量演算手段が、上記空調機の要求熱量qrを、上記熱源機の設計出口温度Tsoと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出し、熱量判別手段が、上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別し、上記熱量判別手段にて上記空調機の要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合、出口温度変更手段が、上記熱源機の冷水(温水)の出口温度を、上記設計出口温度Tsoより3℃以上高い(低い)変更後の冷水(温水)出口温度に変更の指示を行い、設定変更手段が、上記出口温度変更手段の上記指示により上記熱源機の冷水(温水)出口温度を上記変更後の冷水(温水)出口温度に変更し、一定時間判別手段が、予め定めた時間になったかを否かを判別し、上記一定時間判別手段が上記予め定めた時間になったと判断した場合、出口温度増減手段が、上記変更後の冷水(温水)出口温度を指定温度幅で下げ(上げ)て、上記設定変更手段に上記熱源機の上記冷水(温水)出口温度を変更後の冷水(温水)出口温度への変更の指示を行い、上記一定時間判別手段による上記予め定めた時間になる度に、上記出口温度増減手段が上記熱源機の上記冷水(温水)出口温度の上記指定温度幅での下げ(上げ)の動作を繰り返し行い、上記予め定めた時間になる度に、上記設定変更手段が上記熱源機の上記冷水(温水)出口温度の変更を繰り返し行い、上記熱電機の変更後の上記冷水(温水)出口温度が、上記熱源機の上記設計出口温度Tsoに一致するまで同様の上記動作が繰り返し行われる空調システムの熱源機の制御方法により構成される。
第7に、コンピュータを上記第1~3の何れかの空調システムの熱源機の制御装置として機能させるためのプログラムにより構成される。
本発明は上述のように、中間期において、空調機の要求熱量が熱源機で制御可能と判断された場合において、熱源機の出口温度を、冷房時は設計出口温度Tsoより1℃以上高い値(暖房時は設計出口温度Tsoより1℃以上低い値)に設定変更し得るため、空調システム全体として省エネルギー化を実現することができる。
また、中間期において、空調システムが2ポンプ方式の場合、空調機側(二次側)の流量が増加することが予測されるが、二次側流量が増加すると、空調システム全体としての省エネルギー効果が減少する。よって、二次側流量の増加率を演算により求め、当該増加率を基準値(例えば110%)と比較し、増加率が基準値より増加している場合は、熱源機の出口温度を設計出口温度Tsoのままとし、上記増加率が基準値を下回っている場合にのみ、熱源機の出口温度を設計出口温度Tsoより上昇(暖房時は下降)させることができるので、無駄な動作を行わずに空調システムの効率を向上させることができる。
また、ピーク期においては、冷房の場合は熱源機の出口温度を、予め定めた時間毎に、熱源機の出口温度を例えば11℃から1℃ずつ低下するように変更することができ、熱源機の出口温度が設計出口温度Tso(7℃)に一致するまでは設計出口温度より高い状態を維持できるので(暖房時は熱源機の出口温度を例えば41℃から1℃ずつ上昇するように変更することができ、熱源機の出口温度が設計出口温度Tso(45℃)に一致するまでは設計出口温度より低い状態を維持できるので)、これにより、ピーク期においても、無理なく、空調システム全体として省エネルギー化を行うことができる。
本発明に係る空調システムの熱源機の制御装置(1ポンプ方式、2方弁)のブロック図である。 同上装置(1ポンプ方式、3方弁)のブロック図である。 同上装置(2ポンプ方式、2方弁)のブロック図である。 同上装置(2ポンプ方式、3方弁)のブロック図である。 同上装置のコントローラのブロック図である。 同上装置(1ポンプ方式)の冷房時のコントローラの中間期の動作手順を示すフローチャートである。 同上装置(2ポンプ方式)の冷房時暖房時のコントローラの中間期の動作手順を示すフローチャートである。 同上装置のコントローラの冷房時のピーク期の動作手順を示すフローチャートである。 同上装置のコントローラの冷房時のピーク期の動作手順を示すフローチャートである。 同上装置のコントローラの中間期の機能ブロックである。 同上装置のコントローラの中間期の機能ブロックである。 同上装置のコントローラのメモリのデータを示す図である。 同上装置の標準コントローラを含むブロック図である。 同上装置の標準コントローラの動作手順を示すフローチャートである。 同上装置のコントローラのピーク期の機能ブロックである。 同上装置(1ポンプ方式)の暖房時のコントローラの中間期の動作手順を示すフローチャートである。 同上装置のコントローラの暖房時のピーク期の動作手順を示すフローチャートである。 同上装置のコントローラの暖房時のピーク期の動作手順を示すフローチャートである。
まず、本発明に係る空調システムについて説明する。
(1ポンプ方式、2方弁)図1のパターン
図1に1ポンプ方式の空調システムを示す。図1は空調機1aの流量調整弁(流量調節弁)5は2方弁である。この空調機1aは複数台設けられる場合もある(図1は例えば2台の空調機1aを示す)。図1において、空調機1a側を「二次側」、熱源機4側を「一次側」という。尚、図1、図3の空調機は符号1a、図2、図4の空調機は符号1bで示すが、これらの空調機を区別しない場合は符号1にて示す。
上記空調機1aは、室内に設置した温度センサ(図示せず)で室内の温度を検出し、予め設定した目標の温度(冷房時は26℃、暖房時は22℃、これらの温度は年間を通して変わらない)となるように、往き配管2から空調機1aに入る冷水(又は温水)の流量を、流量調整弁5を可変させて流量を調整し、空調(室内の温度調整)を行う。従って、室内の者は冷房時の温度、暖房時の温度を変更できない。
例えば、冷房の場合、空調機1aは、中間期(冷房時は10月から6月、暖房時は3月から11月)においては、外気温が比較的低い(暖房時は比較的高い)ため、室内を冷やす(暖房時は温める)必要があまりないので、少ない冷水(温水)流量で室内に送風しても室内温度が26℃(暖房時は22℃)に保てる。一方、ピーク期(冷房時は7月から9月、暖房時は12月から2月)においては、外気温が高い(暖房時は低い)ため、室内を26℃(暖房時は22℃)となるように冷やす(温める)必要があり、従って多量の冷水(温水)の流量を流して室内に送風する必要がある。
空調機1a(二次側)の入口には、熱源機4(例えば空冷ヒートポンプチラー)の出口に接続された往き配管2が接続され、空調機1aの出口には、熱源機4の入口に接続された還り配管3が接続されている。
上記空調機1aは、ファンと熱交換器(いすれも図示せず)を内蔵し、上記熱源機4の出口に接続された往き配管2を介して冷水(冷房時)又は温水(暖房時)を入口から受け、上記冷温水として運ばれてきた熱を、内部の熱交換器において、ファンにて吸引した室内の空気と熱交換し、室内の空気を冷却し(冷房時の室内温度は26℃一定)、又は、加熱するものである(暖房時の室内温度は22℃一定)。上記冷水又は温水は、空調機1aの出口に接続された還り配管3から流出され、上記熱源機4の入口に戻る。
また、図1に示すように、上記2方弁の流量調整弁5を有する空調機1aは、空調機1aの入口側と出口側とを結ぶバイパス管6a(図2、図4参照)は存在しないため、空調負荷の変動によって流量調節弁5の可変制御が行われる(図3も同じ)。
即ち、空調負荷が増えると流量調整弁5を開き、空調機1aに入る冷温水の流量を増し、空調負荷が減ると流量調整弁5を閉じて、空調機1aに入る冷温水の流量を減少させる可変制御を行う。このため、空調負荷により、二次側全体の流量が変化する(流量調整弁5の絞量により、二次側の流量が多くなったり少なくなったりする)。このような装置には、本発明に係るコントローラ17(図10参照)の制御において、以下のステップP11(冷房時、図6参照)において、「一次変流量制御」が選択される(暖房時は図16のステップP11参照)。
そして、後述するが、立ち上がり時を除き、定常時においては、熱源機4から往き配管2を介して空調機1aに流入する冷温水(例えば冷房であれば設計温度7℃、暖房であれば設計温度45℃)を内部の熱交換器において、ファンにて吸引した空気と熱交換し、冷房であれば室内の空気を冷やし、その後、熱を与えられた冷水は12℃程度に上昇して空調機1aから還り配管3に流出する。また、暖房であれば、内部の熱交換器において、ファンにて吸引した空気と熱交換し、室内の空気を暖め、その後、熱を奪われた冷温水は約40℃程度に下降して空調機1aから還り配管3に流出する。
上記空調機1aでの熱交換量は、一般的にファンの空気量と、冷水又は温水の流量(流量調節弁5にて調整する)によって調整する。
上記熱源機4(一次側)は、空冷ヒートポンプチラーが考えられるが、ここでは同一の空冷ヒートポンプチラーのユニット4aが増設可能なモジュール型の熱源機4aを4台用いることとする。これは、チラーに限るものではなく、ターボ冷凍機、吸収式冷温水発生機などの熱源機でも同様である。尚、4台の熱源機をまとめて符号4にて示し、各別の熱源機をいう場合は符号4aを使用する。この熱源機(以下、「チラー」ともいう)4は、所定の温度(例えば、冷房時は、出口温度が7℃(設計値)、入口温度は空調機1aの出口側の温度によって変わるが(例えば12℃)、暖房時は出口温度が45℃、入口温度は空調機1の出口側の温度によって変わるが(例えば40℃))の冷温水を発生させ、往き配管2を介して上記空調機1aに送り、空調機1aから流出された冷温水を還り配管3を介して流入するものである。各チラー4a内には、冷温水のチラーポンプ4bが各々設けられており(チラーポンプ4bは各熱源機4aに1台ずつであり、合計4台)、空調システムとしては、一次側にのみポンプを有している方式となる(以下、この方式を「1ポンプ方式」という)。
この熱源機4は、一次側設備となるので、二次側設備としての空調機1aとの情報のやり取りを行っておらず、従って、空調機1aの状況を把握していない。よって、熱源機4側では空調機1aの流量調整弁5の開度状況、空調機1aの運転状況が不明である。そのため、空調機1a(二次側)と熱源機4(一次側)との間において、往き配管2と還り配管3との間に、バイパス管8とバイパス弁9が設けられている。
例えば、空調負荷が低下し、空調機1aの流量調整弁5が絞られたとすると、往き配管2の圧力が上昇する。この場合、バイパス弁9が、往き配管2と還り配管3の圧力差により開き、熱源機4の出口側から流出する冷温水の一部は、バイパス管8を通って還り配管3を介して熱源機4の入口側に流入し、これにより往き配管2の圧力が一定となる。また、空調負荷が増加し、空調機1aの流量調整弁5が開かれると、往き配管2の圧力が減少する。この場合、バイパス弁9が、往き配管2と還り配管3の圧力差により絞られ、熱源機4の出口側から流出する冷温水は、バイパス管8に流れる流量が絞られ、往き配管2側の流量が増加し、往き配管2の圧力は一定に保たれる。
図1において、10は往き配管2に設けられた二次側往き温度センサであり、二次側往き温度Ts2[℃]を測定する。上記二次側往き温度Ts2のデータは本発明に係るコントローラ17(図10、データ取得手段17q)にて検出し得る。11は二次側往き圧力計であり、二次側往き圧力Ps[kPa]を測定する。二次側往き圧力Psは本発明に係るコントローラ17(図10、データ取得手段17q)にて検出し得る。12は一次側流量センサであり、一次側流量F1[m/h]を測定する。一次流量センサ12の測定値は上記コントローラ17(図10、データ取得手段17q)にて検出し得る。
13は還り配管3に設けられた二次側還り温度センサであり、二次側還り温度Tr2[℃]を測定する。二次還り温度Tr2は上記コントローラ17(図10、データ取得手段17q)にて検出可能である。14は二次側流量センサであり、二次側流量F2[m/h]を測定する。二次側流量F2は上記コントローラ17(図10、データ取得手段17q)にて検出可能である。15は二次側還り圧力計であり、二次側還り圧力Pr[kPa]を測定する。二次側還り圧力Prは上記コントローラ17(図10、データ取得手段17q)にて検出可能である。16は一次側還り温度センサであり、一次側還り温度Tr1[℃]を測定する。一次側還り温度Tr1は上記コントローラ17(図10、データ取得手段17q)にて検出可能である。
そして、上記コントローラ17は、上記データ取得手段17qにて取得したデータ(Ts2,Ps,F1,Tr2,F2,Pr,Tr1)は、メモリ18(図12参照)のデータ記憶エリア18hに一時的に記憶可能に構成されている。
