JP7494575B2 - CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM - Google Patents

CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM Download PDF

Info

Publication number
JP7494575B2
JP7494575B2 JP2020094823A JP2020094823A JP7494575B2 JP 7494575 B2 JP7494575 B2 JP 7494575B2 JP 2020094823 A JP2020094823 A JP 2020094823A JP 2020094823 A JP2020094823 A JP 2020094823A JP 7494575 B2 JP7494575 B2 JP 7494575B2
Authority
JP
Japan
Prior art keywords
spindle head
tool
tool magazine
angle
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020094823A
Other languages
Japanese (ja)
Other versions
JP2021189783A (en
Inventor
優伍 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2020094823A priority Critical patent/JP7494575B2/en
Publication of JP2021189783A publication Critical patent/JP2021189783A/en
Application granted granted Critical
Publication of JP7494575B2 publication Critical patent/JP7494575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Tool Replacement In Machine Tools (AREA)
  • Numerical Control (AREA)

Description

本発明は、制御装置、工作機械、制御方法、及び制御プログラムに関する。 The present invention relates to a control device, a machine tool, a control method, and a control program.

特許文献1に記載の工作機械は、工具交換時に主軸の移動と工具マガジンの回動を並行して実行する。工作機械は工具マガジンが保持する工具と主軸の干渉を回避する必要がある。工作機械は主軸ヘッドと工具マガジンが干渉しない第一範囲と、主軸ヘッドと工具マガジンが干渉する第二範囲の境界を関数で設定する。工作機械は工具交換時、設定した関数を用い、工具マガジンの所在角度に対応する主軸ヘッドの移動可能距離内で主軸ヘッドを移動する。 The machine tool described in Patent Document 1 moves the spindle and rotates the tool magazine in parallel when changing tools. The machine tool needs to avoid interference between the spindle and the tools held in the tool magazine. The machine tool uses a function to set the boundary between a first range in which the spindle head and the tool magazine do not interfere, and a second range in which the spindle head and the tool magazine do interfere. When changing tools, the machine tool uses the set function to move the spindle head within the movable distance of the spindle head that corresponds to the angle at which the tool magazine is located.

特開2019-67394号公報JP 2019-67394 A

上記の工作機械において、工具交換に必要な時間を短縮したいという要望がある。 There is a demand to reduce the time required for tool replacement in the above machine tools.

本発明は、工具交換に必要な時間を従来よりも短縮した制御装置、工作機械、制御方法、及び制御プログラムを提供することを目的とする。 The present invention aims to provide a control device, machine tool, control method, and control program that shortens the time required for tool replacement compared to conventional methods.

本発明の請求項1の制御装置は、工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンとを備える工作機械の制御装置であって、前記主軸ヘッドの移動と前記工具マガジンの回動で前記主軸に装着した前記工具と前記工具マガジンが収納した前記工具を交換する時、前記主軸ヘッドの位置と前記工具マガジンの角度に関する関数に基づき、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉しない第一範囲と、前記主軸ヘッドと前記工具マガジンが干渉する第二範囲との境界を設定する設定部と、前記工具の交換位置迄前記主軸ヘッドと前記工具マガジンとを駆動する駆動部とを備える制御装置において、前記駆動部が前記工具マガジンを駆動開始後、前記工具マガジンの所在角度が所定角度範囲に在るか否か判定する角度判定部と、前記角度判定部が前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記主軸ヘッドの所在位置と、前記工具マガジンを所定の回動減速条件で停止した時の前記工具マガジンの停止角度に応じた前記境界との間の移動可能距離を算出する距離算出部と、前記主軸ヘッドの制動距離が、前記距離算出部が算出した前記移動可能距離よりも大きいか否か判定する距離判定部と、前記距離判定部が前記制動距離は前記移動可能距離よりも大きくないと判定した時、前記主軸ヘッドを加速する加速部とを備える。制御装置は、主軸ヘッドの所在位置と工具マガジンの停止角度に応じた境界との距離を移動可能距離として演算することで、主軸ヘッドが移動する間に工具マガジンが回動する量を考慮して移動可能距離を演算できる。故に制御装置は、距離判定部が主軸ヘッドの制動距離は移動可能距離よりも小さいと判定し、加速部が主軸ヘッドを加速する頻度を従来の装置よりも高め、工具交換に必要な時間を従来よりも短縮できる。 The control device of claim 1 of the present invention is a control device for a machine tool having a spindle on which a tool is attached, a spindle head that supports the spindle and is movable between a machining area where machining is performed with the tool and an exchange area where the tool is exchanged, and a rotatable tool magazine that stores a plurality of the tools, and includes a setting unit that sets the boundary between a first range in which the spindle head and the tool stored in the tool magazine do not interfere with each other and a second range in which the spindle head and the tool magazine interfere with each other based on a function related to the position of the spindle head and the angle of the tool magazine when the tool attached to the spindle and the tool stored in the tool magazine are exchanged by moving the spindle head and rotating the tool magazine, and a setting unit that sets the boundary between the spindle head and the tool magazine up to the tool exchange position, based on a function related to the position of the spindle head and the angle of the tool magazine, and a drive unit for driving the tool magazine, the control device comprising: an angle determination unit for determining whether or not a location angle of the tool magazine is within a predetermined angle range after the drive unit starts driving the tool magazine, a distance calculation unit for calculating a movable distance between a location of the spindle head and the boundary corresponding to a stop angle of the tool magazine when the angle determination unit determines that the location angle of the tool magazine is within the predetermined angle range, a distance determination unit for determining whether or not a braking distance of the spindle head is greater than the movable distance calculated by the distance calculation unit, and an acceleration unit for accelerating the spindle head when the distance determination unit determines that the braking distance is not greater than the movable distance. By calculating the distance between the location of the spindle head and the boundary corresponding to the stop angle of the tool magazine as the movable distance, the control device can calculate the movable distance taking into account an amount by which the tool magazine rotates while the spindle head moves. Therefore, in the control device, the distance determination unit determines that the braking distance of the spindle head is shorter than the movable distance, and the acceleration unit accelerates the spindle head more frequently than in conventional devices, thereby shortening the time required for tool replacement.

本発明の請求項2の制御装置の前記回動減速条件は、前記工具マガジンを現在の角速度から前記工具マガジンの最大回動減速度で減速する条件である。制御装置は、主軸ヘッドが移動する間に工具マガジンが回動する量を、最大回動減速度を用いて最も小さく見積もって移動可能距離を演算できる。故に制御装置は、距離判定部が主軸ヘッドの制動距離は移動可能距離よりも小さいと判定し、加速部が主軸ヘッドを加速した時に、主軸ヘッドと工具マガジンが干渉することを抑制できる。 The rotation deceleration condition of the control device of claim 2 of the present invention is a condition for decelerating the tool magazine from the current angular velocity at the maximum rotation deceleration of the tool magazine. The control device can calculate the movable distance by estimating the amount by which the tool magazine rotates while the spindle head moves to the smallest extent using the maximum rotation deceleration. Therefore, the control device can suppress interference between the spindle head and the tool magazine when the distance determination unit determines that the braking distance of the spindle head is smaller than the movable distance and the acceleration unit accelerates the spindle head.

本発明の請求項3の制御装置は前記角度判定部が前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記工具マガジンを前記回動減速条件で停止する迄の期間、前記主軸ヘッドを所定の加速条件で加速した時の前記主軸ヘッドの移動距離が、前記移動可能距離以下であるか否か判定する干渉判定部を更に備え、前記距離判定部は、前記干渉判定部が前記移動距離は前記移動可能距離以下であると判定した時、前記主軸ヘッドの前記制動距離が前記距離算出部が算出した前記移動可能距離よりも大きいか否か判定し、前記干渉判定部が前記移動距離は前記移動可能距離以下でないと判定した時、前記主軸ヘッドの前記所在位置と、前記工具マガジンの前記所在角度に応じた前記境界との間の距離を前記移動可能距離として算出し、前記主軸ヘッドの前記制動距離が前記距離判定部が算出した前記移動可能距離よりも大きいか否か判定する。工具マガジンが減速条件で停止するよりも早く、主軸ヘッドが移動可能距離で移動した時、主軸ヘッドは工具マガジンと干渉する。制御装置は、工具マガジンが停止する迄の期間に主軸ヘッドが所定の加速条件で加速しながら移動した場合の移動距離が、移動可能距離以下であるか否かに応じて、制御距離との比較に用いる移動可能距離を変更する。故に制御装置は、主軸ヘッドの移動距離を考慮して、主軸ヘッドと工具マガジンが干渉することを抑制できる。 The control device of claim 3 of the present invention further includes an interference judgment unit that, when the angle judgment unit judges that the location angle of the tool magazine is within the predetermined angle range, judges whether the movement distance of the spindle head when the spindle head is accelerated under predetermined acceleration conditions during the period until the tool magazine is stopped under the rotation deceleration conditions is equal to or less than the movable distance, and when the interference judgment unit judges that the movement distance is equal to or less than the movable distance, judges whether the braking distance of the spindle head is greater than the movable distance calculated by the distance calculation unit, and when the interference judgment unit judges that the movement distance is not equal to or less than the movable distance, calculates the distance between the location of the spindle head and the boundary corresponding to the location angle of the tool magazine as the movable distance, and judges whether the braking distance of the spindle head is greater than the movable distance calculated by the distance judgment unit. When the spindle head moves the movable distance faster than the tool magazine stops under deceleration conditions, the spindle head interferes with the tool magazine. The control device changes the movable distance used for comparison with the control distance depending on whether the distance traveled by the spindle head while accelerating under specified acceleration conditions during the period until the tool magazine stops is equal to or shorter than the movable distance. Therefore, the control device can suppress interference between the spindle head and the tool magazine by taking into account the movement distance of the spindle head.

本発明の請求項4の制御装置の前記加速条件は、前記主軸ヘッドを現在の速度から前記主軸ヘッドの最大加速度で加速する条件である。制御装置は、工具マガジンが停止する迄の期間に主軸ヘッドが所定の加速条件で加速しながら移動した時の移動距離を、主軸ヘッドの最大加速度を用いて最も大きく見積もることができる。故に制御装置は、距離判定部が主軸ヘッドの制動距離は移動可能距離よりも大きいと判定し、加速部が主軸ヘッドを最大加速度で加速した時にも、主軸ヘッドと工具マガジンが干渉することを抑制できる。 The acceleration condition of the control device of claim 4 of the present invention is a condition for accelerating the spindle head from the current speed at the maximum acceleration of the spindle head. The control device can use the maximum acceleration of the spindle head to estimate the maximum travel distance when the spindle head travels while accelerating under the specified acceleration condition during the period until the tool magazine stops. Therefore, the control device can suppress interference between the spindle head and the tool magazine even when the distance determination unit determines that the braking distance of the spindle head is greater than the movable distance and the acceleration unit accelerates the spindle head at the maximum acceleration.