上記本発明に係るコントローラ17(図1、図5、図10、設定変更手段17m参照)は、熱源機4に附属している熱源機4の標準コントローラ7(図13参照)の入力端子7aを介してチラー出口温度設定手段7bに対して、チラー出口温度の変更を指令するものである。
上記熱源機4には上記標準コントローラ7が附属しており、以下、熱源機4のメーカ側のコントローラ7(以下、「標準コントローラ7」という)の動作を説明する。
標準コントローラ7(図13参照)は、熱源機4の初期出口温度が設計値のTso=7℃(暖房時はTso=45℃)となるように、冷房時は、空調機1aの運転容量(二次側運転容量)「空調機1aの運転容量=二次流量F2×(空調機1aの出口温度(=11℃固定)-空調機1aの入口温度(例えば7℃)」(暖房時は、空調機1aの運転容量(二次側運転容量)「空調機1aの運転容量=二次流量F2×(空調機1aの入口温度(=45℃固定)-空調機1aの出口温度(例えば40℃)」)により、熱源機4aの運転台数を決定する。即ち、当所、モジュール型のチラー4aの1台を運転し、空調機1a側の運転容量が、モジュール型のチラー4aの1台の定格容量の50%を超えると、2台目のモジュール型のチラー4aを稼働する、という制御を行う。そして、最大4台のモジュール型のチラー4aを運転している状況が、空調機1aが最大負荷の状況となる。上記チラーポンプ4bは4台共に、予め設定された一定の流量で運転される。尚、図1~図4では、チラー4の標準コントローラ7はチラー4a毎に設けられており、図13では全体のチラー4に対して標準コントローラ7が設けられているが、実質的には同一であり、図13の標準コントローラ7に対して、本発明に係るコントローラ17から出口温度変更信号が送出されると、当該標準コントローラ7から各チラー4aに対して出口温度変更信号が送出され、各チラー4aの出口温度が変更され、結果として図13の出口4dの出口温度が変更されることになる。
(1ポンプ方式、3方弁)図2のパターン
次に、空調機1bの流量調整弁が3方弁の場合を説明する(図2参照)。尚、図1との違いは、空調機1bの流量調整弁(流量調節弁)6が3方弁であることであり、それ以外は、図1と同様であるので、流量調整弁6を中心に説明する。
上記流量調整弁6は3方弁であって、その内の1方が往き配管2に接続されると共に、2方が空調機1bの入力側に接続され、3方は、空調機1bをバイパスして往き配管2から空調機1bの出口側の還り配管3に接続(接続点6’)されたパイバス管6aに接続されている。そして、上記流量調整弁6を空調機1bの空調負荷に応じて絞った場合は、往き配管2から流量調整弁6を介して空調機1bに入力する流量は減少するが、絞られた流量以外の流量は上記バイパス管6aを介して空調機1bの出口側の還り配管3に接続点6’から流出する。また、空調負荷に応じて流量調整弁6を開いた場合は、往き配管2から流量調整弁6を介して空調機1bに流入する流量が増加するが、上記バイパス管6aに流れる流量は減少する。
このように、3方弁の場合は、流量調整弁6の前段の往き配管2の流量と、空調機1bの出口側の接続点6’以降の流量は常時一定となる。
従って、一次側の配管と二次側の配管に圧力の差が生じることはないので、バイパス管8及びバイパス弁9はなくても支障はない。
上記熱源機4の構成(同一の空冷ヒートポンプチラーのユニットが増設可能なモジュール型を4台用いる)は図1と同様であるので、それらの説明は省略する。但し、標準コントローラ7の構成は、3方弁の流量調整弁6の場合は、2方弁の流量調整弁5の場合と異なる。
即ち、標準コントローラ7は、一次側と二次側の流量は常時一定なので、チラーポンプ4bは、二次側の空調負荷が比較的高い場合(空調立ち上がり時)は、チラーポンプ4bの定格容量の50%で、全4台を常に稼働している状態となり、二次側の空調負荷が通常の場合(通常の負荷変動時)は、チラーポンプ4bの定格容量の25%で、全4台を常に稼働している状態となる。
(2ポンプ方式、2方弁)図3のパターン
2ポンプ方式で空調機1aの流量調整弁5が2方弁の空調システムを図3に示す。
2ポンプ方式は、一次側(チラー4側)のチラーポンプ4bの他に、往き配管2の一次側と二次側の境界部に、ヘッダ22とヘッダ23を設け、ヘッド22とヘッダ23との間に二次側ポンプ21(本実施形態では2個)を設け、還り配管3の一次側と二次側の境界部にヘッダ24を設けたものである。上記ヘッダ22とヘッダ24との間には、往き配管2と還り配管3とをバイパスするバイパス管8とバイパス弁9が設けられている。
空調機1aには、チラー4のチラーポンプ4bのみならず、二次側ポンプ21により冷温水を送ることができ、規模が大きい建物に多く採用される。二次側ポンプ21は供給範囲が広く、二次側(空調機1a側)の熱供給に支障がないように、空調機1aの流量確保のために設置されている。
上記したように(図1、図2参照)、一次側設備としての熱源機4側は、二次側設備としての空調機1aと情報のやり取りは行っておらず、熱源機4側においては、空調機1aの状況を把握していない。
一方、上記二次側ポンプ21は、二次側設備であるから空調機1aの流量調整弁5の開度状況を把握しており、空調負荷が変動しても、往き配管2の圧力が一定となるように流量を調整する(送水圧力一定制御)。即ち、二次側ポンプ21は、流量調整弁5の開度を把握すると共に、該流量調整弁5の開度による二次側の圧力変動に基づいて、設定の圧力(二次側が一定の圧力)となるように流量を調整する。そして、一次側設備の熱源機4側のチラーポンプ4bは、二次側の流量に合わせるように流量を調整する。
従って、例えば空調負荷が低下し、空調機1aの流量調整弁5が絞られたとすると、往き配管2の圧力が上昇する。この場合、二次側ポンプ21の流量が減少し、上記往き配管2の圧力が一定に保持されるように動作が行われる。このとき、チラーポンプ4bは、二次側の流量に合わせるように流量を調整する。従って、チラーポンプ4bにおいても、流量が絞られ、その結果、往き配管2の圧力が一定となるように制御される。また、空調負荷が増加し、空調機1aの流量調整弁5が開かれたとすると、往き配管2の圧力が下降する。この場合、二次側ポンプ21の流量が増加し、上記往き配管2の圧力が一定に保持されるように動作が行われる。このとき、チラーポンプ4bにおいても、二次側の流量に合わせるように流量が増加し、その結果、往き配管2の圧力が一定となるように制御される。(この場合、チラーポンプ4bは、この場合だけ、二次側流量に合わせて、流量が可変するタイプになるように標準コントローラにて設定変更可能である)。
通常は、一次側流量≧二次側流量となるように設定される。チラー4の流量は(チラーポンプ4bの流量)は、上述のように、二次側の流量に合わせて可変し得るように構成される。バイパス配管8は、空調機1(二次側)とチラー4(一次側)の流量のアンバランスを解消するように自由に流れるようになっており、バイパス配管8の流水の方向は、往き配管2から還り配管3に向かうか、還り配管3から往き配管2に向かうかは、二次側と一次側の流量によって変わる。これは特に制御が必要ではなく、一次側流量が二次側流量より多いときはその余剰分がバイパス配管8に流れる。
即ち、一次側流量≧二次側流量の場合は、一次側流量の増加分は往き配管2側からバイパス配管8を通じて還り配管3側に流入し、一次側流量≦二次側流量の場合は、還り配管3側からバイパス配管8を通じて往き配管2側に流入し、一次側と二次側の流量のアンバランスを解消するように構成されている。
図3(図4も同様)において、符号20は一次側往き温度Ts1[℃]を測定するための温度センサである。また、符号25はヘッダ22とヘッダ23とをつなぐ調整弁である(図4も同様)。
(2ポンプ方式、3方弁)図4のパターン
次に、空調機1bの流量調整弁が3方弁の場合を説明する(図4参照)。尚、図3との違いは、空調機1bの流量調整弁6が3方弁であることであり、それ以外は、図1と同様であるので、流量調整弁6を中心に説明する。
上記流量調整弁6は3方弁であって、その構成は、図2のものと同様である。従って、上記流量調整弁6を空調機1bの空調負荷に応じて絞った場合は、往き配管2から流量調整弁6を介して空調機1bに入力する流量は減少するが、絞られた流量以外の流量は上記バイパス管6aを介して空調機1bの出口側の還り配管3に接続点6’から流出する。また、空調負荷に応じて流量調整弁6を開いた場合は、往き配管2から流量調整弁6を介して空調機1bに流入する流量が増加するが、上記バイパス管6aに流れる流量は減少する。このように、3方弁の場合は、流量調整弁6の前段の往き配管2の流量と、空調機1bの出口側の接続点6’以降の流量は常時一定となる。従って、一次側の配管と二次側の配管に圧力の差が生じることはないので、バイパス管8及びバイパス弁9はなくても支障はない。
この場合、二次側ポンプ21は常時一定流量にて運転し、チラーポンプ4bは一定流量にて動作をおこなう。
上記熱源機4の構成(同一の空冷ヒートポンプチラーのユニット4aが増設可能なモジュール型を4台用いる)は図3と同様であるので、それらの説明は省略する。但し、標準コントローラ7の構成は、3方弁の流量調整弁6の場合は、2方弁の流量調整弁5の場合と異なる。
即ち、標準コントローラ7は、一次側と二次側の流量は常時一定なので、チラーポンプ4bは、二次側の空調負荷が比較的高い場合(空調立ち上がり時)は、チラーポンプ4bの定格容量の50%で、全4台を常に稼働している状態となり、二次側の空調負荷が通常の場合(通常の負荷変動時)は、チラーポンプ4bの定格容量の25%で、全4台を常に稼働している状態となる(図2の制御と同様)。
以下、本発明の空調システムにおける熱源機の制御装置及び制御方法及びプログラムについて説明する。
本発明に係るコントローラ17は、図5に示すように、CPU26を有するコントローラ17と、図6から図9(暖房時は図16から図18)のプログラム(コンピュータプログラム)が記憶されたメモリ18と、データを予め記憶しておくと共に、必要なときにデータを記憶するメモリ18(具体的構成は図12参照)とから構成されており、上記プログラムに従って上記CPU26が空調システムの制御を行い、最終的に、標準コントローラ7のチラー出口温度設定手段7b(図13参照)に出口温度の変更指令を送出するものである。図10、図11、図15は上記コントローラ17の機能ブロック図であり、以下の動作説明と共に説明する。
また、上記メモリ18は、図12に示すように、本発明のコントローラ17は、空調機弁及び弁タイプ18fとして、1ポンプ方式で2方弁(図1参照)、よって、チラーポンプ4bは変流量タイプ、1ポンプ方式の3方弁(図2参照)、よって、チラーポンプ4bは定流量タイプ、2ポンプ方式で2方弁(図3参照)、よって、チラーポンプ4b、二次側ポンプ21は変流量タイプ、2ポンプ方式で3方弁(図4参照)、よって、チラーポンプ4b、二次側ポンプ21は定流量タイプ、であることが操作者によって予め設定されているものとする(図12、チラーポンプタイプ18g参照)。
本発明に係る空調システムは、上述の4つのパターン、即ち、1ポンプ方式で空調機1aの流量制御弁5が2方弁の場合(図1参照)、1ポンプ方式で空調機1bの流量調整弁6が3方弁の場合(図2参照)、2ポンプ方式で空調機1aの流量調整弁5が2方弁の場合(図3参照)、2ポンプ方式で空調機1bの流量調整弁6が3方弁の場合(図4参照)、の4種類の空調システムに全て対応して動作が可能である。
しかも、中間期とピーク期に応じて、冷房時、暖房時の各々において、省エネルギー運転を可能とするものである。
上記空調機1aが設けられている場合(流量調整弁5が2方弁)、負荷変動によって、流量調整弁5の可変制御により、二次側(空調機側)全体の流量に変化がある場合に適用される。尚、この場合、チラー4のチラーポンプ4bは必然的に変流量ポンプとなる。即ち、上述のように、空調負荷がチラーポンプ4bの定格能力の50%を超えると、チラーポンプ4bの稼働台数を増加するいわゆる変流量制御が行われる。この状況は予め、空調機弁タイプデータ18f(2方弁)として本発明に係るコントローラ17のメモリ18に記憶され(図12参照)、チラーポンプタイプデータ18g(変流量タイプ)としてメモリ18に記憶されている。
ビルの室内の在室者が空調機1の室内スイッチをオンすることで、二次側の空調機1aに対して空調運転指令入力信号が入力し、空調機1aがオンすると共に、チラー4がオンする。
(標準コントローラ7の制御)
上記標準コントローラ7は(図13参照)、チラー4の初期の出口温度設定Tso=7[℃](暖房時はTso=45[℃])となるように、チラーの運転容量(流量×出入口温度差)により、チラー4の運転台数が決定される(メーカ側の制御)。
(二次側負荷が比較的高い場合、空調立ち上がり時)
図1の場合、ここで、空調機1a(二次側)の流量(F2)300[m/h]、空調機1aの二次側還り温度が11[℃]、チラーの出口温度が7[℃](設計値=固定)とすると、
空調機の負荷熱量qr=300×(11-7)=1200
となり、空調機1の二次側負荷熱量qrが1200[Mcal/h]であったとする。
上記標準コントローラ7は、チラー4の流量は、定格能力の50%の能力が最もチラー4の効率が高いため、空調機1a(二次側)の負荷熱量qrが、チラー4の定格能力の50%を超えると、チラー4の台数を増加させるように制御を行う。いわゆる変流量制御を行う。この場合、チラー4はチラーポンプ4bの4台をフルに稼働する。
バイパス管8のバイパス弁9は(図1参照)、予め設定した差圧(二次側の往き配管2の二次側往き圧力計Psの値、と還り配管3の二次側還り圧力計Prの値の水圧の差)により、設定差圧以上なら開き、設定差圧以下なら閉まるという比例制御を行う。
(二次側負荷が空調立ち上がり時を過ぎて、通常の場合)
ここで、空調機1a(二次側)の流量(F2)200[m/h]、空調機1の二次側還り温度が9.5[℃]、チラーの出口温度が7[℃](設計値=固定)とすると、
空調機の負荷熱量qr=200×(9.5-7)=500
となり、空調機1の二次側負荷熱量qrが500[Mcal/h]であったとする。この場合は、チラー4のチラーポンプ4bは、例えば1台の稼働を行う。
このように、メーカ側のコントローラ7では、空調立ち上がり時から、通常負荷時にかけて、チラー4の出口温度は常時7[℃](暖房時は45[℃])(設計値)に固定されており、無駄が生じていた。
この標準コントローラ7の動作は、2ポンプ方式(冷房時、図3参照)も同様であり、空調機1の空調立ち上がり時、及び、通常の動作時において、同様にチラー4の出口温度は7[℃]の固定であり、無駄が生じていた。
即ち、成績係数(COP=冷房能力/消費エネルギー)の観点からすると、同一消費エネルギーにおいて冷房能力が高いほど(COPの数値が高いほど)エネルギー消費効率が良く、省エネに優れていることになる。そして、チラーの出口温度とCOPの関係は比例しており(チラー出口温度が上がると、COPの数値も上昇する)、チラーの出口温度を1℃上げることで(暖房時は1℃下げることで)、約3%のチラーの省エネが実現できるといわれている。上述のように、チラー4を使用した空調システムにおいて、チラー4の出口温度設定を、空調立ち上がり時から通常負荷時まで設計値の7℃に固定することは、チラーの省エネの観点から、好ましくない。
(以下、本発明に係るコントローラ17の説明)
本発明のコントローラ17(図10、設定変更手段17m)は、図13に示すように、標準コントローラ7(図13、チラー出口温度設定手段7b)に対して、中間期において、立ち上がり時を経過後、通常動作時において、制御周期毎(例えば30分毎)に、チラーの出口温度Tsを求め、その出口温度が、設計値である7℃を少なくとも1℃以上高くなっている場合は(暖房時は設計値である45℃を少なくとも1℃以上低くなっている場合)、当該温度に設定するように、上記標準コントローラ7に指令を行うことにより、最終的に標準コントローラ7によってチラー4の出口の設計温度が7[℃]を少なくとも1[℃]以上となる温度(暖房時は設計温度が45[℃]を少なくとも1[℃]以下となる温度)、となるように設定変更を行う。尚、チラーの出口温度が、設計値である7℃を少なくとも1℃以上高くなっている場合は(暖房時は設計値である45℃を少なくとも1℃以上低くなっている場合)、チラーの出口温度は、0.1[℃]刻みで(即ち、冷房時は7.1[℃]、7.2[℃]・・・、暖房時は44.9[℃]、44.8[℃]・・・)、設定可能である。これにより、強制的にチラー4の出口温度が7[℃]を超える温度(暖房時は45[℃]を下回る温度)になるように設定変更を行うことができるものである。尚、チラー出口温度を0.1[℃]上げた(暖房時は下げた)場合は、1[℃]上げた(下げた)場合に比べて、省エネ効果は約1/10となる。
本発明に係るコントローラ17は図6~図9(暖房時は図16~図18)に示すフローチャートの動作手順に示すプログラムを記憶しており、上述のように、これらの動作手順に従って動作を行うCPU26を有しているものとする。
また、本発明に係るコントローラ17は、図12のメモリ18を有しており、当該メモリ18内には、予め現在の時刻年月日を認識し得るカレンダーデータ18aを有していると共に、立ち上がり時間データ(例えば30分)18b、制御周期データ(例えば30分)18c、温度異常データTh1(例えば冷房時は15[℃]、暖房時は37[℃])18d、温度補償データTh2(例えば冷房時は10[℃]、暖房時は42[℃])18e、チラーの出口温度の設計値データ(Tsoデータ)(例えば冷房時は7[℃]、暖房時は45[℃])18i、チラーの入口温度の設計値データ(Troデータ)(例えば冷房時は12[℃]、暖房時は40[℃])18j、空調機弁タイプ(適用される空調機が、2方弁か3方弁かの何れか)18f、チラーポンプタイプ(適用されるチラーのポンプが、定流量タイプか変流量タイプかの何れか)18gが予め設定されているものとする。
また、上記メモリ18にはデータ記憶エリア18hが設けられており、上記コントローラ17は、データ取得手段17qにより上記各種温度センサ10,13,16,20、圧力センサ11,15、流量計12,14にて測定した温度データ、圧力データ、流量データを上記メモリ18のデータ記憶エリア18hに一時的に記憶し得るように構成されている。
また、上記コントローラ17は、メモリデータ取得手段17pを介して、各ステップにおいて、上記メモリ18に記憶された各種データ(データ記憶エリア18hに一時的に記憶されたデータを含む)を取得することが可能となっている。
さらに、上記コントローラ17は、図13に示すように、標準コントローラ7の外部端子7a(チラー4の出口温度の設定変更用入力端子)に接続されており、上記コントローラ17の設定維持手段17n及び設定変更手段17mから、上記外部端子7aを通じて、上記標準コントローラ7にチラーの出口温度の設定維持信号、又は、設定変更信号を送出し得るように構成されている。
上記標準コントローラ7は、図14に示すフローチャートの動作手順のプログラムが記憶されたCPUを有するものであり、上記コントローラ17から入力端子7aを介して設定変更信号が入力したとき、チラー4の出口温度Tsを設計値である7[℃](冷房時)から、設定変更信号が示す温度(7[℃]+0.1[℃]以上の温度)に設定を変更するものである。暖房時はチラー4の出口温度Tsを設計値である45[℃](冷房時)から、設定変更信号が示す温度(45[℃]-0.1[℃]以上の温度)に設定を変更するものである。
(本発明に係るコントローラ17の動作、中間期、1ポンプ方式、冷房(暖房)の場合)(図1、図2の場合)
尚、以下の説明において、暖房時は冷房時の制御が逆になるだけであるので、冷房時をメインに説明し、暖房時はかっこ書又は冷房時の後に対応式等を記載するか、暖房時を適宜、冷房時の後に説明することにより行う。
室内の在室者が空調機1のスイッチをオンし(図6、図16、P1参照)、空調機1とチラー4がオンして、空調機1の立ち上がりの状態にあるものとする(図6、図16、P2参照)。
本発明に係るコントローラ17(図10、中間期ピーク期判別手段17a)は、メモリデータ取得手段17pからのカレンダーデータ18a(図12参照)に基づいて、まず現在の年月日を確認し、中間期であることを認識する(図6P3、図16、P3参照)。尚、上記コントローラ17の上記中間期の判断は、上述の季節的な面と、空調機1の空調負荷が熱源機の定格能力の80%未満の場合の何れかに基づいて判断される。
次に、上記コントローラ17(図10、立ち上がり時間判別手段17b)は、メモリデータ取得手段17pが取得した立ち上がり時間データ18b(例えば30分)に基づいて、空調機1がオンされてから30分が経過したか否かを検出する(図6、図16、P4参照)。これは空調機1の立ち上がり時間を待つためのステップである。尚、立ち上がり時間データ18b(30分)は設定変更可能である。
一定時間(30分)が経過していない場合は、図6(図16)のステップP15に移行し、上記コントローラ17(図10、設定維持手段17n)は、標準コントローラ7の入力端子7aを介して、上記コントローラ7(図13、チラー出口温度設定手段7b)に対して、チラー4の出口温度Tsを設計値の7[℃](暖房時は45[℃])を維持するように指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値のTso=7[℃](暖房時はTso=45[℃])のままとし、変化しない。
上記コントローラ17(図10、立ち上がり時間判別手段17b)は上記一定時間(30分)が経過したと判断した場合は、次のステップP5に移行する(図6、図16参照)。
上記コントローラ17(図10、制御周期判別手段17c)は、メモリデータ取得手段17pが取得した制御周期データ18c(例えば30分)を取得し、制御周期(30分)が経過したか否か判断する(図6、図16、P5参照)。上記コントローラ17は、制御周期を経過したと判断した場合は、空調機1は立ち上がり時間を過ぎて通常の動作を行っているものと認識する(図6、図16、P5参照)。この制御周期は、例えば30分でもよいし、或いは、1時間でも良く、設定変更可能である。
この制御周期(30分)が未だ経過していないと上記コントローラ17(図10、制御周期判別手段17c)が判断した場合は、図6(図16)のステップP15に移行し、上記コントローラ17(図10、設定維持手段17n)は、同様に、標準コントローラ7(図13、チラー出口温度設定手段7b)に対して、チラー4の出口温度Tsを設計値の7[℃](暖房時は設計値の45[℃])を維持するように指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値のTso=7[℃](暖房時はTso=45[℃])のままとし、変化しない。
次に、図6(図16)ステップP5にて制御周期(30分)が経過したと上記コントローラ17(図10、制御周期判別手段17c)が判断した場合は、空調機1は通常の動作を行っていると判断し、上記コントローラ17(図10、温度異常判別手段17d)は、二次側の往き配管2の冷水(暖房時は温水)の二次側往き温度Ts2(図1、図2の温度センサ10の測定値)が、メモリ18に記憶しているTh1=15℃(Th1データ18d)(暖房時はTh1=37[℃])と比較して高いか否かを判断する(Ts2>Th1)(暖房時はTs2<Th1)(図6、図16、ステップP6参照)。このTh1(温度異常)を15[℃](冷房時)とする根拠は、チラー4の出口温度の設計値が7[℃]であり、一般的に使われるチラー4の出口温度と入口温度の差ΔTの設計値が7[℃]であるから、チラー4の入口温度が14℃(7+ΔT)に対して、+1[℃](=15[℃])にTh1(温度異常)を設定している。
暖房時は、このTh1(温度異常)を37[℃]とする根拠は、チラー4の出口温度の設計値が45[℃]であり、一般的に使われるチラー4の出口温度と入口温度の差ΔTの設計値が7[℃]であるから、チラー4の入口温度が38℃(7+ΔT)に対して、-1[℃](=37[℃])にTh1(温度異常)を設定している。
このTh1=15[℃](冷房時)は、二次側の往き配管2の冷水の二次側往き温度Ts2が15[℃]以上になると、空調になんらかの支障をきたすと思われる温度異常(例えば、在室者が暑く感じる、除湿があまりできていない状態、機械の排熱処理に対応できていない状態など)に設定している(暖房時は、二次側往き配管2の温水の二次側往き温度Tsが37[℃]以下になると、在室者が寒く感じる状態に設定している)。
よって、上記コントローラ17(図10、温度異常判別手段17d)は、データ取得手段17qを介して、二次側往き温度センサ10からの温度データTs2の入力を受け、当該二次側往き温度データTs2と上記設定温度Th1(15[℃])(暖房時は37[℃])とを比較する(図6、図16、ステップP6参照)。