本発明の請求項5の制御装置は前記駆動部が前記主軸ヘッドを駆動開始後、前記主軸ヘッドの前記所在位置が所定位置範囲に在るか否か判定する位置判定部と、前記位置判定部が前記主軸ヘッド前記の前記所在位置が前記所定位置範囲に在ると判定した時、前記工具マガジンの前記所在角度と、前記主軸ヘッドを所定の減速条件で停止した時の前記主軸ヘッドの停止位置に応じた前記境界との間の回動可能角度を算出する角度算出部と、前記工具マガジンの制動角度が、前記角度算出部が算出した前記回動可能角度よりも大きいか否か判定する回動角度判定部と、前記回動角度判定部が前記制動角度は前記回動可能角度よりも大きくないと判定した時、前記工具マガジンを回動加速する回動加速部とを更に備える。制御装置は、工具マガジンの所在角度で、工具マガジンが移動する間に主軸ヘッドが移動する距離を考慮して回動可能角度を算出できる。故に制御装置は、回動角度判定部が工具マガジンの制動角度は回動可能角度よりも小さいと判定し、回動加速部が工具マガジンを回動加速する頻度を従来の装置よりも高め、工具交換に必要な時間を従来よりも短縮できる。 The control device of claim 5 of the present invention further includes a position determination unit that determines whether the location of the spindle head is within a predetermined position range after the drive unit starts driving the spindle head, an angle calculation unit that calculates the rotation angle between the location angle of the tool magazine and the boundary corresponding to the stop position of the spindle head when the spindle head is stopped under a predetermined deceleration condition when the position determination unit determines that the location of the spindle head is within the predetermined position range, a rotation angle determination unit that determines whether the braking angle of the tool magazine is greater than the rotation angle calculated by the angle calculation unit, and a rotation acceleration unit that accelerates the rotation of the tool magazine when the rotation angle determination unit determines that the braking angle is not greater than the rotation angle. The control device can calculate the rotation angle by taking into account the distance the spindle head moves while the tool magazine moves at the location angle of the tool magazine. Therefore, in the control device, the rotation angle determination unit determines that the braking angle of the tool magazine is smaller than the possible rotation angle, and the rotation acceleration unit accelerates the rotation of the tool magazine more frequently than in conventional devices, thereby shortening the time required for tool replacement.

本発明の請求項6の工作機械は、工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンと、請求項1~5の何れか一つに記載の制御装置とを備える。工作機械は請求項1~5の制御装置と同様の効果を奏する。 The machine tool of claim 6 of the present invention comprises a spindle on which a tool is attached, a spindle head that supports the spindle and is movable between a machining area where the tool is used for machining and an exchange area where the tool is exchanged, a rotatable tool magazine that stores a plurality of the tools, and a control device according to any one of claims 1 to 5. The machine tool has the same effects as the control devices according to claims 1 to 5.

本発明の請求項7の制御方法は工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンとを備える工作機械の制御方法であって、前記主軸ヘッドの移動と前記工具マガジンの回動で前記主軸に装着した前記工具と前記工具マガジンが収納した前記工具を交換する時、前記主軸ヘッドの位置と前記工具マガジンの角度に関する関数に基づき、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉しない第一範囲と、前記主軸ヘッドと前記工具マガジンが干渉する第二範囲との境界を設定する設定工程と、前記工具の交換位置迄前記主軸ヘッドと前記工具マガジンとを駆動する駆動工程とを備える制御方法において、前記駆動工程で前記工具マガジンを駆動開始後、前記工具マガジンの所在角度が所定角度範囲に在るか否か判定する角度判定工程と、前記角度判定工程で前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記主軸ヘッドの所在位置と、前記工具マガジンを所定の減速条件で停止した時の前記工具マガジンの停止角度に応じた前記境界との間の移動可能距離を算出する算出工程と、前記主軸ヘッドの制動距離が、前記算出工程で算出した前記移動可能距離よりも大きいか否か判定する距離判定工程と、前記距離判定工程で前記制動距離は前記移動可能距離よりも大きくないと判定した時、前記主軸ヘッドを加速する加速工程とを備える。制御方法は請求項1の制御装置と同様の効果を奏する。 The control method of claim 7 of the present invention is a control method for a machine tool having a spindle on which a tool is attached, a spindle head that supports the spindle and is movable between a machining area where the tool is machined and an exchange area where the tool is exchanged, and a rotatable tool magazine that stores a plurality of the tools, and includes a setting step of setting a boundary between a first range in which the spindle head and the tool stored in the tool magazine do not interfere with each other and a second range in which the spindle head and the tool magazine interfere with each other based on a function related to the position of the spindle head and the angle of the tool magazine when exchanging the tool attached to the spindle and the tool stored in the tool magazine by moving the spindle head and rotating the tool magazine, and a driving step of driving the spindle head and the tool magazine to the tool exchange position. The control method includes an angle determination step of determining whether or not the tool magazine is located within a predetermined angle range after the tool magazine is started to be driven in the drive step, a calculation step of calculating a movable distance between the spindle head location and the boundary corresponding to the stop angle of the tool magazine when the tool magazine is stopped under a predetermined deceleration condition when the angle determination step determines that the tool magazine is located within the predetermined angle range, a distance determination step of determining whether or not the braking distance of the spindle head is greater than the movable distance calculated in the calculation step, and an acceleration step of accelerating the spindle head when the distance determination step determines that the braking distance is not greater than the movable distance. The control method has the same effect as the control device of claim 1.

本発明の請求項8の制御プログラムは、工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンとを備える工作機械の制御装置の制御部が実行可能な制御プログラムであって、前記主軸ヘッドの移動と前記工具マガジンの回動で前記主軸に装着した前記工具と前記工具マガジンが収納した前記工具を交換する時、前記主軸ヘッドの位置と前記工具マガジンの角度に関する関数に基づき、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉しない第一範囲と、前記主軸ヘッドと前記工具マガジンが干渉する第二範囲との境界を設定する設定処理と、前記工具の交換位置迄前記主軸ヘッドと前記工具マガジンとを駆動する駆動処理とを実行する指示を含む制御プログラムにおいて、前記駆動処理で前記工具マガジンを駆動開始後、前記工具マガジンの所在角度が所定角度範囲に在るか否か判定する角度判定処理と、前記角度判定処理で前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記主軸ヘッドの所在位置と、前記工具マガジンを所定の減速条件で停止した時の前記工具マガジンの停止角度に応じた前記境界との間の移動可能距離を算出する算出処理と、前記主軸ヘッドの制動距離が、前記算出処理で算出した前記移動可能距離よりも大きいか否か判定する距離判定処理と、前記距離判定処理で前記制動距離は前記移動可能距離よりも大きくないと判定した時、前記主軸ヘッドを加速する加速処理とを前記制御装置の前記制御部に実行させる指示を含む。制御プログラムは請求項1の制御装置と同様の効果を奏する。 The control program of claim 8 of the present invention is a control program executable by a control unit of a control device for a machine tool having a spindle on which a tool is attached, a spindle head that supports the spindle and is movable between a machining area where the tool is machined and an exchange area where the tool is exchanged, and a rotatable tool magazine that stores a plurality of the tools, and includes a setting process for setting a boundary between a first range in which the spindle head and the tool stored in the tool magazine do not interfere with each other and a second range in which the spindle head and the tool magazine interfere with each other based on a function related to the position of the spindle head and the angle of the tool magazine when exchanging the tool attached to the spindle and the tool stored in the tool magazine by moving the spindle head and rotating the tool magazine, and a drive process for driving the spindle head and the tool magazine to the tool exchange position. The control program includes instructions to execute a control process including an angle determination process for determining whether or not the tool magazine is located within a predetermined angle range after the tool magazine starts to be driven in the drive process, a calculation process for calculating a movable distance between the spindle head location and the boundary corresponding to the stop angle of the tool magazine when the tool magazine is stopped under a predetermined deceleration condition when the angle determination process determines that the tool magazine is located within the predetermined angle range, a distance determination process for determining whether or not the braking distance of the spindle head is greater than the movable distance calculated in the calculation process, and an acceleration process for accelerating the spindle head when the distance determination process determines that the braking distance is not greater than the movable distance. The control program has the same effect as the control device of claim 1.

工作機械1の斜視図。FIG. 主軸ヘッド7とアーム73を拡大した側面図。FIG. 4 is an enlarged side view of the spindle head 7 and the arm 73. 工作機械1の電気的構成のブロック図。FIG. 2 is a block diagram of the electrical configuration of the machine tool 1. (A)主軸9から使用済みの工具4を取外す時の主軸ヘッド7を拡大した縦断面図に対する工具4の相対移動位置を示した説明図、(B)主軸9に次の工具4を装着する時の主軸ヘッド7を拡大した縦断面図に対する工具4の相対移動位置を示した説明図。FIG. 1A is an explanatory diagram showing the relative movement position of the tool 4 with respect to an enlarged vertical cross-sectional view of the spindle head 7 when removing a used tool 4 from the spindle 9; FIG. 1B is an explanatory diagram showing the relative movement position of the tool 4 with respect to an enlarged vertical cross-sectional view of the spindle head 7 when mounting the next tool 4 on the spindle 9. 関数F、工具マガジン21が保持する対象工具4の角度に対する主軸ヘッド7の位置を示す経路の説明図。4 is an explanatory diagram of a path showing the position of the spindle head 7 relative to the angle of the target tool 4 held by the tool magazine 21, a function F; 主処理の流れ図。1 is a flow chart of the main process. (A)現時点で工具マガジン21が回動加速時の制動角度の算出方法の説明図、(B)現時点で工具マガジン21が定速移動時の制動角度の算出方法の説明図。6A is an explanatory diagram of a method for calculating a braking angle when the tool magazine 21 is currently accelerating in rotation, and FIG. 6B is an explanatory diagram of a method for calculating a braking angle when the tool magazine 21 is currently moving at a constant speed. 第一実施形態の距離算出処理の流れ図。4 is a flowchart of a distance calculation process according to the first embodiment. (A)現時点で主軸ヘッド7が加速時の制動距離の算出方法の説明図、(B)現時点で主軸ヘッド7が定速移動時の制動距離の算出方法の説明図。1A is an explanatory diagram of a method for calculating a braking distance when the spindle head 7 is currently accelerating, and FIG. 1B is an explanatory diagram of a method for calculating a braking distance when the spindle head 7 is currently moving at a constant speed. 第二実施形態の距離算出処理の流れ図。13 is a flowchart of a distance calculation process according to the second embodiment. (A)工具マガジン21を所定の回動減速条件で停止した時の工具マガジン21の角速度の経時変化と停止時間Tsに工具マガジン21が回動する角度Kmの説明図、(B)停止時間Tsに主軸ヘッド7を所定の加速条件で加速した時の主軸ヘッド7の速度の経時変化と主軸ヘッド7の移動距離Dmの説明図。FIG. 13A is an explanatory diagram of the change over time in the angular velocity of the tool magazine 21 when the tool magazine 21 is stopped under specified rotation deceleration conditions, and the angle Km by which the tool magazine 21 rotates during the stop time Ts; FIG. 13B is an explanatory diagram of the change over time in the speed of the spindle head 7 when the spindle head 7 is accelerated under specified acceleration conditions during the stop time Ts, and the travel distance Dm of the spindle head 7. 第二実施形態の角度算出処理の流れ図。13 is a flowchart of an angle calculation process according to the second embodiment.