冷房時は、上記コントローラ17(図10、温度異常判別手段17d)は、上記二次側往き温度データTs2の入力を受け、二次側の往き配管2の冷水の二次側往き温度Ts2がTh1(=15℃)より高いと判断した場合は、未だチラー4の出口側の冷水の出口温度Ts2が設計値の7[℃]まで冷えていない状況なので、図6のステップP15に移行し、設定維持手段17nがチラー4の出口温度Tsを設計値の7[℃]に設定し、標準コントローラ7にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃]のままとし、変化しない。
暖房時は、上記コントローラ17(図10、温度異常判別手段17d)は、上記二次側往き温度データTs2の入力を受け、二次側の往き配管2の温水の二次側往き温度Ts2がTh1(=37℃)より低いと判断した場合は、未だチラー4の出口側の温水の出口温度Ts2が設計値の37[℃]まで温まっていない状況なので、図16のステップP15に移行し、設定維持手段17nがチラー4の出口温度Tsを設計値の45[℃]に設定し、標準コントローラ7にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の45[℃]のままとし、変化しない。
上記コントローラ17(図10、温度異常判別手段17d)は、現時点での上記温度データTs2の入力を受け、二次側の往き配管2の冷水(温水)の二次側往き温度Ts2がTh1(=15[℃])(暖房時はTh1=37[℃])より低い(暖房時は高い)と判断した場合は、図6、図16のステップP7に移行する。
図6(図16)のステップP7において、上記コントローラ17(図10、温度補償判別手段17e)は、二次側の往き配管2の温度センサ10(図1、図2)からの温度データTs2の入力を、データ取得手段17qを介して受け、二次側往き温度Ts2が、メモリデータ取得手段17pにて取得したメモリ18(図12参照)に記憶していたTh2=10[℃](Th2データ18e)(暖房時はTh2=42[℃])と比較して高いか否かを判断する(Ts2>Th2)(暖房時はTs2<Th2)。ここで、冷房時のTh2=10[℃]の根拠は、特に決まりはないが、建物内の在室者が蒸し暑さを感じることのない温度に設定される。目安としては、チラー4の設計出口温度Tsoである7[℃]+1[℃]~5[℃]程度が望ましい(本発明の場合は7[℃]+3[℃]=10[℃]としている)。暖房時のTh2=42[℃]の根拠は、特に決まりはないが、建物内の在室者が寒さを感じることのない温度に設定される。目安としては、チラー4の設計出口温度Tsoである45[℃]-1[℃]~5[℃]程度が望ましい(本発明の場合は45[℃]-3[℃]=42[℃]としている)。
上記コントローラ17(図10、温度補償判別手段17e)は、二次側往き温度センサ10からの温度データの入力を受け、当該温度データTs2と上記設定温度Th2(10[℃])(暖房時はTh2=42[℃])とを比較する。
上記コントローラ17(図10、温度補償判別手段17e)は、冷房時は、二次側往き温度Ts2がTh2(=10[℃])より未だ高いと判断した場合は、チラー4の出口側の冷水の温度Tsが設計値の7[℃]まで冷えていない状況なので、図6のステップP15に移行し、チラー4の出口温度Tsを設計値の7[℃]に設定し、標準コントローラ7(図13、チラー出口温度設定手段7b)にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃]のままとし、変化しない。
暖房時は、上記コントローラ17(図10、温度補償判別手段17e)は、二次側往き温度Ts2がTh2(=42[℃])より未だ低いと判断した場合は、チラー4の出口側の温水の温度Tsが設計値の45[℃]まで温まっていない状況なので、図16のステップP15に移行し、チラー4の出口温度Tsを設計値の45[℃]に設定し、標準コントローラ7(図13、チラー出口温度設定手段7b)にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の45[℃]のままとし、変化しない。
上記コントローラ17(図10、温度補償判別手段17e)は、冷房時は、二次側往き温度Ts2がTh2(=10[℃])より低いと判断した場合は、空調機1によって室内がかなり冷えてきている状況なので、図6のステップP8に移行する。暖房時は、上記コントローラ17(図10、温度補償判別手段17e)は、二次側往き温度Ts2がTh2(=42[℃])より高いと判断した場合は、空調機1によって室内がかなり温まっている状況なので、図16のステップP8に移行する。
当該ステップP8において、上記コントローラ17(図10、熱量演算手段17f)は、データ取得手段17qを介して、二次側の還り配管3の流量データ(F2)を流量センサ14(図1、図2参照)から取得すると共に、二次側還り温度の温度データ(Tr2)を温度センサ13から取得する。また、チラー4の前時刻設定出口温度pTsを取得して、現在の空調機1(二次側)の要求熱量qrを以下の式(1)により求める。尚、前時刻設定出口温度pTsは、制御周期の前時刻、本実施形態の場合は、制御周期である30分前のチラー4の設定出口温度であり、pTs(=Tso)=7[℃](暖房時はpTs=45[℃」)となる。尚、前時刻設定出口温度pTsは、例えば、前時刻に設定した熱源機4の出口温度であり、当初は設計出口温度Tsoの7℃となり、制御周期以後は、前回の時刻(例えば30分前)に出口温度演算手段にて求めた熱源機の出口温度Tsとなる。
qr=F2×(Tr2-pTs) (1) (図6ステップP8)
(暖房時は、qr=F2×(pTs-Tr2) (1’))(図16ステップP8)
qr:空調機側(二次側)要求熱量[Mcal/h]
F2:二次側流量[m/h]
Tr2:二次側還り温度[℃]
pTs:前時刻設定出口温度[℃]
この場合、F2=200[m/h]、Tr2=9.5[℃](暖房時はTr2=42[℃」)、pTs=7[℃](暖房時はpTs=45[℃])であったとすると、空調機1の要求熱量qr=500[Mcal/h](暖房時はqr=600[Mcal/h])となる。
上記コントローラ17(図10、熱量演算手段17f)は、上記qrの値(500[Mcal/h])(暖房時は600[Mcal/h])、二次側流量F2データをメモリ18のデータ記憶エリア18h(図12参照)に記憶する。
次に、上記コントローラ17(図10、熱量判別手段17g)は、図6のステップP9(暖房時は図16のステップP9)において、上記ステップP8で計算した空調機1の要求熱量qrと、チラー4の定格能力(一次側定格能力)q1との比較を行う(qr≦q1)。この場合、チラー4の定格能力は、チラー4の全台数(4台)の合計の定格能力となる。これは、チラー4aの全台数が運転する能力の範囲内であれば、制御可能であり、熱供給に支障はないと判断するためである。この場合、チラー4aの1台の定格能力は例えば500[Mcal/h](暖房時は600[Mcal/h])とすると、4台ではq1=2000[Mcal/h]となる。
上記コントローラ17(図10、熱量判別手段17g)は、
qr(空調機1の要求熱量=500(暖房時は600)≦q1(チラー4の定格能力=2000)
の判断を行い、この場合、空調機1の要求熱量qrが、チラー4の定格能力q1以下なので、制御は可能であると判断し(空調機1の要求熱量qrが熱源機4の定格能力の範囲内であると判断され)、次のステップP10(図6、図16)に進む。
尚、要求熱量qrがチラー4の定格能力q1を超えている場合は、制御不能と判断し、図6のステップP15(暖房時は図16のステップP15)に移行し、チラー4の出口温度Tsを設計値の7[℃](暖房時は45[℃])に設定し、標準コントローラ7にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃](暖房時は45[℃])のままとし、変化しない。
次に、コントローラ17(図10、チラーポンプ判別手段17h)は図6のステップP10(暖房時は図16のステップP10)に移行し、一次側チラー4のポンプ4bが変流量であるか否かを判断する。
上記コントローラ17(図10、チラーポンプ判別手段17h)は、一次側チラー4のポンプ4bが「変流量」である場合は(図1の空調機1aの流量調整弁5が2方弁の場合)、図6(暖房時は図16)のステップP11に進む。この場合、空調機1は、2方弁の流量調節弁5を有している空調機1aが設置されているものとする。尚、この場合、コントローラ17は、空調機1aの流量調節弁5が2方弁であることは、当初から上記コントローラ17の設置者が、対応する空調システムの設備に合わせて、メモリ18の空調機弁タイプデータ18f(図12参照)に予め記憶しており、チラーポンプタイプデータ18g(図12参照)も空調機1aに合わせて「変流量」であることが予め記憶されており、上記コントローラ17(図10、チラーポンプ判別手段17h)はこれらのデータを予め認識している。従って、上記コントローラ17(チラーポンプ判別手段17h)は、メモリデータ取得手段17pからのチラーポンプタイプデータ18gに基づいて、チラーポンプが「変流量」であることを認識し、図6(図16)のステップP11に移行する。
上記コントローラ17(図10、出口温度演算手段17i)は、図6(図16)のステップP11(変流量)において、現時点のチラー4の出口温度Tsを、二次側流量F2と二次側要求熱量qrに基づいて次式(2)により求める。
Ts=Tro-qr/F2 (2)
(暖房時 Ts=Tro+qr/F2 (2’))
Ts:チラー4の出口温度[℃]
Tro:Tso(7[℃])+設計温度差ΔT(ΔT=5[℃]~7[℃]
(暖房時 Tro:Tso(45[℃]-設計温度差ΔT(ΔT=5[℃]~7[℃])
Tro[℃]は、設計値であり、Tso(チラー出口温度の設計値:7[℃])に、設計温度差ΔT[℃]を加えた温度であり、通常は、Tro=7[℃]+5[℃]=12[℃]に設定しているとする(図12、メモリ18のTroデータ18j参照)。暖房時は、Tro[℃]は、設計値であり、Tso(チラー出口温度の設計値:45[℃])に、設計温度差ΔT[℃]を引いた温度であり、通常は、Tso=45[℃]-5[℃]=40[℃]に設定しているとする(図12、メモリ18のTroデータ18j参照)。
上記コントローラ17(図10、出口温度演算手段17i)は、メモリデータ取得手段17pを介して上記メモリ18から上記Troデータ(12[℃])(暖房時は40[℃])を読み出し、同じくメモリ18のデータ記憶エリア18hから空調機1a側の要求熱量qrと二次側流量F2を読み出し、上記式(2)の演算を行い、チラー4の出口温度Ts[℃]を求め、メモリ18のデータ記憶エリア18hに記憶する。
例えば、
Ts=Tro(12[℃])-[qr(500[Mcal/h])÷F2(200[m/h])]
=9.5[℃]
暖房時は、
Ts=Tro(40[℃])+[qr(600[Mcal/h])÷F2(200[m/h])]
=43[℃]
となる。
上記コントローラ17(図10、出口温度演算手段17i)は、演算結果Ts=9.5[℃](暖房時はTs=43[℃])をメモリ18のデータ記憶エリア18hに記憶する。その後、上記コントローラ17(図10、出口温度比較手段17k)は、図6(図16)のステップP13に移行し、上記チラー4の出口温度Tsの温度(9.5[℃])が、設計値のTso=7[℃]より高いか否かを判断する(Ts>Tso)(暖房時はTs<Tso)。
図6(暖房時は図16)のステップP13において、上記コントローラ17(図10、出口温度比較手段17k)は、上記ステップP11で求めたチラー出口温度Ts(=9.5℃)(暖房時はTs=43[℃])は、設計値であるTso(=7[℃])(暖房時はTso=45[℃])よりも高い(暖房時は低い)ので、図6(暖房時は図16)のステップP13においてYESとなり、上記コントローラ17(図10、設定変更手段17m)は、標準コントローラ7(図13、チラー出口温度設定手段7b)に対して、入力端子7aを介して(図13参照)、チラー4の出口温度Tsを9.5[℃](暖房時は43[℃])に設定変更するように指令する(図6(暖房時は図16)P14参照)。
その結果、標準コントローラ7(図13、チラー出口温度設定手段7b)は、入力端子7aを介して設定変更信号が入力したことを検出し(図14P1参照)、チラー4の出口温度設定を設計値の7[℃]から9.5[℃](暖房時は45[℃]から43[℃])に変更する(図14P2参照)。
これにより、チラー4の出口温度Tsは7[℃]から1[℃]以上高い9.5[℃](暖房時は45[℃]から1[℃]以上低い43[℃])に上昇(暖房時は下降)させることができ、熱源機の効率を向上させることができる。
尚、上記コントローラ17は、図6(暖房時は図16)のステップP13において、上記チラー4の出口温度Tsが設計温度Tso=7[℃](暖房時はTso=45[℃])より低い又は等しい(暖房時は高い又は等しい)と判断した場合は、図6(図16)のステップP15に移行し、設定維持手段17nが、チラー4の出口温度Tsを7[℃](暖房時は45[℃])に設定し、標準コントローラ7(図13、チラー出口温度設定手段7b)にその旨指令する(図6、図16P15参照)。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃](暖房時は45[℃])のままとし、変化せず、ステップP4に戻る。
その後、コントローラ17はステップP4に戻り、立ち上がり時間は既に経過しているので、ステップP5に移行し、制御周期判別手段17c(図10参照)が、制御周期30分が経過しているか否かを判断する。以降は、30分の制御周期毎に、ステップP8にて空調機側(二次側)要求熱量qrを演算し、制御可能であれば、ステップP11において、チラー出口温度を演算により求め、設計値(7[℃])(暖房時は45[℃])よりも高い(暖房時は低い)場合は、標準コントローラ7に対して、チラー出口温度を上げる(暖房時は下げる)ように指示を行う(図6(暖房時は図16)ステップP14参照)。
このように、中間期においては、制御周期である30分毎に、二次側要求熱量qrを演算により求め、制御可能であれば、演算で求めた二次側要求熱量qrに対応するチラー出口温度Tsを演算により求め、その値(温度)が、メーカ側のチラー出口温度の設計値(7[℃])より1[℃]以上高い場合(暖房時は1[℃]以上低い場合)は、当該演算により求めたチラーの出口温度Tsに設定変更するように、標準コントローラ7に対して設定変更信号を送出するものである。これにより空調システム全体として、省エネを図ることができる。
(図2 1ポンプ方式、空調機1bの流量調整弁6が3方弁の場合)
次に、空調機1bの流量調整弁6が3方弁の場合を説明する。
図6(暖房の場合は図16)においてステップP1~P9までは上記図1の場合と同様なので、説明を省略する。
図6(暖房の場合は図16)のステップP10において、上記コントローラ17(図10、チラーポンプ判別手段17h)は、一次側チラー4のポンプ4bが「定流量」である場合は、図6(暖房の場合は図16)のステップP12に進む。この場合、空調機1は、図2の3方弁の流量調節弁6を有している空調機1bが設置されているものとする。
上記コントローラ17(図10、出口温度演算手段17j)は、図6(図16)のステップP12において、チラー4の出口温度Tsを下記の式(3)より求める。
Ts=Tro-qr/F1 (3)
(暖房時 Ts=Tro+qr/F1 (3’))
Ts:チラー4の出口温度[℃]
Tro:Tso(7[℃])+設計温度差ΔT(ΔT=5[℃]~7[℃])
(暖房時 Tro:Tso(45[℃]-設計温度差ΔT(ΔT=5[℃]~7[℃])
Tro[℃]は、設計値であり、上記ステップP11と同様であり、12[℃]に設定しているとする。尚、1ポンプ方式のため、常に、一次側流量≧二次側流量であり、分母が大きいF1の方が安全側になるので、分母は「F1」としている。
暖房時は、Tro[℃]は、設計値であり、Tso(チラー出口温度の設計値:45[℃])に、設計温度差ΔT[℃]を引いた温度であり、通常は、Tro=45[℃]-5[℃]=40[℃]に設定しているとする(図12、メモリ18のTroデータ18j参照)。
上記コントローラ17(図10、出口温度演算手段17j)は、上記メモリ18(図12参照)から上記Troデータ(12℃)(暖房時は40[℃])18jを読み出し、同じくメモリ18のデータ記憶エリア18hから空調機側の要求熱量qrを読み出す。また、コントローラ17(図10、出口温度演算手段17j)は、データ取得手段17qを介して、一次側の流量センサ12から一次側流量F1(例えば、400[m/h]とする)の流量データF1を検出し、当該流量データF1をメモリ18のデータ記憶エリア18hに記憶する。
そして、上記コントローラ17(図10、出口温度演算手段17j)は、上記式(3)の演算を行い、チラー4の出口温度Ts[℃]を求め、メモリ18のデータ記憶エリア18hに記憶する。
例えば、
Ts=Tro(12[℃])-[qr(500[Mcal/h])÷F1(400[m/h]]=10.75[℃]
になったとする。
暖房時は、
Ts=Tro(40[℃])+[qr(600[Mcal/h])÷F1(400[m/h])]
=41.5[℃]
上記コントローラ17は、計算結果Ts=10.75[℃](暖房時はTs=41.5[℃])をメモリ18(図12参照)のデータ記憶エリア18hに記憶する。その後、上記コントローラ17(図10、出口温度比較手段17k)は、図5のステップP13に移行し、上記チラー4の出口温度Tsの温度(10.75[℃])(暖房時はTs=41.5[℃])が、設計値のTso=7[℃](暖房時はTso=45[℃])より高いか否かを判断する(Ts>Tso)(暖房時はTs<Tso)。
図6(暖房時は図16)のステップP13において、上記コントローラ17(図10、出口温度比較手段17k)は、上記ステップP12で求めたチラー出口温度(10.75[℃])(暖房時は41.5[℃])は、設計値であるTso(=7[℃])よりも高いので(暖房時は設計値の45[℃]より低いので)、図6(暖房時は図16)のステップP14において、上記コントローラ17(図10、設定変更手段17m)は、チラー4の出口温度Tsを10.75[℃](暖房時は41.5[℃])に設定すべく、標準コントローラ7にその旨指令する。その結果、標準コントローラ7(図13、チラー温度設定手段7b)は、チラー4の出口温度設定を設計値の7[℃]から、10.75[℃](暖房時は設計値の45[℃]から41.5[℃])に変更する(図14P1~P2参照)。
これにより、チラー4の出口温度Tsを7[℃]から、1[℃]以上高い10.75[℃]に上昇させることができ(暖房時は45[℃]から1[℃]以上低い41.5[℃]に低下させることができ)、熱源機の効率を向上させることができる。
その後、コントローラ17はステップP4に戻り(図6、図16参照)、立ち上がり時間は既に経過しているので、ステップP5に移行し、制御周期判別手段17cが制御周期30分が経過しているか否かを判断する。以降は、30分の制御周期毎に、ステップP8にて空調機側(二次側)要求熱量qrを演算し、制御可能であれば、ステップP12において、チラー出口温度Tsを演算により求め、設計値(7℃)よりも高い場合は(暖房時は設計値(45℃)より低い場合は)、標準コントローラ7に対して、チラー出口温度を上げるように(暖房時は下げるように)指示を行う(図6、図16、ステップP14)。
このように、中間期においては、制御周期である30分毎に、二次側要求熱量qrを演算により求め、制御可能であれば、演算で求めた二次側要求熱量qrに対応するチラー出口温度Tsを演算により求め、その値(温度)が、メーカ側のチラー出口温度の設計値より1℃以上高い場合は(暖房時は1℃以上低い場合は)、当該演算により求めたチラーの出口温度に設定変更するように、標準コントローラ7に対して設定変更信号を送出するものである。これにより空調システム全体として、省エネを図ることができる。
(本発明に係るコントローラ17の動作、中間期、2方弁、2ポンプ方式、冷房、暖房時共通、図3参照)
2ポンプ方式の場合のコントローラ17の制御は、1ポンプ方式の制御(図1、図2)の手順と略同一であるが、図6(暖房時は図16)のステップP7とステップP8の間に、2ポンプ方式における特有の制御が存在するので、その点について図7にて説明する(冷房時暖房時共通)。
ところで、チラー4の出口側温度Tsを1℃上げると(暖房時は1℃下げると)、チラー4の最大3%の省エネ効果が得られるといわれている。この2ポンプ方式では、チラー4の出口側温度Tsを1℃上げると(暖房時は1℃下げると)、空調機1の入口側と出口側の冷水(温水)の温度差が減少するので(熱量=流量×温度差)、必要な熱量を確保するために、空調機1の二方弁5が自動的に開いて、二次側の流量が増大することが予測される(尚、空調機1bが3方弁の場合(図4参照)は結果的に二次側流量に変動はないので、二次側流量の増加を考慮する必要はない)。このとき、2ポンプ方式では、二次側ポンプ21の流量が増加し(二方弁5が自動的に開くと、圧力変動により、二次側ポンプ21は設定の圧力となるように流量を調整する)、空調システム全体としての省エネ効果が減少することが予測される。
そこで、図7のステップP16~P18を設け、二次側流量の増加率が基準値I0(110%)を超えている場合は、チラー4の出口温度設定を変化なしとし(設計値の7[℃]のままとし)(暖房時は45[℃]のままとし)、二次側流量の増加率が基準値I0(110%)を超えていない場合のみ、チラー4の出口温度設定を上昇する方向(暖房時は下降する方向)に変更するようしたものである。尚、この基準値I0の110%は、メモリ18(図12参照)の基準値データ18kとして予め記憶されている。
上記図6(暖房時は図16)のステップP7において、上記コントローラ17(図10、温度補償判別手段17e)において、二次側の往き配管2の二次側往き温度Ts2が、Th2(10[℃])(暖房時は42[℃])より低下(暖房時は上昇)していると判断した場合は、図7のステップP16に移行し、上記コントローラ17(図11、流量比較手段17r)は、一次側の流量F1と二次側の流量F2とを比較する。
このとき上記コントローラ17(図11、流量比較手段17r)は、データ取得手段17qを介して、一次側流量センサ12及び二次側流量センサ14から一次側流量F1、二次側流量F2を取得し、認識すると共に、メモリ18のデータ記憶エリア18hに各データを記憶する。
次に、上記コントローラ17(図11、二次側流量増加率演算手段17s)は、上記一次側流量F1と二次側流量F2の値から、二次側流量増加率I2を次式(4)により求め(図7P17参照)、上記コントローラ17(図11、増加率比較手段17t)は、メモリ18に予め記憶している基準値(110%)18kと比較する(I2≧I0)(図7、P18参照)。
I2=F2/F1×100[%] (4)
その後、上記コントローラ17(図11、増加率比較手段17t)は、二次側増加率I2が基準値I0(110%)以上の場合は(図7、P18参照)、図6のステップP15に移行して、チラー4の出口温度Tsを設計値の7[℃](暖房時は45[℃])に設定し、標準コントローラ7にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃](暖房時は45[℃])のままとし、変化しない。従って、温度差は維持されるので、空調機1の2方弁6が自動的に開くことはない。
一方、上記コントローラ17(図11、増加率比較手段17t)は、二次側流量増加率I2が基準値I0(110%)より低い場合は(図7ステップP18)、図6(図16)の次のステップP8に移行して二次側要求熱量qrの演算に入る。この場合、図6(図16)のステップP9~P13まで同様に移行し、図6(図16)のステップP14において、チラー4の一次側往き温度Tsが、設計値であるチラー出口温度Tso(7[℃])以上(暖房時はTsoが45[℃]以下)になった場合は、上記コントローラ17(図10、設定変更手段17m)は、当該一次側往き温度Tsを標準コントローラ7(図13、チラー出口温度設定手段7b)に指令する。即ち、コントローラ17(図11、増加率比較手段17t)は、熱量演算手段17fに対し、通常の制御をおこなう旨の指令を与える。
上記標準コントローラ7(図13、チラー出口温度設定手段7b)は、図14のステップP1~P2にて、チラー4の出口温度をTs(>7℃)(暖房時はTs(<45℃))に設定する。
これにより、二次側流量の増加率I2が基準値(110%)より低い場合にのみ、チラー4の出口温度Tsを7[℃]以上に上昇(暖房時は45[℃]以下に下降)させることができ、無駄な動作を行わずに、空調システムの効率を向上させることができる。
尚、2ポンプ方式で空調機1bが3方弁の場合(図4の場合)は、二次側の圧力に変化はなく、流量は一次側流量も二次側流量も一定流量になり、二次側の流量に変動がないので、コントローラ17は、図7の制御に移行することなく、ステップP7からステップP8に移行する。