本発明の第一、第二の実施形態の工作機械1に共通する物理的構成を説明する。以下説明は、図中に矢印で示す左右、前後、上下を使用する。工作機械1の左右方向、前後方向、上下方向は夫々工作機械1のX軸方向、Y軸方向、Z軸方向である。図1に示す工作機械1は主軸9に装着した工具4を回動し、テーブル13上面に保持した被削材3に切削加工を施す機械である。制御装置30(図3参照)は工作機械1の動作を制御する。 The physical configuration common to the machine tool 1 of the first and second embodiments of the present invention will be described. In the following description, the left/right, front/back, and up/down directions shown by arrows in the figure will be used. The left/right, front/back, and up/down directions of the machine tool 1 are the X-axis, Y-axis, and Z-axis directions of the machine tool 1, respectively. The machine tool 1 shown in Figure 1 is a machine that rotates a tool 4 attached to a spindle 9 and performs cutting on a workpiece 3 held on the upper surface of a table 13. A control device 30 (see Figure 3) controls the operation of the machine tool 1.

図1、図2の如く、工作機械1は基台2、コラム5、主軸ヘッド7、主軸9、テーブル装置10、工具交換装置20、制御箱6、操作パネル15(図3参照)等を備える。基台2は金属製の略直方体状の土台である。コラム5は角柱状であり、基台2上部後方に固定する。主軸ヘッド7はコラム5前面に沿ってZ軸方向に移動できる。主軸ヘッド7は内部に主軸9を回転可能に支持する。主軸9は装着穴18、挟持部材19、解除棒81を備える。装着穴18は主軸9の下端から上方に延び、工具ホルダ17の装着部17aを装着する。挟持部材19は主軸9の内部に設け、装着穴18に装着部17aを装着時に装着部17aから上方に突出するプルスタッド17bを挟持する。解除棒81は主軸9の内部に設ける。主軸9の装着穴18に工具ホルダ17を装着した状態で主軸ヘッド7が上昇時、解除棒81は挟持部材19を下方に押圧し、挟持部材19はプルスタッド17bの挟持を解除する。主軸9は主軸モータ52(図3参照)の駆動で回転する。主軸モータ52は主軸ヘッド7に設ける。主軸ヘッド7はコラム5前面に設けたZ軸移動機構(図示略)でZ軸方向に移動する。制御装置30はZ軸モータ51(図3参照)の駆動を制御することで、主軸ヘッド7をZ軸方向に移動制御する。 As shown in Figures 1 and 2, the machine tool 1 includes a base 2, a column 5, a spindle head 7, a spindle 9, a table device 10, a tool changer 20, a control box 6, an operation panel 15 (see Figure 3), etc. The base 2 is a metal base in the shape of a roughly rectangular parallelepiped. The column 5 is shaped like a rectangular column and is fixed to the rear of the upper part of the base 2. The spindle head 7 can move in the Z-axis direction along the front surface of the column 5. The spindle head 7 rotatably supports the spindle 9 inside. The spindle 9 includes a mounting hole 18, a clamping member 19, and a release bar 81. The mounting hole 18 extends upward from the lower end of the spindle 9 and mounts the mounting portion 17a of the tool holder 17. The clamping member 19 is provided inside the spindle 9 and clamps the pull stud 17b that protrudes upward from the mounting portion 17a when the mounting portion 17a is mounted in the mounting hole 18. The release bar 81 is provided inside the spindle 9. When the spindle head 7 rises with the tool holder 17 attached to the mounting hole 18 of the spindle 9, the release rod 81 presses the clamping member 19 downward, and the clamping member 19 releases the clamping of the pull stud 17b. The spindle 9 rotates by the drive of the spindle motor 52 (see FIG. 3). The spindle motor 52 is provided on the spindle head 7. The spindle head 7 moves in the Z-axis direction by a Z-axis movement mechanism (not shown) provided on the front surface of the column 5. The control device 30 controls the drive of the Z-axis motor 51 (see FIG. 3) to control the movement of the spindle head 7 in the Z-axis direction.

テーブル装置10はY軸移動機構(図示略)、Y軸テーブル12、X軸移動機構(図示略)、テーブル13等を備える。Y軸移動機構は基台2上面前側に設け、Y軸レール、Y軸ボール螺子、Y軸モータ54(図3参照)等を備える。Y軸レールとY軸ボール螺子はY軸方向に延びる。Y軸テーブル12は略直方体状に形成し、底部外面にナット(図示略)を備える。該ナットはY軸ボール螺子に螺合する。Y軸モータ54がY軸ボール螺子を回転すると、Y軸テーブル12はナットと共にY軸レールに沿って移動する。故にY軸移動機構はY軸テーブル12をY軸方向に移動可能に支持する。 The table device 10 includes a Y-axis movement mechanism (not shown), a Y-axis table 12, an X-axis movement mechanism (not shown), a table 13, etc. The Y-axis movement mechanism is provided on the front side of the upper surface of the base 2, and includes a Y-axis rail, a Y-axis ball screw, a Y-axis motor 54 (see FIG. 3), etc. The Y-axis rail and the Y-axis ball screw extend in the Y-axis direction. The Y-axis table 12 is formed in a roughly rectangular parallelepiped shape, and includes a nut (not shown) on the bottom outer surface. The nut screws into the Y-axis ball screw. When the Y-axis motor 54 rotates the Y-axis ball screw, the Y-axis table 12 moves along the Y-axis rail together with the nut. Therefore, the Y-axis movement mechanism supports the Y-axis table 12 so that it can move in the Y-axis direction.

X軸移動機構はY軸テーブル12上面に設け、X軸レール(図示略)、X軸ボール螺子(図示略)、X軸モータ53(図3参照)等を備える。X軸レールとX軸ボール螺子はX軸方向に延びる。テーブル13は平面視矩形板状に形成し、Y軸テーブル12上面に設ける。テーブル13は底部にナット(図示略)を備える。該ナットはX軸ボール螺子に螺合する。X軸モータ53がX軸ボール螺子を回転すると、テーブル13はナットと共にX軸レールに沿って移動する。故にX軸移動機構はテーブル13をX軸方向に移動可能に支持する。故にテーブル13はY軸移動機構、Y軸テーブル12、X軸移動機構により、基台2上をX軸方向とY軸方向に移動する。 The X-axis movement mechanism is provided on the upper surface of the Y-axis table 12, and includes an X-axis rail (not shown), an X-axis ball screw (not shown), an X-axis motor 53 (see FIG. 3), etc. The X-axis rail and the X-axis ball screw extend in the X-axis direction. The table 13 is formed in a rectangular plate shape in a plan view, and is provided on the upper surface of the Y-axis table 12. The table 13 includes a nut (not shown) at the bottom. The nut is screwed into the X-axis ball screw. When the X-axis motor 53 rotates the X-axis ball screw, the table 13 moves along the X-axis rail together with the nut. Therefore, the X-axis movement mechanism supports the table 13 so that it can move in the X-axis direction. Therefore, the table 13 moves in the X-axis and Y-axis directions on the base 2 by the Y-axis movement mechanism, the Y-axis table 12, and the X-axis movement mechanism.

工具交換装置20は主軸ヘッド7の前側に設け、円盤型の工具マガジン21を備える。工具マガジン21はフレーム71、複数のアーム73を備え、工具4A、4Bを含む複数の工具4を収納可能である。フレーム71は鍔部72を有する円筒状である。複数のアーム73はフレーム71の外周に沿って揺動可能に設ける。アーム73は工具4を保持する把持部73aを備える。工具交換装置20はマガジンモータ55(図3参照)により工具マガジン21をマガジン軸M周りに回動し、工具交換指令が指示する工具4を交換位置に位置決めする。工具交換指令はNCプログラムで指令する。交換位置は工具マガジン21の最下部位置である。工具交換装置20は主軸9が装着する使用済みの工具4と次に主軸9に装着する工具4を、主軸ヘッド7の上昇、工具マガジン21の回動、主軸ヘッド7の下降の一連の動作により交換する。主軸ヘッド7から取外す使用済みの工具4を取外工具4と称し、主軸ヘッド7に装着する次の工具4を装着工具4と称す。取外工具4と装着工具4を総称して対象工具4と称す。 The tool changer 20 is provided in front of the spindle head 7 and has a disk-shaped tool magazine 21. The tool magazine 21 has a frame 71 and multiple arms 73, and can store multiple tools 4 including tools 4A and 4B. The frame 71 is cylindrical with a flange 72. The multiple arms 73 are arranged to be swingable along the outer periphery of the frame 71. The arms 73 have a gripper 73a that holds the tool 4. The tool changer 20 rotates the tool magazine 21 around the magazine axis M by the magazine motor 55 (see FIG. 3) and positions the tool 4 specified by the tool change command at the change position. The tool change command is commanded by an NC program. The change position is the lowest position of the tool magazine 21. The tool changer 20 exchanges the used tool 4 attached to the spindle 9 with the next tool 4 to be attached to the spindle 9 by a series of operations of raising the spindle head 7, rotating the tool magazine 21, and lowering the spindle head 7. The used tool 4 to be removed from the spindle head 7 is referred to as the removal tool 4, and the next tool 4 to be attached to the spindle head 7 is referred to as the attachment tool 4. The removal tool 4 and the attachment tool 4 are collectively referred to as the target tool 4.

制御箱6は制御装置30(図3参照)を格納する。制御装置30は工作機械1に設けたZ軸モータ51、主軸モータ52、X軸モータ53、Y軸モータ54(図3参照)を制御し、テーブル13及び工具4をX軸方向、Y軸方向、Z軸方向に沿って相対移動する。該時、テーブル13上に固定した被削材3と主軸9に装着した工具4は相対移動し、被削材3に各種加工を施す。各種加工はドリル、タップ等を用いた穴空け加工、エンドミル、フライス等を用いた側面加工等である。 The control box 6 houses the control device 30 (see FIG. 3). The control device 30 controls the Z-axis motor 51, spindle motor 52, X-axis motor 53, and Y-axis motor 54 (see FIG. 3) provided on the machine tool 1, and moves the table 13 and tool 4 relatively along the X-axis, Y-axis, and Z-axis directions. At that time, the workpiece 3 fixed on the table 13 and the tool 4 attached to the spindle 9 move relative to each other, and various types of processing are performed on the workpiece 3. The various types of processing include hole drilling using a drill, tap, etc., side processing using an end mill, milling cutter, etc.

操作パネル15(図3参照)は例えば工作機械1を覆うカバー(図示略)の外壁に設ける。操作パネル15は入力部16と表示部14(図3参照)を備える。入力部16は各種情報、操作指示等の入力を受付け、制御装置30に出力する。表示部14は制御装置30からの指令により、各種画面を表示する。 The operation panel 15 (see FIG. 3) is provided, for example, on the outer wall of a cover (not shown) that covers the machine tool 1. The operation panel 15 includes an input unit 16 and a display unit 14 (see FIG. 3). The input unit 16 accepts input of various information, operation instructions, etc., and outputs them to the control device 30. The display unit 14 displays various screens in response to commands from the control device 30.

図3を参照し、第一、第二の実施形態の制御装置30と工作機械1に共通する電気的構成を説明する。制御装置30と工作機械1はCPU31、ROM32、RAM33、記憶装置34、入出力部35、駆動回路51A~55A等を備える。CPU31は制御装置30を統括制御する。ROM32は主プログラム、制御プログラム等を記憶する。主プログラムはNCプログラムを一行ずつ読み込んで各種動作を実行する指示を含む。NCプログラムは各種制御指令を含む複数行で構成し、工作機械1の軸移動、工具交換等を含む各種動作を行単位で制御する。制御プログラムは制御処理(図6参照)を実行する為のプログラムである。RAM33は各種情報を一時的に記憶する。記憶装置34は不揮発性であり、NCプログラム、各種情報を記憶する。CPU31は作業者が操作パネル15の入力部16で入力したNCプログラムに加え、外部入力で読み込んだNCプログラム等を記憶装置34に記憶できる。 With reference to FIG. 3, the electrical configuration common to the control device 30 and the machine tool 1 of the first and second embodiments will be described. The control device 30 and the machine tool 1 include a CPU 31, a ROM 32, a RAM 33, a storage device 34, an input/output unit 35, and drive circuits 51A to 55A. The CPU 31 controls the control device 30. The ROM 32 stores a main program, a control program, and the like. The main program includes instructions to read the NC program line by line and execute various operations. The NC program is composed of multiple lines including various control commands, and controls various operations including axis movement of the machine tool 1, tool replacement, and the like, line by line. The control program is a program for executing the control process (see FIG. 6). The RAM 33 temporarily stores various information. The storage device 34 is non-volatile and stores the NC program and various information. The CPU 31 can store in the storage device 34 the NC program input by the operator through the input unit 16 of the operation panel 15, as well as the NC program read by external input.

駆動回路51AはZ軸モータ51とエンコーダ51Bに接続する。駆動回路52Aは主軸モータ52とエンコーダ52Bに接続する。駆動回路53AはX軸モータ53とエンコーダ53Bに接続する。駆動回路54AはY軸モータ54とエンコーダ54Bに接続する。駆動回路55Aはマガジンモータ55とエンコーダ55Bに接続する。Z軸モータ51、主軸モータ52、X軸モータ53、Y軸モータ54、マガジンモータ55は何れもサーボモータである。駆動回路51A~55AはCPU31から指令を受け、対応するモータ51~55に駆動電流を夫々出力する。駆動回路51A~55Aはエンコーダ51B~55Bからフィードバック信号を受け、位置と速度(角速度)のフィードバック制御を行う。入出力部35は操作パネル15の入力部16と表示部14に夫々接続する。以下、モータ51~55を総称する時、モータ50と称す。駆動回路51A~55Aを総称する時、駆動回路50Aと称す。 The drive circuit 51A is connected to the Z-axis motor 51 and the encoder 51B. The drive circuit 52A is connected to the spindle motor 52 and the encoder 52B. The drive circuit 53A is connected to the X-axis motor 53 and the encoder 53B. The drive circuit 54A is connected to the Y-axis motor 54 and the encoder 54B. The drive circuit 55A is connected to the magazine motor 55 and the encoder 55B. The Z-axis motor 51, the spindle motor 52, the X-axis motor 53, the Y-axis motor 54, and the magazine motor 55 are all servo motors. The drive circuits 51A to 55A receive commands from the CPU 31 and output drive currents to the corresponding motors 51 to 55, respectively. The drive circuits 51A to 55A receive feedback signals from the encoders 51B to 55B and perform feedback control of the position and speed (angular velocity). The input/output unit 35 is connected to the input unit 16 and the display unit 14 of the operation panel 15, respectively. Hereinafter, the motors 51 to 55 are collectively referred to as motor 50. When referring to drive circuits 51A to 55A collectively, they are referred to as drive circuit 50A.

図2を参照し、工具交換時の主軸ヘッド7と工具マガジン21の上下位置関係を説明する。図2では、主軸ヘッド7の上下位置を主軸ヘッド7の下端位置で示す。主軸ヘッド7の位置P1~P4は上方から順に並ぶ。主軸ヘッド7はZ軸原点P4よりも下方の加工領域で被削材3を加工し、Z軸原点P4よりも上方の交換領域で工具4を交換する。Z軸原点P4はZ軸の機械原点である。工具交換時、主軸ヘッド7はZ軸原点P4と工具交換原点P1の間を移動する。工具交換原点P1は主軸ヘッド7の移動可能範囲の最上端位置である。主軸9から使用済みの工具4を取外す時、主軸ヘッド7はZ軸原点P4から工具交換原点P1に向けて上昇する。主軸9に次の工具4を装着する時、主軸ヘッド7は工具交換原点P1からZ軸原点P4に向けて下降する。 With reference to FIG. 2, the vertical positional relationship between the spindle head 7 and the tool magazine 21 during tool replacement will be described. In FIG. 2, the vertical position of the spindle head 7 is shown at the bottom end position of the spindle head 7. The positions P1 to P4 of the spindle head 7 are arranged in order from the top. The spindle head 7 processes the workpiece 3 in the processing area below the Z-axis origin P4, and replaces the tool 4 in the replacement area above the Z-axis origin P4. The Z-axis origin P4 is the machine origin of the Z axis. During tool replacement, the spindle head 7 moves between the Z-axis origin P4 and the tool replacement origin P1. The tool replacement origin P1 is the uppermost position of the movable range of the spindle head 7. When the used tool 4 is removed from the spindle 9, the spindle head 7 rises from the Z-axis origin P4 toward the tool replacement origin P1. When the next tool 4 is attached to the spindle 9, the spindle head 7 descends from the tool replacement origin P1 toward the Z-axis origin P4.

図4を参照し、取外工具4Aから装着工具4Bに交換する具体例を用い、工具交換時の主軸ヘッド7と工具マガジン21のマガジン軸M周りの位置関係を説明する。図4では、対象工具4のマガジン軸M周りの位置を対象工具4の軸線で示す。矢印Uは主軸ヘッド7の移動方向を示し、矢印Bは工具マガジン21の回動方向を示す。対象工具4の軸線は対象工具4の長手方向に沿って伸びる。図4(A)の如く、主軸9から取外工具4Aを取外す時、主軸ヘッド7が加工領域から工具交換原点P1に向けて上昇し、位置P3に達すると、取外工具4Aの軸線が基準線L0から離れるように工具マガジン21が回動する。基準線L0は主軸9の軸心に沿う。主軸9の軸心の左右位置は工具マガジン21の左右中心と一致する。工具交換時の工具マガジン21の回動方向(交換回動方向)は装着工具4Bの軸線を基準線L0の位置に最小回動角度で配置する方向である。具体例の工具マガジン21の回動方向は正面視反時計回りである。主軸ヘッド7がZ軸インポジション位置P2と工具マガジン回動可能位置P3の間の領域に在る時、工具マガジン21は所定角度範囲内で回動できる。即ち主軸ヘッド7が位置P2と位置P3の間の領域に在る時、工具マガジン21を所定角度範囲内で回動しても主軸ヘッド7と工具マガジン21は干渉しないが、所定角度範囲を超えて回動すると主軸ヘッド7と工具マガジン21は干渉する。主軸ヘッド7が工具交換原点P1と位置P2の間の領域に在る時、工具マガジン21は回動できる。即ち主軸ヘッド7が工具交換原点P1と位置P2の間の領域に在る時、工具マガジン21の所在角度θnに依らず、工具マガジン21が回転しても、主軸ヘッド7と工具マガジン21は干渉しない。 With reference to FIG. 4, the positional relationship of the spindle head 7 and the tool magazine 21 around the magazine axis M during tool replacement will be described using a specific example of replacing the removed tool 4A with the attached tool 4B. In FIG. 4, the position of the target tool 4 around the magazine axis M is indicated by the axis of the target tool 4. Arrow U indicates the movement direction of the spindle head 7, and arrow B indicates the rotation direction of the tool magazine 21. The axis of the target tool 4 extends along the longitudinal direction of the target tool 4. As shown in FIG. 4(A), when the removed tool 4A is removed from the spindle 9, the spindle head 7 rises from the machining area toward the tool replacement origin P1, and when it reaches position P3, the tool magazine 21 rotates so that the axis of the removed tool 4A moves away from the reference line L0. The reference line L0 is along the axis of the spindle 9. The left and right positions of the axis of the spindle 9 coincide with the left and right center of the tool magazine 21. The rotation direction of the tool magazine 21 during tool replacement (replacement rotation direction) is the direction in which the axis of the attached tool 4B is located at the reference line L0 position with the minimum rotation angle. In the specific example, the rotation direction of the tool magazine 21 is counterclockwise when viewed from the front. When the spindle head 7 is in the area between the Z-axis in-position position P2 and the tool magazine rotatable position P3, the tool magazine 21 can be rotated within a predetermined angle range. In other words, when the spindle head 7 is in the area between positions P2 and P3, the spindle head 7 and the tool magazine 21 do not interfere with each other even if the tool magazine 21 is rotated within the predetermined angle range, but if it is rotated beyond the predetermined angle range, the spindle head 7 and the tool magazine 21 will interfere with each other. When the spindle head 7 is in the area between the tool replacement origin P1 and position P2, the tool magazine 21 can be rotated. In other words, when the spindle head 7 is in the area between the tool change origin P1 and position P2, regardless of the position angle θn of the tool magazine 21, there is no interference between the spindle head 7 and the tool magazine 21 even if the tool magazine 21 rotates.

図4(B)の如く、主軸9に装着工具4Bを装着する時、装着工具4Bの軸線が基準線L0に近づくように工具マガジン21が回動する。装着工具4Bの軸線が工具装着可能線L1とZ軸移動可能線L2の間に在る時、主軸ヘッド7が所定範囲で移動しても主軸ヘッド7は工具マガジン21と干渉しないが、主軸ヘッド7が所定範囲を超えて移動した時に主軸ヘッド7は工具マガジン21と干渉する。線L2は主軸ヘッド7が位置P2に位置する時の主軸ヘッド7と装着工具4Bが干渉する境界位置を示す。装着工具4Bが基準線L0と工具装着可能線L1の間に在る時、主軸9が下降しても主軸9は装着工具4Bを装着でき、且つ工具マガジン21に干渉しない。 As shown in FIG. 4B, when the attached tool 4B is attached to the spindle 9, the tool magazine 21 rotates so that the axis of the attached tool 4B approaches the reference line L0. When the axis of the attached tool 4B is between the tool attachable line L1 and the Z-axis movable line L2, the spindle head 7 does not interfere with the tool magazine 21 even if the spindle head 7 moves within a specified range, but when the spindle head 7 moves beyond the specified range, the spindle head 7 interferes with the tool magazine 21. Line L2 indicates the boundary position where the spindle head 7 and the attached tool 4B interfere when the spindle head 7 is located at position P2. When the attached tool 4B is between the reference line L0 and the tool attachable line L1, the spindle 9 can attach the attached tool 4B even if the spindle 9 is lowered, and does not interfere with the tool magazine 21.