次に、ピーク期の制御について説明する。
(本発明に係るコントローラ17の動作、ピーク期、1ポンプ方式、2ポンプ方式共通)(冷房時 図8、図9、暖房時 図17、図18参照)
室内の在室者が空調機1のスイッチをオンし(図8、図17、P1参照)、空調機1とチラー4がオンして、空調機1の立ち上がりの状態にあるものとする(図8、図17、P2参照)。
本発明に係るコントローラ17(図15、中間期ピーク期判別手段17a)は、メモリデータ取得手段17pからのカレンダーデータ18a(図12参照)に基づいて、まず現在の年月日を確認し、ピーク期であることを認識する(図8、図17、P3参照)。上記中間期/ピーク期判断手段17aによる判断は、上述の季節的な面と、空調機の空調負荷が熱源機の定格能力の80%以上の場合の何れかに基づいて判断される。
以下、図8(暖房時は図17)のステップP4からステップP7までは、上記中間期と同様である。即ち、図8(図17)のステップP4で立ち上がり時間(例えば30分)の経過を待ち、図8(図17)のステップP5で制御周期(例えば30分)の経過を待ち、図8(図17)のステップP6で、チラーの二次側往き温度Ts2が設定温度Th1(=15[℃])(暖房時はTh1=37[℃])を超えた否か判断し、Ts2が15[℃]より低い場合は(暖房時はTh1=37[℃]より高い場合は)、図8(図17)のステップP7で、チラーの二次側往き温度Ts2が設定温度Th2(=10[℃])(暖房時はTh2=42[℃])を超えたか否か判断し、Ts2が10[℃]より低い場合は(暖房時は42[℃]を超えた場合は)、図8、図17のステップP8に移行する。
尚、上記各ステップP4~P7にて、立ち上がり時間を経過していない場合、制御周期を経過していない場合、Ts2が15℃を超える場合(暖房時はTs2が37[℃]より低い場合)、Ts2が10[℃]を超える場合は(暖房時はTs2が42[℃]より低い場合)、何れも図9、図18のステップP20に移行し、チラー4の出口温度Tsを設計値の7[℃]に設定し(暖房時は設計値の45[℃])、標準コントローラ7(図13、チラー出口温度設定手段7b)にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃]のままとし(暖房時は45℃のまま)、変化しない。
次に、ステップP8(図8、図17)にて上記コントローラ17(図15、データ取得手段17q)は、一次側流量センサ12から一次側流量F1を取得すると共に、二次側流量センサ14から二次側流量F2を取得し、上記コントローラ17(図15、流量比較手段17r’)は、一次側流量F1と二次側流量F2を比較する(図8、図17P8参照)。
ところで、チラー4の出口側温度Tsを1[℃]上げると(暖房の場合は1[℃]下げると)、チラー4の最大3%の省エネ効果が得られるといわれている。2ポンプ方式では(図3の場合)、チラー4の出口側温度Tsを1[℃]上げると(暖房の場合は1[℃]下げると)、空調機1の入口側と出口側の冷水の温度差が減少するので(熱量=流量×温度差)、必要な熱量を確保するために、空調機1bの二方弁5が自動的に開いて、二次側の流量が増大することが予測される。この2ポンプ方式では(図3の場合)、二次側ポンプ21の流量が増加し、空調システム全体としての省エネ効果が減少することが予測される。
尚、1ポンプ方式では(図1、図2参照)、常に一次側流量≧二次側流量となっているので、二次側流量が一次側流量より大きくなることはない。また、空調機1bが3方弁の場合(図4の流量調整弁6の場合)は、二次側流量に変動はない。
そこで、図8(図17)ステップP8~P10を設け、二次側流量の増加率が基準値I0(110%)を超えている場合は、チラー4の出口温度設定を変化なしとし(設計値の7[℃](暖房の場合は45[℃])のままとし)、二次側流量の増加率が基準値I0(110%)を超えていない場合のみ、チラー4の出口温度設定を上昇する方向(暖房の場合は下降する方向)に変更するようしたものである。
従って、以下のステップP8~P10に移行するのは図3の場合のみであり、図1、図2、図4の場合は、ステップP8からステップP11に移行する。
そこで(図3(2ポンプ方式、2方弁)の場合)、上記ステップP8において、二次側流量F2が一次側流量F1より大の場合は、上記コントローラ17(図15、二次流量増加率演算手段17s’)は、図8、図17のステップP9において、上記一次側流量F1と二次側流量F2の値から、二次側流量増加率I2を次式(5)により求め(図8、図17、P9参照)、上記コントローラ17(図15、増加率比較手段17t’)は、メモリ18(図12)に予め記憶している基準値(110%)18kと比較する(I2≧I0)(図8、図17、P10参照)。
I2=F2/F1×100[%] (5)
その後、上記コントローラ17(図15、増加率比較手段17t’)は、二次側増加率I2が基準値I0(110%)以上の場合は(図8、図17、P10参照)、図9(図18)のステップP20に移行して、チラー4の出口温度Tsを設計値の7[℃](暖房の場合は45[℃])に設定し、標準コントローラ7にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃](暖房の場合は45[℃])のままとし、変化しない。従って、温度差は維持されるので、空調機1の2方弁6が自動的に開くことはない。
一方、上記コントローラ17(図15、増加率比較手段17t’)は、二次側流量増加率I2が基準値I0(110%)より低い場合は、図8、図17の次のステップP11に移行して二次側要求熱量qrの演算に入る。
尚、図8、図17のステップP8において、一次側流量F1が二次側流量F2より大の場合は、ステップP9,P10の制御は行わずに、ステップP11に移行する。これは、一次流量が二次側流量より大きい場合、バイパス配管8により還り配管3から余った温度が高い二次側流量が往き配管2に合流し、往き温度が上昇するおそれがないためである。
当該ステップP11(図8、図17)において、上記コントローラ17(図15、熱量演算手段17f’)は、データ取得手段17qを介して、二次側の還り配管3の流量データ(F2)を流量センサ14から取得すると共に、二次側還り温度の温度データ(Tr2)を温度センサ13から取得する。また、チラー4の出口温度Tsoを取得して、現在の空調機1(二次側)の要求熱量qrを以下の式(6)により求める。尚、チラー出口温度Tsoは、設計値であり7[℃](暖房時は45[℃])となる。
qr=F2×(Tr2-Tso) (6)(図8ステップP11)
(暖房時は、qr=F2×(Tso-Tr2) (6’)(図17ステップP11))
qr:空調機側(二次側)要求熱量[Mcal/h]
F2:二次側流量[m/h]
Tr2:二次側還り温度[℃]
Tso:チラー出口温度[℃](設計値=7[℃])(暖房時は設計値=45[℃])
この場合、F2=200[m/h]、Tr2=9.5[℃](暖房時はTr2=42℃)、Tso=7[℃](暖房時はTso=45[℃])であったとすると、空調機1の要求熱量qr=500[Mcal/h](暖房時は熱量qr=600[Mcal/h]となる。
上記コントローラ17は、上記qrの値(500[Mcal/h])、二次側流量F2データをメモリ18のデータ記憶エリア18hに記憶する。
次に、上記コントローラ17(図15、熱量判別手段17g’)は、図8、図17のステップP12において、上記ステップP8で計算した空調機1の要求熱量qrと、チラー4の定格能力(一次側定格能力)q1との比較を行う(qr≦q1)。この場合、チラー4の定格能力は、チラー4の全台数(4台)の合計の定格能力となる。これは、チラー4の全台数が運転する能力の範囲内であれば、制御可能であり、熱供給に支障はないと判断するためである。この場合、チラー4の1台の定格能力は例えば500[Mcal/h]とすると、4台ではq1=2000[Mcal/h]となる。
上記コントローラ17(図15、熱量判別手段17g’)は、
qr(空調機1の要求熱量=500(暖房時は600))≦q1(チラー4の定格能力=2000)
の判断を行い、この場合、空調機1の要求熱量qrが、チラー4の定格能力q1以下なので、制御は可能であると判断し、次のステップP13(図9、図18)に進む。
尚、要求熱量qrがチラー4の定格能力q1を超えている場合は、制御不能と判断し(図8、図17のステップP12)、図9、図18のステップP20に移行し、チラー4の出口温度Tsを設計値の7[℃](暖房時は45[℃])に設定し、標準コントローラ7にその旨指令する。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃](暖房時は45[℃])のままとし、変化しない。
図9、図18のステップP13において、上記コントローラ17(図15、出口温度変更手段17u)は、チラー4の出口温度をさらにa℃上昇させる(暖房の場合はa℃下降させる)。ここで、a℃としては「4℃」が予め設定されている(図12、メモリ18の温度データ18n)。また、Tsとしては、設計出口温度Tso=7[℃](暖房時は45[℃])より、3℃以上高い(低い)値に設定される。
上記コントローラ17(図15、出口温度変更手段17u)は、上記ステップP7(図8、図17参照)において二次側往き温度Ts2が10[℃]以下(暖房の場合は42[℃]以上)であるので、チラー4の出口温度設定Tsoが7[℃](設計値)であるとすると(暖房の場合は45[℃])、Tsの設定温度を7℃+4℃の11[℃](=Ts)とする(暖房の場合は、45℃-4℃の41[℃])(この時点でn=0に設定する)。そして、上記コントローラ17(図15、出口温度変更手段17u)は設定変更手段17mに対して、チラー出口温度Tsoを11[℃](暖房の場合は41[℃])に変更するように指示する。
上記コントローラ17(図15、設定変更手段17m)は、上記指示に基づいて、図9、図18のステップP14において、標準コントローラ7(図13、チラー出口温度設定手段7b)に対して、入力端子7aを介して(図13参照)、チラー4の出口温度Tsを11[℃](暖房時は41[℃])に設定変更するように指令する(図9、図18、P14参照)。
その結果、標準コントローラ7(図13、チラー出口温度設定手段7b)は、入力端子7aを介して設定変更信号が入力したことを検出し(図14P1参照)、チラー4の出口温度設定を設計値の7[℃]から11[℃](暖房時は45[℃]から41[℃])に変更する(図14P2参照)。
上記コントローラ17(図15、一定時間判別手段17y)は、次のステップP15において、一定時間(この場合10分)経過したか否かを検出し、経過していない場合は、チラー4の出口温度Ts=11[℃](暖房時は41[℃])を維持する。
その後、上記コントローラ17(図15、出口温度増減手段17v)は、10分を経過した場合は、次のステップP16に移行し、a=4℃上昇させた(暖房時は下降させた)チラー4の出口温度設定Tsを、b[℃]ずつ下げる(暖房時はb[℃]ずつ上げる)。この場合、b=1[℃]が望ましい。即ち、下記の式(7)を演算する。この場合、指定温度幅は、b=1[℃]となる。
Ts=Tso+a-b×n (7)
(暖房時は、Ts=Tso-a+b×n (7’))
n=n+1
よって、上記コントローラ17(図15、出口温度増減手段17v)は、チラー4の出口温度設定Ts(=11[℃])を、1[℃]低下させてTs=10[℃]とする(暖房時は1[℃]上昇させてTs=42[℃]とする)(図9、図18、ステップP16)。
そして、上記コントローラ17(図15、出口温度増減手段17v)は設定変更手段17mに対して、チラー出口温度Tsoを10[℃](暖房時は42[℃])に変更するように指示する(図9、図18、P16参照)。
上記コントローラ17(図15、設定変更手段17m)は、上記指示に基づいて、図9、図18のステップP17において、標準コントローラ7(図13、チラー出口温度設定手段7b)に対して、入力端子7aを介して(図13参照)、チラー4の出口温度Tsを10[℃](暖房時は42[℃])に設定変更するように指令する(図9、図18、P17参照)。
その結果、標準コントローラ7(図13、チラー出口温度設定手段7b)は、入力端子7aを介して設定変更信号が入力したことを検出し(図14P1参照)、チラー4の出口温度設定を設計値の11[℃]から10[℃]に変更する(暖房時は41[℃]から42[℃])(図14P2参照)。
その後、上記コントローラ17(図15、一定時間判別手段17y)は、ステップP18に移行し、一定時間(この場合10分)経過したか否か判断し、上記一定時間(10分)の間、出口温度Ts=10[℃](暖房時は42[℃])を維持する(図9、図18、P18参照)。
上記コントローラ17(図15、出口温度比較手段17w)は、上記一定時間(10分)が経過すると、ステップP19に移行し、その時点で、上記出口温度比較手段17wは、上記ステップP16で求めたチラー出口温度Ts(例えば10[℃]であるとする)が、設計値であるTso(=7[℃])(暖房時は45[℃])よりも高いか否か判断する。この場合、チラー出口温度Ts=10[℃]なので、図9のステップP19においてNOとなるため、上記コントローラ(図15、出口温度比較手段17w)は、出口温度増減手段17vにさらに出口温度を減少させる指令を行う。即ち、上記図9のステップP16に戻って、チラー出口温度の減算動作を行う。
暖房時は、チラー出口温度Ts=42[℃]なので、図18のステップP19においてNOとなるため、上記コントローラ(図15、出口温度比較手段17w)は、出口温度増減手段17vにさらに出口温度を上昇させる指令を行う。即ち、上記図18のステップP16に戻って、チラー出口温度の増加動作を行う。
この間、チラー出口温度Tsは、設計値であるTso=7[℃]を1[℃]以上超える出口温度を維持し得るので、この間は、熱源機の効率を向上させることができる。暖房時は、チラー出口温度Tsは、設計値であるTso=45[℃]を1[℃]以上低下した出口温度を維持し得るので、この間は、熱源機の効率を向上させることができる。
上記コントローラ17(図15、出口温度比較手段17w)は、上記一定時間(10分)が経過すると、ステップP19に移行し、その時点で、上記出口温度比較手段17wは、上記ステップP16で求めたチラー出口温度Ts(仮に6[℃]であるとする)(暖房時は46[℃]とする)が、設計値であるTso(=7[℃])(暖房時は45[℃])よりも高いか否か判断する。この場合、チラー出口温度Ts=6[℃](暖房時は46[℃])なので、図9(図18)のステップP19においてYESとなり、図9、図18のステップP20に移行し、設定維持手段17nが、チラー4の出口温度Tsを7[℃](暖房時は45[℃])に設定し、標準コントローラ7(図13、チラー出口温度設定手段7b)にその旨指令する(図9、図18、P20参照)。その結果、標準コントローラ7は、チラー4の出口温度設定を設計値の7[℃](暖房時は45[℃])のままとし、変化せず、ステップP4(図8、図17)に戻る。
以上のように、本発明は上述のように、中間期において、空調機の要求熱量が熱源機で制御可能と判断された場合において、熱源機4の出口温度を、冷房時は1℃以上高い値(暖房時は1℃以上低い値)に設定変更し得るため、空調システム全体として省エネルギー化を実現することができる。
また、中間期において、空調システムが2ポンプ方式の場合、空調機側(二次側)の流量が増加することが予測されるが、二次側流量が増加すると、空調システム全体としての省エネルギー効果が減少する。よって、二次側流量の増加率を演算により求め、当該増加率を基準値(例えば110%)と比較し、増加率が基準値より増加している場合は、熱源機の出口温度を設計出口温度Tsoのままとし、上記増加率が基準値を下回っている場合にのみ、熱源機の出口温度を設計出口温度Tsoより上昇(暖房時は下降)させることができるので、無駄な動作を行わずに空調システムの効率を向上させることができる。
また、ピーク期においては、冷房の場合は熱源機の出口温度を、予め定めた時間毎に、熱源機の出口温度を例えば11℃から1℃ずつ低下するように変更することができ、熱源機の出口温度が設計出口温度(7℃)に一致するまでは設計出口温度より高い状態を維持できるので(暖房時は熱源機の出口温度を例えば41℃から1℃ずつ上昇するように変更することができ、熱源機の出口温度が設計出口温度(45℃)に一致するまでは設計出口温度より低い状態を維持できるので)、これにより、ピーク期においても、無理なく、空調システム全体として省エネルギー化を行うことができる。
さらに本発明は、空調システムは、一般的に小中規模に多い1ポンプ方式、大規模に多い2ポンプ方式の何れにも対応可能であり、空調機(二次側)において、流量調整弁が一般的に熱源機は変流運転対応が多い2方弁制御であるか、一般的に熱源機は定流量運転対応が多い3方弁制御であるかによっても制御を異ならせて、空調システム全体としての省エネルギーを実現できる空調システムの熱源機の出口設定温度制御装置を提供することを目的とする。また、対象となる熱源機は、チラーに限るものではなく、ターボ冷凍機、吸収式冷温水発生機などの他熱源機であってもよい。
本発明は、流体の熱量を利用して所定の空間の空調を調整する空調システムに利用することができる。
1a,1b 空調機
2 往き配管
3 還り配管
4 熱源機(チラー)
17 コントローラ
17a 中間期/ピーク期判別手段
17f,17f’ 熱量演算手段
17g,17g’ 熱量判別手段
17i 出口温度演算手段
17j 出口温度演算手段
17k 出口温度比較手段
17m 設定変更手段
17n 設定維持手段
17r 流量比較手段
17s 二次側流量増加率演算手段
17t 増加率比較手段
17u 出口温度変更手段
17y 一定時間判別手段
17v 出口温度増減手段
Tso 設計出口温度
Ts 熱源機の出口温度
Tro 設計還り温度
qr 要求熱量

Claims (7)

  1. 一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とが熱交換されることにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御装置において、
    上記熱源機の設計出口温度Tsoを設定変更し得るコントローラが設けられ、
    上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段と、
    上記中間期/ピーク期判別手段により判別された中間期において、
    上記空調機の要求熱量qrを、上記熱源機の制御周期の前時刻設定出口温度pTsと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出可能な熱量演算手段と、
    上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別可能な熱量判別手段と、
    上記熱量判別手段にて上記空調機の上記要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合において、
    設計還り温度をTroとして当該設計還り温度Troを上記設計出口温度Tsoより5℃~7℃高い温度(5℃~7℃低い温度)に設定され、上記測定された流量をFとした場合、
    冷房時の冷水出口温度 Ts=Tro-(qr/F)
    (暖房時の温水出口温度 Ts=Tro+(qr/F))
    上記冷水出口温度(上記温水出口温度)Tsを上記式の演算で求められる出口温度演算手段と、
    上記冷水(温水)出口温度Tsが、上記設計出口温度Tsoより高い(低い)か否か判断可能な出口温度比較手段と、
    上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより1℃以上高い(低い)場合にのみ、上記熱源機の上記設計出口温度Tsoを上記出口温度演算手段で求めた上記冷水(温水)出口温度Tsに設定変更可能な設定変更手段と、
    上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoと等しいか低い(等しいか高い)場合は、上記熱源機の上記設計出口温度Tsoを維持することが可能な設定維持手段とを有するものであり、
    上記動作を上記制御周期毎に繰り返すものである空調システムの熱源機の制御装置。
  2. 上記熱源機内に一次側ポンプを有すると共に、上記往き配管側に二次側ポンプを有する2ポンプ方式の空調システムの熱源機の制御装置において、
    上記中間期/ピーク期判別手段により判別された上記中間期において、
    上記コントローラは、上記熱量演算手段の前段において、測定した冷水(温水)の上記熱源機側の一次側流量F1と、上記空調機側の二次側流量F2を検出し、上記二次側流量F2が上記一次側流量F1より大きいか否かを判別可能な流量比較手段と、
    上記流量比較手段の比較により、上記二次側流量F2が上記一次側流量F1より大きい場合に、二次側流量の増加率を演算により求めることが可能な二次側流量増加率演算手段と、
    上記二次側流量増加率演算手段にて演算した上記二次側流量F2の上記増加率が予め設定した基準値より高いか否かを判断する増加率比較手段が設けられ、
    上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より高い場合は、上記増加率比較手段が上記設定維持手段に対して上記熱源機の上記設計出口温度Tsoを維持する指令が与えられ、
    上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より低い場合にのみ、上記増加率比較手段は、上記熱量演算手段に対して通常の制御を行う旨の指令を与えるものであり、
    上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより高い(低い)場合にのみ、上記設定変更手段により上記熱源機の上記設計出口温度Tsoが上記出口温度演算手段で求めた上記冷水(温水)出口温度Tsに設定変更されるように構成されたものである請求項1記載の空調システムの熱源機の制御装置。
  3. 一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とが熱交換されることにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御装置において、
    上記熱源機の設計出口温度Tsoを設定変更し得るコントローラが設けられ、
    上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段と、
    上記中間期/ピーク期判別手段により判別されたピーク期において、
    上記空調機の要求熱量qrを、上記熱源機の設計出口温度Tsoと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出可能な熱量演算手段と、
    上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別可能な熱量判別手段と、
    上記熱量判別手段にて上記空調機の上記要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合において、
    上記熱源機の冷水(温水)の出口温度を、上記設計出口温度Tsoより3℃以上高い(低い)変更後の冷水(温水)出口温度に変更の指示を行う出口温度変更手段と、
    上記出口温度変更手段の上記指示により上記熱源機の冷水(温水)出口温度を上記変更後の冷水(温水)出口温度に変更する設定変更手段と、
    予め定めた時間になったかを否かを判別する一定時間判別手段と、
    上記一定時間判別手段が上記予め定めた時間になったと判断した場合、上記変更後の冷水(温水)出口温度を指定温度幅で下げ(上げ)て、上記設定変更手段に上記熱源機の上記冷水(温水)出口温度を変更後の冷水(温水)出口温度への変更の指示を行う出口温度増減手段と、
    上記一定時間判別手段による上記予め定めた時間になる度に、上記出口温度増減手段による上記熱源機の上記冷水(温水)出口温度の上記指定温度幅での下げ(上げ)の動作が繰り返し行われ、上記予め定めた時間になる度に、上記設定変更手段による上記熱源機の上記冷水(温水)出口温度の変更が行われ、
    上記熱源機の変更後の上記冷水(温水)出口温度が、上記熱源機の上記設計出口温度Tsoに一致するまで同様の上記動作が繰り返し行われるものであることを特徴とする空調システムの熱源機の制御装置。
  4. 一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とを熱交換することにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御方法において、