図5を参照し、上記具体例を用い、関数F、及び工具マガジン21の角度に対する主軸ヘッド7の位置を示す経路Qを説明する。図5の縦軸は主軸ヘッド7の上下位置を示し、横軸は工具マガジン21の角度を、基準に対する基準工具4の軸線の角度(以下、対象工具4の角度と言う。)で示す。基準、基準工具4は適宜設定すればよく、例えば基準は基準線L0であり、基準工具4は取外工具4である。工具交換時、CPU31はRAM33に主軸ヘッド7の上下位置と工具マガジン21の角度に関する関数Fを設定する。関数Fは主軸ヘッド7と工具マガジン21が干渉しない第一範囲と、主軸ヘッド7と工具マガジン21が干渉する第二範囲との境界を示す。点線Cから左側は、取外工具4Aを主軸9から取外す時の主軸ヘッド7の上下位置と、工具マガジン21の角度の対応を示す。点線Cから右側は、装着工具4Bを主軸9に装着する時の主軸ヘッド7の上下位置と、工具マガジン21の角度の対応を示す。点線Cから右側と左側とで工具マガジン21の回動方向は同じである。 With reference to FIG. 5, the function F and the path Q showing the position of the spindle head 7 relative to the angle of the tool magazine 21 will be explained using the above specific example. The vertical axis of FIG. 5 shows the vertical position of the spindle head 7, and the horizontal axis shows the angle of the tool magazine 21 as the angle of the axis of the reference tool 4 relative to the reference (hereinafter referred to as the angle of the target tool 4). The reference and the reference tool 4 can be set appropriately, for example, the reference is the reference line L0, and the reference tool 4 is the removal tool 4. When changing tools, the CPU 31 sets a function F related to the vertical position of the spindle head 7 and the angle of the tool magazine 21 in the RAM 33. The function F shows the boundary between the first range where the spindle head 7 and the tool magazine 21 do not interfere with each other, and the second range where the spindle head 7 and the tool magazine 21 interfere with each other. The left side of the dotted line C shows the correspondence between the vertical position of the spindle head 7 and the angle of the tool magazine 21 when the removal tool 4A is removed from the spindle 9. The right side of dotted line C shows the correspondence between the vertical position of the spindle head 7 and the angle of the tool magazine 21 when the attached tool 4B is attached to the spindle 9. The rotation direction of the tool magazine 21 is the same on the right and left sides of dotted line C.

図5では、関数Fよりも上側の範囲が第一範囲であり、関数Fよりも下側の範囲が第二範囲である。関数Fは例えば主軸ヘッド7の上下位置Pと工具マガジン21の角度θを示す複数の座標d1~d4の線形補間で求める。座標d1は(θ1,P3)で表す。角度θ1は取外工具4Aの軸線が基準線L0と一致する時の工具マガジン21の角度である。座標d2は(θ2,P2)で表す。角度θ2は取外工具4Aの軸線が基準線L0の反時計回り方向に在る線L2と一致する時の工具マガジン21の角度である。座標d3は(θ3,P2)で表す。角度θ3は装着工具4Bの軸線が基準線L0の時計回り方向に在る線L2と一致する時の工具マガジン21の角度である。座標d4は(θ5,P3)で表す。角度θ5は装着工具4Bの軸線が基準線L0と一致する時の工具マガジン21の角度である。基準線L0に対する線L1、L2の角度は記憶装置34に記憶する。CPU31は取外工具4A、装着工具4Bに応じ、座標d1~d4を設定する。関数Fは線形関数func(θ)で表す。線形関数func(θ)は工具マガジン21の角度θに対応する主軸ヘッド7の位置Pを返す。制御装置30は制御処理において経路Qが第一範囲となるように工具マガジン21と主軸ヘッド7を制御する。 In FIG. 5, the range above function F is the first range, and the range below function F is the second range. Function F is obtained, for example, by linear interpolation of multiple coordinates d1 to d4 indicating the vertical position P of the spindle head 7 and the angle θ of the tool magazine 21. Coordinate d1 is expressed as (θ1, P3). Angle θ1 is the angle of the tool magazine 21 when the axis of the removal tool 4A coincides with the reference line L0. Coordinate d2 is expressed as (θ2, P2). Angle θ2 is the angle of the tool magazine 21 when the axis of the removal tool 4A coincides with the line L2 in the counterclockwise direction of the reference line L0. Coordinate d3 is expressed as (θ3, P2). Angle θ3 is the angle of the tool magazine 21 when the axis of the mounting tool 4B coincides with the line L2 in the clockwise direction of the reference line L0. Coordinate d4 is expressed as (θ5, P3). Angle θ5 is the angle of the tool magazine 21 when the axis of the attached tool 4B coincides with the reference line L0. The angles of lines L1 and L2 relative to the reference line L0 are stored in the memory device 34. The CPU 31 sets coordinates d1 to d4 according to the removed tool 4A and the attached tool 4B. The function F is expressed as a linear function func(θ). The linear function func(θ) returns the position P of the spindle head 7 corresponding to the angle θ of the tool magazine 21. The control device 30 controls the tool magazine 21 and the spindle head 7 so that the path Q is in the first range in the control process.

図6~図9を参照し、取外工具4A、装着工具4Bの例を用い、第一実施形態の制御処理を説明する。CPU31は工具交換指示を取得時、ROM32に記憶した工具交換プログラムを読出して実行することで、制御処理を開始する。工具交換指示はNCプログラムによりCPU31が入力してもよい。制御処理開始時、主軸ヘッド7は取外工具4Aを装着し、加工領域に位置する。 The control process of the first embodiment will be described with reference to Figures 6 to 9, using the example of a removal tool 4A and an attachment tool 4B. When the CPU 31 acquires a tool change command, it starts the control process by reading and executing a tool change program stored in the ROM 32. The tool change command may be input by the CPU 31 using an NC program. When the control process starts, the spindle head 7 is attached with the removal tool 4A and is positioned in the machining area.

図6の如く、CPU31は対象工具4に応じて主軸ヘッド7の上下位置Pと工具マガジン21の角度θに関する関数Fを設定する(S1)。CPU31は駆動回路51Aに工具交換原点P1への移動指令を出力し(S2)、主軸ヘッド7の上昇を開始する。CPU31はエンコーダ51Bの検出信号により、主軸ヘッド7の所在位置Pnが位置P2以上か否か判定する(S3)。所在位置Pnが位置P2以上である時、工具マガジン21が回動しても、工具マガジン21は主軸ヘッド7に干渉しない。CPU31は所在位置Pnが位置P2以上でない時(S3:NO)、所在位置Pnが位置P3以上か否か判定する(S21)。 As shown in FIG. 6, the CPU 31 sets a function F relating the vertical position P of the spindle head 7 and the angle θ of the tool magazine 21 according to the target tool 4 (S1). The CPU 31 outputs a movement command to the drive circuit 51A to move to the tool change origin P1 (S2), and starts to raise the spindle head 7. The CPU 31 determines whether the location Pn of the spindle head 7 is equal to or greater than the position P2 based on the detection signal of the encoder 51B (S3). When the location Pn is equal to or greater than the position P2, the tool magazine 21 does not interfere with the spindle head 7 even if the tool magazine 21 rotates. When the location Pn is not equal to or greater than the position P2 (S3: NO), the CPU 31 determines whether the location Pn is equal to or greater than the position P3 (S21).

所在位置Pnが位置P3以上でない時(S21:NO)、CPU31はS3に処理を戻す。主軸ヘッド7は上昇を継続し、取外工具4Aを位置P3よりも下方にてアーム73に渡す。主軸ヘッド7が座標d1の位置に在る時、CPU31は所在位置Pnが位置P3以上であると判定し(S21:YES)、エンコーダ51B、55Bの検出結果により、主軸ヘッド7の所在位置P3と工具マガジン21の所在角度θ1を取得する。CPU31は角度算出処理を行う(S22)。CPU31は角度算出処理で回動可能角度Kcと制動角度Keを算出する。回動可能角度Kcは工具マガジン21の所在角度θnと主軸ヘッド7の所在位置Pnに対応する関数Fが示す境界角度θfの差分である。所在角度θnが角度θ1であり、所在位置Pnが位置P3である時、回動可能角度Kcは0度である。 When the location position Pn is not equal to or greater than the position P3 (S21: NO), the CPU 31 returns the process to S3. The spindle head 7 continues to rise, and transfers the removal tool 4A to the arm 73 below the position P3. When the spindle head 7 is at the position of coordinate d1, the CPU 31 determines that the location position Pn is equal to or greater than the position P3 (S21: YES), and obtains the location position P3 of the spindle head 7 and the location angle θ1 of the tool magazine 21 based on the detection results of the encoders 51B and 55B. The CPU 31 performs an angle calculation process (S22). The CPU 31 calculates the rotation angle Kc and the braking angle Ke in the angle calculation process. The rotation angle Kc is the difference between the location angle θn of the tool magazine 21 and the boundary angle θf indicated by the function F corresponding to the location angle Pn of the spindle head 7. When the location angle θn is the angle θ1 and the location position Pn is the position P3, the rotation angle Kc is 0 degrees.

制動角度Keは駆動回路55Aに停止指令を出力した時点の工具マガジン21の所在角度θnと工具マガジン21が制動停止する角度の差分である。図7を参照して制動角度Keの算出方法を説明する。図7において、Rmaxは工具マガジン21の最大角速度、Rnは工具マガジン21の現時点での角速度、RAmaxは工具マガジン21の最大回動加速度、RAnは工具マガジン21の現時点での回動加速度、Tnは現時点、RJmaxは回動加速度の最大傾きを示す。駆動回路55Aはエンコーダ55Bの検出結果により、現時点での工具マガジン21の角速度Rnと回動加速度RAnを算出する。本実施形態では角速度(rad/s)は交換回動方向の角速度を正で表す。回動加速度(rad/s)は正の値で表し、回動減速度(rad/s)は負の値で表す。RmaxとRAmaxは予め記憶装置34に記憶する。 The braking angle Ke is the difference between the position angle θn of the tool magazine 21 at the time when the stop command is output to the drive circuit 55A and the angle at which the tool magazine 21 is braked and stopped. A method for calculating the braking angle Ke will be described with reference to FIG. 7. In FIG. 7, Rmax indicates the maximum angular velocity of the tool magazine 21, Rn indicates the angular velocity of the tool magazine 21 at the current time, RAmax indicates the maximum rotation acceleration of the tool magazine 21, RAn indicates the rotation acceleration of the tool magazine 21 at the current time, Tn indicates the current time, and RJmax indicates the maximum slope of the rotation acceleration. The drive circuit 55A calculates the angular velocity Rn and the rotation acceleration RAn of the tool magazine 21 at the current time based on the detection result of the encoder 55B. In this embodiment, the angular velocity (rad/s) indicates the angular velocity in the exchange rotation direction as a positive value. The rotation acceleration (rad/s 2 ) is expressed as a positive value, and the rotation deceleration (rad/s 2 ) is expressed as a negative value. Rmax and RAmax are stored in advance in the storage device 34.

図7(A)の如く、回動加速中の工具マガジン21を現時点Tnから制動した時、点線の如く工具マガジン21の回動加速度RA、角速度Rの増加率は徐々に低下し、回動加速度RAは時点T1で0になる。時点T1から時点T2迄の間、工具マガジン21の回動加速度RA、角速度Rは徐々に低下する。時点T2から時点T3迄の間、工具マガジン21の回動加速度RA、角速度Rは徐々に0に近づく。工具マガジン21の回動加速度RA、角速度Rは時点T3で0となり、工具マガジン21は停止する。工具マガジン21回動加速時の制動角度KeはTnから時点T1の間に回動した角度K1と、時点T2から時点T3の間に回動した角度K2との和である。 As shown in FIG. 7(A), when the tool magazine 21 is braked from the current time Tn during rotational acceleration, the increase rate of the rotational acceleration RA and angular velocity R of the tool magazine 21 gradually decreases as shown by the dotted line, and the rotational acceleration RA becomes 0 at time T1. Between time T1 and time T2, the rotational acceleration RA and angular velocity R of the tool magazine 21 gradually decrease. Between time T2 and time T3, the rotational acceleration RA and angular velocity R of the tool magazine 21 gradually approach 0. The rotational acceleration RA and angular velocity R of the tool magazine 21 become 0 at time T3, and the tool magazine 21 stops. The braking angle Ke during the rotational acceleration of the tool magazine 21 is the sum of the rotation angle K1 from Tn to time T1 and the rotation angle K2 from time T2 to time T3.