    上記熱源機の設計出口温度Tsoを設定変更し得るコントローラを設け、
    上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段により判別された中間期において、
    熱量演算手段が、上記空調機の要求熱量qrを、上記熱源機の制御周期の前時刻設定出口温度pTsと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出し、
    熱量判別手段が、上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別し、
    上記熱量判別手段にて上記空調機の上記要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合、
    出口温度演算手段が、設計還り温度をTroとして当該設計還り温度Troを上記設計出口温度Tsoより5℃~7℃高い温度(5℃~7℃低い温度)に設定し、上記測定した流量をFとした場合、
    冷房時の冷水出口温度 Ts=Tro-(qr/F)
    (暖房時の温水出口温度 Ts=Tro+(qr/F))
    上記冷水出口温度(上記温水出口温度)Tsを上記式の演算で求め、
    出口温度比較手段が、上記冷水(温水)出口温度Tsが、上記設計出口温度Tsoより高い(低い)か否か判断し、
    設定変更手段が、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより1℃以上高い(低い)場合にのみ、上記熱源機の上記設計出口温度Tsoを上記出口温度演算手段で求めた冷水(温水)出口温度Tsに設定変更し、
    設定維持手段が、上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoと等しいか低い(等しいか高い)場合は、上記熱源機の上記設計出口温度Tsoを維持し、
    上記動作を上記制御周期毎に繰り返すものである空調システムの熱源機の制御方法。
  5. 上記熱源機内に一次側ポンプを有すると共に、上記往き配管側に二次側ポンプを有する2ポンプ方式の空調システムの熱源機の制御方法において、
    上記中間期/ピーク期判別手段により判別された上記中間期において、
    上記コントローラは、上記熱量演算手段の前段において、流量比較手段が、測定した冷水(温水)の上記熱源機側の一次側流量F1と、上記空調機側の二次側流量F2を検出し、上記二次側流量F2が上記一次側流量F1より大きいか否かを判別し、
    上記流量比較手段の比較により、上記二次側流量F2が上記一次側流量F1より大きい場合に、二次側流量増加率演算手段が、二次側流量の増加率を演算により求め、
    増加率比較手段が、上記二次側流量増加率演算手段にて演算した上記二次側流量F2の増加率が予め設定した基準値より高いか否かを判断し、
    上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より高い場合は、上記増加率比較手段が上記設定維持手段に対して上記熱源機の上記設計出口温度Tsoを維持する指令を与え、
    上記増加率比較手段の比較により、上記二次側流量F2の上記増加率が上記基準値より低い場合にのみ、上記増加率比較手段は、上記熱量演算手段に対して通常の制御を行う旨の指令を与えるものであり、
    上記出口温度比較手段の比較により、上記冷水(温水)出口温度Tsが上記設計出口温度Tsoより高い(低い)場合にのみ、上記設定変更手段により上記熱源機の上記設計出口温度Tsoが上記出口温度演算手段で求めた上記冷水(温水)出口温度Tsに設定変更される請求項4記載の空調システムの熱源機の制御方法。
  6. 一次側の熱源機からの冷水(温水)を二次側の空調機に往き配管と還り配管を介して循環させ、上記空調機により導入した空気と冷水(温水)とを熱交換することにより、当該空調機によって室内の空気の冷房(暖房)を行う空調システムの熱源機の制御方法において、
    上記熱源機の設計出口温度Tsを設定変更し得るコントローラを設け、
    上記コントローラは、中間期かピーク期かを判断可能な中間期/ピーク期判別手段により判別されたピーク期において、
    熱量演算手段が、上記空調機の要求熱量qrを、上記熱源機の設計出口温度Tsoと、測定した上記還り配管の冷水(温水)の二次側還り温度Tr2との温度差と、測定した上記往き配管と上記還り配管を循環する冷水(温水)の流量Fとの積から算出し、
    熱量判別手段が、上記熱量演算手段にて演算された現在の上記空調機の上記要求熱量qrが、上記熱源機の定格能力の範囲内であるか否かを判別し、
    上記熱量判別手段にて上記空調機の要求熱量qrが上記熱源機の定格能力の範囲内であると判断された場合、
    出口温度変更手段が、上記熱源機の冷水(温水)の出口温度を、上記設計出口温度Tsoより3℃以上高い(低い)変更後の冷水(温水)出口温度に変更の指示を行い、
    設定変更手段が、上記出口温度変更手段の上記指示により上記熱源機の冷水(温水)出口温度を上記変更後の冷水(温水)出口温度に変更し、
    一定時間判別手段が、予め定めた時間になったかを否かを判別し、
    上記一定時間判別手段が上記予め定めた時間になったと判断した場合、出口温度増減手段が、上記変更後の冷水(温水)出口温度を指定温度幅で下げ(上げ)て、上記設定変更手段に上記熱源機の上記冷水(温水)出口温度を変更後の冷水(温水)出口温度への変更の指示を行い、
    上記一定時間判別手段による上記予め定めた時間になる度に、上記出口温度増減手段が上記熱源機の上記冷水(温水)出口温度の上記指定温度幅での下げ(上げ)の動作を繰り返し行い、上記予め定めた時間になる度に、上記設定変更手段が上記熱源機の上記冷水(温水)出口温度の変更を繰り返し行い、
    上記熱源機の変更後の上記冷水(温水)出口温度が、上記熱源機の上記設計出口温度Tsoに一致するまで同様の上記動作が繰り返し行われる空調システムの熱源機の制御方法。
  7. コンピュータを請求項1~3の何れかに記載の空調システムの熱源機の制御装置として機能させるためのプログラム。
JP2021050993A 2021-03-25 2021-03-25 空調システムにおける熱源機の制御装置及び制御方法及びプログラム Active JP7500143B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021050993A JP7500143B2 (ja) 2021-03-25 2021-03-25 空調システムにおける熱源機の制御装置及び制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021050993A JP7500143B2 (ja) 2021-03-25 2021-03-25 空調システムにおける熱源機の制御装置及び制御方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2022149055A JP2022149055A (ja) 2022-10-06
JP7500143B2 true JP7500143B2 (ja) 2024-06-17

Family

ID=83462431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021050993A Active JP7500143B2 (ja) 2021-03-25 2021-03-25 空調システムにおける熱源機の制御装置及び制御方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7500143B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002158A (ja) 2008-06-23 2010-01-07 Kyudenko Corp 空調機の制御方法及び空調機
JP2018004232A (ja) 2016-07-08 2018-01-11 東京電力ホールディングス株式会社 中央式空気調和システムの制御方法
JP2018119764A (ja) 2017-01-27 2018-08-02 スリーベネフィッツ株式会社 熱源システムの制御装置、および、その制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002158A (ja) 2008-06-23 2010-01-07 Kyudenko Corp 空調機の制御方法及び空調機
JP2018004232A (ja) 2016-07-08 2018-01-11 東京電力ホールディングス株式会社 中央式空気調和システムの制御方法
JP2018119764A (ja) 2017-01-27 2018-08-02 スリーベネフィッツ株式会社 熱源システムの制御装置、および、その制御方法

Also Published As

Publication number Publication date
JP2022149055A (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US11162627B2 (en) Controller, method of operating a water source heat pump and a water source heat pump
US4754919A (en) Air conditioning apparatus
US10677489B2 (en) Intelligent bypass damper operation in an HVAC system with zones
JP4594276B2 (ja) 冷温熱源機の冷温水制御方法及びこれに用いる空調システム
US5447037A (en) Economizer preferred cooling control
JP4975168B2 (ja) 二次ポンプ方式熱源システム及び二次ポンプ方式熱源制御方法
EP2102568B1 (en) Air-conditioning algorithm for water terminal free cooling
JPH02259350A (ja) ダクト式空気調和装置
JP2019522175A (ja) 主制御装置での建物の改装により冷却システムの作動効率を改善する方法
JP7414958B2 (ja) 空気調和システム
WO2010039691A2 (en) Control of a conditioned air supply system
KR102582533B1 (ko) 공기조화 시스템 및 그 제어방법
US4327559A (en) Transport and chiller energy minimization for air conditioning systems
US20050087616A1 (en) Thermal balance temperature control system
JP5595975B2 (ja) 空調配管システム
CN113865059A (zh) 多联机空调器制热运行控制方法
EP4279823A1 (en) Hydraulic module control system of floor heating multi-split air conditioner and control method thereof
JP7500143B2 (ja) 空調システムにおける熱源機の制御装置及び制御方法及びプログラム
JP3729552B2 (ja) 空気調和装置
WO2021214931A1 (ja) 空気調和システムおよび制御方法
JP5318446B2 (ja) 外気取入システム
US11644141B2 (en) Controller, method of operating a water source heat pump and a water source heat pump
CN217383263U (zh) 一种空调水机
JP6951259B2 (ja) 空調システム
US10578371B1 (en) Thermal bridge for chiller plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7500143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150