図7(B)の如く、回動中の工具マガジン21を現時点Tnから制動した時、制動始めてから時点T4迄の間、工具マガジン21の回動加速度RA、角速度Rは徐々に小さくなる。時点T4から時点T5の間、回動加速度RAの大きさは一定となり、工具マガジン21の角速度Rは徐々に低下する。時点T5から時点T6迄の間、回動加速度RA、角速度Rは徐々に0に近づき、工具マガジン21の回動加速度RA、角速度Rは時点T6で0となり、工具マガジン21は停止する。工具マガジン21の角速度がRmax時の制動角度Keは、時点Tnから時点T6の間に回動した角度K3である。主軸ヘッド7が座標d1の位置に在る時、工具マガジン21の現時点の角速度Rnは0であり、制動角度Keは0である。 As shown in FIG. 7(B), when the rotating tool magazine 21 is braked from the current time Tn, the rotational acceleration RA and angular velocity R of the tool magazine 21 gradually decrease from the start of braking to time T4. Between time T4 and time T5, the magnitude of the rotational acceleration RA is constant, and the angular velocity R of the tool magazine 21 gradually decreases. Between time T5 and time T6, the rotational acceleration RA and angular velocity R gradually approach 0, and the rotational acceleration RA and angular velocity R of the tool magazine 21 become 0 at time T6, and the tool magazine 21 stops. The braking angle Ke when the angular velocity of the tool magazine 21 is Rmax is the angle K3 rotated between time Tn and time T6. When the spindle head 7 is at the position of coordinate d1, the current angular velocity Rn of the tool magazine 21 is 0, and the braking angle Ke is 0.

CPU31は制動角度Keが回動可能角度Kcよりも大きいか否か判定する(S23)。制動角度Keは0度であり、回動可能角度Kcの0度と等しい(S23:NO)。該時、CPU31は工具マガジン21の現時点での角速度Rnが記憶装置34にした最大角速度Rmaxよりも小さいか否か判定する(S28)。角速度Rnが最大角速度Rmaxよりも小さくない時(S28:NO)、CPU31はS3に処理を戻す。角速度Rnが0である時、CPU31は角速度Rnが最大角速度Rmaxよりも小さいと判定し(S28:YES)、駆動回路55Aに回動加速指令を出力して、工具マガジン21を回動加速度の最大傾きRJmaxで回動加速し(S30)、S3に処理を戻す。該処理により、主軸ヘッド7が位置P2迄上昇する前に、工具マガジン21が交換回動方向に回動し始める。 The CPU 31 determines whether the braking angle Ke is greater than the rotation angle Kc (S23). The braking angle Ke is 0 degrees, which is equal to the rotation angle Kc of 0 degrees (S23: NO). At that time, the CPU 31 determines whether the current angular velocity Rn of the tool magazine 21 is smaller than the maximum angular velocity Rmax stored in the storage device 34 (S28). When the angular velocity Rn is not smaller than the maximum angular velocity Rmax (S28: NO), the CPU 31 returns the process to S3. When the angular velocity Rn is 0, the CPU 31 determines that the angular velocity Rn is smaller than the maximum angular velocity Rmax (S28: YES), outputs a rotation acceleration command to the drive circuit 55A, and accelerates the tool magazine 21 at the maximum gradient RJmax of the rotation acceleration (S30), and returns the process to S3. This process causes the tool magazine 21 to start rotating in the replacement rotation direction before the spindle head 7 rises to position P2.

図5の如く、主軸ヘッド7と工具マガジン21が座標R1で示す位置に在る時、CPU31は所在位置Pnが位置P3以上であると判定し(S21:YES)、エンコーダ51B、55Bの検出結果により、主軸ヘッド7の所在位置Pnと工具マガジン21の所在角度θnを取得する。所在位置Pnに対応する関数Fが示す境界は座標R2で示す位置である。CPU31は所在角度θnと所在位置Pnに対応する関数Fが示す境界角度θfの差分Kを回動可能角度Kcとして算出する。CPU31は制動角度Keを算出し(S22)、制動角度Keが回動可能角度Kcよりも大きいと判定する(S23:YES)。該時、CPU31は工具マガジン21が回動加速中か否か判定する(S24)。工具マガジン21が回動加速中の時(S24:YES)、CPU31は駆動回路55Aに回動減速指令を出力し、回動減速度の最大傾き(-RJmax)で工具マガジン21の回動加速度RAを減少し(S27)、S3に処理を戻す。 5, when the spindle head 7 and the tool magazine 21 are at the position indicated by the coordinate R1, the CPU 31 determines that the location Pn is equal to or greater than the position P3 (S21: YES), and obtains the location Pn of the spindle head 7 and the location angle θn of the tool magazine 21 from the detection results of the encoders 51B and 55B. The boundary indicated by the function F corresponding to the location Pn is the position indicated by the coordinate R2. The CPU 31 calculates the difference K between the location angle θn and the boundary angle θf indicated by the function F corresponding to the location Pn as the rotation angle Kc. The CPU 31 calculates the braking angle Ke (S22) and determines that the braking angle Ke is greater than the rotation angle Kc (S23: YES). At that time, the CPU 31 determines whether the tool magazine 21 is accelerating (S24). When the tool magazine 21 is accelerating (S24: YES), the CPU 31 outputs a rotation deceleration command to the drive circuit 55A, reduces the rotation acceleration RA of the tool magazine 21 at the maximum slope of the rotation deceleration (-RJmax) (S27), and returns processing to S3.

工具マガジン21が回動加速中でない時(S24:NO)、CPU31は工具マガジン21の角速度Rnが0であるか否か判定する(S25)。工具マガジン21の角速度Rnが0の時(S25:YES)、CPU31はS3に処理を戻す。工具マガジン21の角速度Rnが0でない時(S25:NO)、CPU31は駆動回路55Aに回動減速指令を出力して、工具マガジン21を回動減速度の最大傾き(-RJmax)で回動減速し(S26)、S3に処理を戻す。 When the tool magazine 21 is not accelerating (S24: NO), the CPU 31 determines whether the angular velocity Rn of the tool magazine 21 is 0 (S25). When the angular velocity Rn of the tool magazine 21 is 0 (S25: YES), the CPU 31 returns to S3. When the angular velocity Rn of the tool magazine 21 is not 0 (S25: NO), the CPU 31 outputs a rotation deceleration command to the drive circuit 55A to decelerate the rotation of the tool magazine 21 at the maximum slope of the rotation deceleration (-RJmax) (S26), and returns to S3.

所在位置Pnが位置P2以上である時(S3:YES)、CPU31は装着工具4Bを保持したアーム73を交換位置迄移動する為に、工具マガジン21に回動指令を出力する(S4)。CPU31はエンコーダ55Bの検出結果により、所在角度θnが角度θ4以上か否か判定する(S5)。所在角度θnが角度θ4以上でない時(S5:NO)、CPU31は所在角度θnが角度θ3以上であるか否か判定する(S6)。所在角度θnが角度θ3以上でない時(S6:NO)、CPU31はS5に処理を戻す。工具マガジン21は回動を継続する。主軸ヘッド7は位置P2から位置P1まで移動後、上昇を停止する。工具マガジン21の角度θ2からθ3の間、装着工具4Bが基準線L0に近づくように回動する。主軸ヘッド7が工具交換原点P1と位置P2の間の領域に在る時、工具マガジン21が回動しても、主軸ヘッド7と工具マガジン21は干渉しない。 When the location position Pn is equal to or greater than the position P2 (S3: YES), the CPU 31 outputs a rotation command to the tool magazine 21 to move the arm 73 holding the attached tool 4B to the replacement position (S4). The CPU 31 determines whether the location angle θn is equal to or greater than the angle θ4 based on the detection result of the encoder 55B (S5). When the location angle θn is not equal to or greater than the angle θ4 (S5: NO), the CPU 31 determines whether the location angle θn is equal to or greater than the angle θ3 (S6). When the location angle θn is not equal to or greater than the angle θ3 (S6: NO), the CPU 31 returns the process to S5. The tool magazine 21 continues to rotate. After the spindle head 7 moves from the position P2 to the position P1, it stops rising. Between the angles θ2 and θ3 of the tool magazine 21, the attached tool 4B rotates so as to approach the reference line L0. When the spindle head 7 is in the area between the tool change origin P1 and position P2, the spindle head 7 and the tool magazine 21 do not interfere with each other even if the tool magazine 21 rotates.

所在角度θnが角度θ3以上の時(S6:YES)、CPU31は距離算出処理を実行する(S7)。図8の如く、CPU31はエンコーダ51Bの検出結果により、主軸ヘッド7の所在位置Pnを取得する(S41)。CPU31はエンコーダ55Bの検出結果により、工具マガジン21の対象工具4の所在角度θnを取得する(S42)。CPU31は工具マガジン21の現在角速度Rnを取得する(S43)。CPU31は工具マガジン21を所定の回動減速条件で停止した時の工具マガジン21の停止角度θsを算出する(S44)。本実施形態の所定の回動減速条件は、工具マガジン21をS43で取得した現在の角速度Rnから工具マガジン21の最大回動減速度RAdで回動減速する条件である。最大回動減速度RAdは負の値である。工具マガジン21の最大回動減速度RAdは工具マガジン21が実現可能な回動減速度の絶対値の最大値であり、工具マガジン21を緊急停止する時の回動減速度と等しい。最大回動減速度RAdの絶対値は通常時の最大回動減速度(-RAmax)の絶対値よりも大きい。CPU31は停止角度θsを式(1)を用い算出する。回動角度Km(図11参照)は工具マガジン21が所定の回動減速条件で減速してから停止する迄に工具マガジン21が回動する角度である。
θs=θn+Km
=θn+Rn/(2×|RAd|) ・・・式(1)
When the location angle θn is equal to or greater than the angle θ3 (S6: YES), the CPU 31 executes a distance calculation process (S7). As shown in FIG. 8, the CPU 31 acquires the location Pn of the spindle head 7 based on the detection result of the encoder 51B (S41). The CPU 31 acquires the location angle θn of the target tool 4 in the tool magazine 21 based on the detection result of the encoder 55B (S42). The CPU 31 acquires the current angular velocity Rn of the tool magazine 21 (S43). The CPU 31 calculates the stop angle θs of the tool magazine 21 when the tool magazine 21 is stopped under a predetermined rotation deceleration condition (S44). The predetermined rotation deceleration condition in this embodiment is a condition for decelerating the tool magazine 21 from the current angular velocity Rn acquired in S43 at the maximum rotation deceleration RAd of the tool magazine 21. The maximum rotation deceleration RAd is a negative value. The maximum rotation deceleration RAd of the tool magazine 21 is the maximum absolute value of the rotation deceleration that the tool magazine 21 can realize, and is equal to the rotation deceleration when the tool magazine 21 is stopped in an emergency. The absolute value of the maximum rotation deceleration RAd is greater than the absolute value of the maximum rotation deceleration (-RAmax) in normal operation. The CPU 31 calculates the stop angle θs using the formula (1). The rotation angle Km (see FIG. 11) is the angle by which the tool magazine 21 rotates from when it decelerates under a predetermined rotation deceleration condition until it stops.
θs=θn+Km
=θn+ Rn2 /(2×|RAd|) ...Equation (1)

CPU31は移動可能距離Dcを算出する(S45)。移動可能距離DcはS41で取得した所在位置Pnと、S44で算出した停止角度θsに応じた境界の位置Pとの間の距離である。図5の如く、停止角度θsを座標R7で示す時、停止角度θsに応じた境界は座標R8である。CPU31は式(2)を用いS45で座標R7と座標R8により距離Dを移動可能距離Dcとして算出する。
Dc=Pn-func(θs) ・・・式(2)
The CPU 31 calculates the movable distance Dc (S45). The movable distance Dc is the distance between the location Pn acquired in S41 and the position P of the boundary corresponding to the stop angle θs calculated in S44. As shown in Fig. 5, when the stop angle θs is indicated by the coordinate R7, the boundary corresponding to the stop angle θs is the coordinate R8. The CPU 31 calculates the distance D as the movable distance Dc from the coordinates R7 and R8 in S45 using the formula (2).
Dc=Pn-func(θs) ...Equation (2)

CPU31は主軸ヘッド7の制動距離Deを算出する(S46)。制動距離Deは駆動回路51Aに停止指令を出力した時点の主軸ヘッド7の位置と主軸ヘッド7が停止する位置の間の距離である。図9を参照し、制動距離Deの算出方法を説明する。図9において、Vmaxは主軸ヘッド7の移動方向の最大速度、Vnは主軸ヘッド7の現時点での速度、Amaxは主軸ヘッド7の移動方向の最大加速度、Anは主軸ヘッド7の現時点での加速度、Tnは現時点、Jmaxは加速度の最大傾きを示す。本実施形態では主軸ヘッド7の速度(m/s)は主軸ヘッド7の移動方向によらず正の速度で表す。移動方向の加速度(m/s)は正の値で表し、減速度(m/s)は負の値で表す。駆動回路51Aはエンコーダ51Bの検出結果により、現時点での主軸ヘッド7の速度Vnと加速度Anを算出する。VmaxとAmaxは予め記憶装置34に記憶する。最大速度、最大加速度は主軸ヘッド7の移動方向に応じて互いに異なる値であってもよいし、主軸ヘッド7の移動方向によらず互いに同じ値であってもよい。 The CPU 31 calculates the braking distance De of the spindle head 7 (S46). The braking distance De is the distance between the position of the spindle head 7 at the time when a stop command is output to the drive circuit 51A and the position where the spindle head 7 stops. A method for calculating the braking distance De will be described with reference to FIG. 9. In FIG. 9, Vmax indicates the maximum speed in the moving direction of the spindle head 7, Vn indicates the current speed of the spindle head 7, Amax indicates the maximum acceleration in the moving direction of the spindle head 7, An indicates the current acceleration of the spindle head 7, Tn indicates the current time, and Jmax indicates the maximum gradient of acceleration. In this embodiment, the speed (m/s) of the spindle head 7 is expressed as a positive speed regardless of the moving direction of the spindle head 7. The acceleration (m/s 2 ) in the moving direction is expressed as a positive value, and the deceleration (m/s 2 ) is expressed as a negative value. The drive circuit 51A calculates the current speed Vn and acceleration An of the spindle head 7 based on the detection result of the encoder 51B. Vmax and Amax are stored in advance in the storage device 34. The maximum speed and maximum acceleration may be different values depending on the moving direction of the spindle head 7, or may be the same values regardless of the moving direction of the spindle head 7.

S22で算出した制動角度Keの算出方法と同様に、図9(A)の如く、加速中の主軸ヘッド7を現時点Tnから制動した時、制動距離DeはTnから時点T1の間に移動した距離D1と、時点T2からT3の間に移動した距離D2との和である。図9(B)の如く、定速移動中の主軸ヘッド7を現時点Tnから制動した時、制動距離Deは、時点Tnから時点T6の間に移動した距離D3である。CPU31は以上で距離算出処理を終了し、処理を図6の制御処理に戻す。 As with the method of calculating the braking angle Ke calculated in S22, when the accelerating spindle head 7 is braked from the current time Tn, as shown in FIG. 9(A), the braking distance De is the sum of the distance D1 traveled from Tn to time T1 and the distance D2 traveled from time T2 to T3. As shown in FIG. 9(B), when the spindle head 7 moving at a constant speed is braked from the current time Tn, the braking distance De is the distance D3 traveled from time Tn to time T6. The CPU 31 then ends the distance calculation process and returns the process to the control process in FIG. 6.

CPU31はS46で算出した制動距離DeがS45で算出した移動可能距離Dcよりも大きいか否か判定する(S8)。制動距離Deが移動可能距離Dcよりも大きくない時(S8:NO)、CPU31は主軸ヘッド7の現時点での速度Vnが下降時の最大速度Vmaxよりも小さいか否か判定する(S13)。現時点での速度Vnが最大速度Vmaxよりも小さい時(S13:YES)、CPU31は駆動回路51Aに加速指令を出力し、主軸ヘッド7を加速度の最大傾きJmaxで加速し(S14)、S5に処理を戻す。該処理により、装着工具4Bの軸線が工具装着可能線L1と一致する位置迄工具マガジン21が回動する前に、主軸ヘッド7が工具交換原点P1から下降し始める。現時点での速度Vnが最大速度Vmaxよりも小さくない時(S13:NO)、S5に処理を戻す。 The CPU 31 determines whether the braking distance De calculated in S46 is greater than the movable distance Dc calculated in S45 (S8). When the braking distance De is not greater than the movable distance Dc (S8: NO), the CPU 31 determines whether the current speed Vn of the spindle head 7 is less than the maximum speed Vmax during descent (S13). When the current speed Vn is less than the maximum speed Vmax (S13: YES), the CPU 31 outputs an acceleration command to the drive circuit 51A, accelerates the spindle head 7 at the maximum acceleration gradient Jmax (S14), and returns to S5. By this process, the spindle head 7 starts to descend from the tool exchange origin P1 before the tool magazine 21 rotates to a position where the axis of the attached tool 4B coincides with the tool mountable line L1. When the current speed Vn is not less than the maximum speed Vmax (S13: NO), the process returns to S5.

制動距離Deが移動可能距離Dcよりも大きい時(S8:YES)、CPU31は主軸ヘッド7が加速中であるか否か判定する(S9)。主軸ヘッド7が加速中の時(S9:YES)、CPU31は駆動回路51Aに減速指令を出力し、減速度の最大傾き(-Jmax)で主軸ヘッド7の加速度を減少し(S10)、S5に処理を戻す。主軸ヘッド7が加速中でない時(S9:NO)、CPU31は主軸ヘッド7の速度Vnが0か否か判定する(S11)。主軸ヘッド7の速度Vnが0でない時(S11:NO)、CPU31は駆動回路51Aに減速指令を出力し、主軸ヘッド7を減速度の最大傾き(-Jmax)で減速し(S12)、S5に処理を戻す。主軸ヘッド7の速度Vnが0である時(S11:YES)、CPU31はS5に処理を戻す。 When the braking distance De is greater than the movable distance Dc (S8: YES), the CPU 31 determines whether the spindle head 7 is accelerating (S9). When the spindle head 7 is accelerating (S9: YES), the CPU 31 outputs a deceleration command to the drive circuit 51A, reduces the acceleration of the spindle head 7 at the maximum deceleration gradient (-Jmax) (S10), and returns to S5. When the spindle head 7 is not accelerating (S9: NO), the CPU 31 determines whether the speed Vn of the spindle head 7 is 0 (S11). When the speed Vn of the spindle head 7 is not 0 (S11: NO), the CPU 31 outputs a deceleration command to the drive circuit 51A, decelerates the spindle head 7 at the maximum deceleration gradient (-Jmax) (S12), and returns to S5. When the speed Vn of the spindle head 7 is 0 (S11: YES), the CPU 31 returns to S5.

所在角度θnが角度θ4以上の時(S5:YES)、CPU31は主軸ヘッド7をZ軸原点P4迄下降し(S31)、処理を終了する。主軸ヘッド7がZ軸原点P4に達すると、挟持部材19は解除棒81の押圧を中断してプルスタッド17bを挟持し、工具4が主軸9に装着する。其の後CPU31はNCプログラムに従い、主軸ヘッド7をZ軸原点P4から加工領域内を下降し、装着工具4Bを用い加工領域で被削材3を加工する。 When the angle θn is equal to or greater than the angle θ4 (S5: YES), the CPU 31 lowers the spindle head 7 to the Z-axis origin P4 (S31) and ends the process. When the spindle head 7 reaches the Z-axis origin P4, the clamping member 19 stops pressing the release rod 81, clamps the pull stud 17b, and the tool 4 is attached to the spindle 9. The CPU 31 then follows the NC program to lower the spindle head 7 from the Z-axis origin P4 into the machining area, and uses the attached tool 4B to machine the workpiece 3 in the machining area.

図10~図12を参照し、第二実施形態の制御処理を説明する。第二実施形態の制御処理はS7、S22の処理が第一実施形態の制御処理と異なり、他の処理は第一実施形態の制御処理と互いに同じである。第一実施形態の制御処理と同様の処理については説明を省略し、以下第一実施形態の制御処理と互いに異なる処理について説明する。 The control process of the second embodiment will be described with reference to Figures 10 to 12. The control process of the second embodiment differs from the control process of the first embodiment in the processes of S7 and S22, but the other processes are the same as the control process of the first embodiment. A description of the processes that are the same as the control process of the first embodiment will be omitted, and the following describes the processes that are different from the control process of the first embodiment.

S7の距離算出処理では、図10の距離算出処理を行う。図10において図8の第一実施形態の距離算出処理と同様の処理には同じステップ番号を付与する。図10の如く、CPU31は第一実施形態の距離算出処理と同様のS41~S44を実行する。CPU31は主軸ヘッド7の現在の速度Vnを取得する(S51)。CPU31は工具マガジン21の停止時間Tsを算出する(S52)。図11の如く、停止時間TsはS44の工具マガジン21を所定の回動減速条件で停止するのに要する時間である。CPU31は式(3)を用い停止時間Tsを算出する。
Ts=Rn/|RAd| ・・・式(3)
In the distance calculation process of S7, the distance calculation process of FIG. 10 is performed. In FIG. 10, the same steps as those in the distance calculation process of the first embodiment in FIG. 8 are given the same step numbers. As shown in FIG. 10, the CPU 31 executes S41 to S44 similar to those in the distance calculation process of the first embodiment. The CPU 31 acquires the current speed Vn of the spindle head 7 (S51). The CPU 31 calculates the stop time Ts of the tool magazine 21 (S52). As shown in FIG. 11, the stop time Ts is the time required to stop the tool magazine 21 in S44 under a predetermined rotation deceleration condition. The CPU 31 calculates the stop time Ts using the formula (3).
Ts=Rn/|RAd| ... Equation (3)

CPU31はS52で算出した停止時間Ts中に主軸ヘッド7を所定の加速条件で加速した時の主軸ヘッド7の移動距離Dmを算出する(S53)。本実施形態の所定の加速条件は主軸ヘッド7を現在の速度Vnから主軸ヘッド7の最大加速度Amaxで加速する条件である。図11の如く、移動距離Dmは現在の速度Vnで停止時間Tsだけ下方に移動する分の距離Dm1と、最大加速度Amaxで停止時間Tsだけ下方に移動する分の距離Dm2の和である。CPU31は式(4)を用い移動距離Dmを算出する。
Dm=Dm1+Dm2
=|Vn|×Ts+(|-Amax|/2)×Ts ・・・式(4)
The CPU 31 calculates the travel distance Dm of the spindle head 7 when the spindle head 7 is accelerated under a predetermined acceleration condition during the stop time Ts calculated in S52 (S53). The predetermined acceleration condition in this embodiment is a condition for accelerating the spindle head 7 from the current speed Vn at the maximum acceleration Amax of the spindle head 7. As shown in Fig. 11, the travel distance Dm is the sum of a distance Dm1 for the downward movement at the current speed Vn for the stop time Ts, and a distance Dm2 for the downward movement at the maximum acceleration Amax for the stop time Ts. The CPU 31 calculates the travel distance Dm using equation (4).
Dm = Dm1 + Dm2
= |Vn| × Ts + (|-Amax|/2) × Ts 2 ... formula (4)

CPU31は第一実施形態の距離算出処理と同様に移動可能距離Dcを算出し(S45)、S45で算出した移動可能距離DcがS53で算出した移動距離Dm以上か否かを判定する(S54)。S45で算出した移動可能距離DcがS53で算出した移動距離Dm以上である時(S54:YES)、CPU31は第一実施形態の距離算出処理と同様に主軸ヘッド7の制動距離Deを算出し(S46)、距離算出処理を終了する。該時、図6の制御処理のS8では第一実施形態の制御処理と同様に、S46で算出した制動距離DeがS45で算出した移動可能距離Dcよりも大きいか否かを判定する(S8)。 The CPU 31 calculates the movable distance Dc in the same manner as in the distance calculation process of the first embodiment (S45), and determines whether the movable distance Dc calculated in S45 is greater than or equal to the movable distance Dm calculated in S53 (S54). If the movable distance Dc calculated in S45 is greater than or equal to the movable distance Dm calculated in S53 (S54: YES), the CPU 31 calculates the braking distance De of the spindle head 7 in the same manner as in the distance calculation process of the first embodiment (S46), and ends the distance calculation process. At that time, in S8 of the control process of FIG. 6, it is determined whether the braking distance De calculated in S46 is greater than the movable distance Dc calculated in S45 (S8), in the same manner as in the control process of the first embodiment.

S45で算出した移動可能距離DcがS53で算出した移動距離Dm以上でない時(S54:NO)、CPU31は式(5)を用い、S41で取得した主軸ヘッド7の所在位置Pnと、S42で取得した工具マガジン21の所在角度θnに応じた境界の位置Pとの間の距離を移動可能距離Dcとして算出し、S45で算出した移動可能距離Dcを変更する。図5の如く、所在角度θnを座標R6で示す時、所在角度θnに応じた境界は座標R9である。移動可能距離Dcは距離Eで表す。
Dc=Pn-func(θn) ・・・式(5)
CPU31は第一実施形態の距離算出処理と同様に主軸ヘッド7の制動距離Deを算出し(S46)、距離算出処理を終了する。該時、図6の制御処理のS8では、S46で算出した制動距離DeがS55で算出した移動可能距離Dcよりも大きいか否かを判定する(S8)。
When the movable distance Dc calculated in S45 is not equal to or greater than the movable distance Dm calculated in S53 (S54: NO), the CPU 31 uses formula (5) to calculate the distance between the location Pn of the spindle head 7 acquired in S41 and the boundary position P corresponding to the location angle θn of the tool magazine 21 acquired in S42 as the movable distance Dc, and changes the movable distance Dc calculated in S45. As shown in Fig. 5, when the location angle θn is indicated by the coordinate R6, the boundary corresponding to the location angle θn is the coordinate R9. The movable distance Dc is represented by the distance E.
Dc=Pn-func(θn) Equation (5)
The CPU 31 calculates the braking distance De of the spindle head 7 in the same manner as in the distance calculation process of the first embodiment (S46), and ends the distance calculation process. At that time, in S8 of the control process in FIG. 6, it is determined whether or not the braking distance De calculated in S46 is greater than the movable distance Dc calculated in S55 (S8).

S22の角度算出処理では、図12の角度算出処理を行う。図12において図10の第二実施形態の距離算出処理と同様の処理には同じステップ番号を付与する。図12の如く、CPU31は第一実施形態の距離算出処理と同様のS41、S42、S51を実行する。CPU31は主軸ヘッド7を所定の減速条件で停止した時の主軸ヘッド7の停止位置Psを算出する(S61)。本実施形態の所定の減速条件は、主軸ヘッド7をS51で取得した現在速度Vnから主軸ヘッド7の最大減速度で減速する条件である。主軸ヘッド7の最大減速度は主軸ヘッド7が実現可能な減速度の絶対値の最大値であり、緊急停止時の減速度と等しい。主軸ヘッド7の最大減速度の絶対値は主軸ヘッド7の通常時の最大減速度(-Amax)よりも絶対値が大きい。 In the angle calculation process of S22, the angle calculation process of FIG. 12 is performed. In FIG. 12, the same step numbers are assigned to processes similar to the distance calculation process of the second embodiment in FIG. 10. As shown in FIG. 12, the CPU 31 executes S41, S42, and S51 similar to the distance calculation process of the first embodiment. The CPU 31 calculates the stop position Ps of the spindle head 7 when the spindle head 7 is stopped under a predetermined deceleration condition (S61). The predetermined deceleration condition in this embodiment is a condition in which the spindle head 7 is decelerated from the current speed Vn obtained in S51 at the maximum deceleration of the spindle head 7. The maximum deceleration of the spindle head 7 is the maximum absolute value of the deceleration that the spindle head 7 can achieve, and is equal to the deceleration at the time of emergency stop. The absolute value of the maximum deceleration of the spindle head 7 is greater than the absolute value of the maximum deceleration (-Amax) of the spindle head 7 under normal conditions.

CPU31は回動可能角度Kcを算出する(S62)。S62で算出する回動可能角度KcはS41で取得した所在角度θnと、S44で算出した停止位置Psに応じた境界の角度θとの間の差分である。図5の如く、停止位置Psを座標R3で示す時、停止位置Psに応じた境界は座標R4であり、境界の角度θは角度θfsである。CPU31はS62で座標R4と座標R3に依り回動可能角度Kcとして角度Lを算出する。CPU31は第一実施形態の角度算出処理と同様に工具マガジン21の制動距離Deを算出する(S63)。CPU31は以上で角度算出処理を終了し、処理を図6の制御処理に戻す。CPU31はS63で算出した制動角度KeがS62で算出した回動可能角度Kcよりも大きいか否かを判定する(S23)。他の処理は第一実施形態の制御処理と同様である。 The CPU 31 calculates the rotation angle Kc (S62). The rotation angle Kc calculated in S62 is the difference between the location angle θn acquired in S41 and the boundary angle θ corresponding to the stop position Ps calculated in S44. As shown in FIG. 5, when the stop position Ps is indicated by the coordinate R3, the boundary corresponding to the stop position Ps is the coordinate R4, and the boundary angle θ is the angle θfs. The CPU 31 calculates the angle L as the rotation angle Kc based on the coordinates R4 and R3 in S62. The CPU 31 calculates the braking distance De of the tool magazine 21 in the same manner as the angle calculation process of the first embodiment (S63). The CPU 31 then ends the angle calculation process and returns the process to the control process of FIG. 6. The CPU 31 determines whether the braking angle Ke calculated in S63 is greater than the rotation angle Kc calculated in S62 (S23). The other processes are the same as the control process of the first embodiment.

第一、第二実施形態の制御装置30と工作機械1において、工作機械1、工具4、主軸ヘッド7、主軸9、工具マガジン21、制御装置30は本発明の工作機械、工具、主軸ヘッド、主軸、工具マガジン、制御装置の一例である。S1は本発明の設定工程、設定処理の一例であり、該処理を実行するCPU31は本発明の設定部の一例である。S4、S10、S12、S14、S26、S27、S30、S31は本発明の駆動工程、駆動処理の一例であり、該処理を実行するCPU31は本発明の駆動部の一例である。S5、S6は本発明の角度判定工程、角度判定処理の一例であり、該処理を実行するCPU31は本発明の角度判定部の一例である。S5、S6は本発明の角度判定工程、角度判定処理の一例であり、該処理を実行するCPU31は本発明の角度判定部の一例である。S7は本発明の距離算出工程、距離算出処理の一例であり、該処理を実行するCPU31は本発明の距離算出部の一例である。S8は本発明の距離判定工程、距離判定処理の一例である。S8、S55の処理を実行するCPU31は本発明の距離判定部の一例である。S14は本発明の加速工程、加速処理の一例であり、該処理を実行するCPU31は本発明の加速部の一例である。S54を実行するCPU31は本発明の干渉判定部の一例である。S3、S21を実行するCPU31は本発明の位置判定部の一例である。S62を実行するCPU31は本発明の角度算出部の一例である。S23を実行するCPU31は本発明の回動角度判定部の一例である。S30を実行するCPU31は本発明の回動加速部の一例である。 In the control device 30 and machine tool 1 of the first and second embodiments, the machine tool 1, the tool 4, the spindle head 7, the spindle 9, the tool magazine 21, and the control device 30 are examples of the machine tool, the tool, the spindle head, the spindle, the tool magazine, and the control device of the present invention. S1 is an example of the setting process and the setting process of the present invention, and the CPU 31 that executes the process is an example of the setting unit of the present invention. S4, S10, S12, S14, S26, S27, S30, and S31 are examples of the driving process and the driving process of the present invention, and the CPU 31 that executes the process is an example of the driving unit of the present invention. S5 and S6 are examples of the angle determination process and the angle determination process of the present invention, and the CPU 31 that executes the process is an example of the angle determination unit of the present invention. S5 and S6 are examples of the angle determination process and the angle determination process of the present invention, and the CPU 31 that executes the process is an example of the angle determination unit of the present invention. S7 is an example of the distance calculation process and the distance calculation process of the present invention, and the CPU 31 that executes the process is an example of the distance calculation unit of the present invention. S8 is an example of the distance determination process and the distance determination process of the present invention. The CPU 31 that executes the processes of S8 and S55 is an example of the distance determination section of the present invention. S14 is an example of the acceleration step and acceleration process of the present invention, and the CPU 31 that executes this process is an example of the acceleration section of the present invention. The CPU 31 that executes S54 is an example of the interference determination section of the present invention. The CPU 31 that executes S3 and S21 is an example of the position determination section of the present invention. The CPU 31 that executes S62 is an example of the angle calculation section of the present invention. The CPU 31 that executes S23 is an example of the rotation angle determination section of the present invention. The CPU 31 that executes S30 is an example of the rotation acceleration section of the present invention.

第一、第二実施形態の制御装置30は、工具4を装着する主軸9と、主軸9を支持し且つ工具4で加工する加工領域と工具4を交換する交換領域を移動可能な主軸ヘッド7と、工具4A、4Bを含む複数の工具4を収納する回動可能な工具マガジン21とを備える工作機械1の制御装置30である。制御装置30は主軸ヘッド7の移動と工具マガジン21の回動で主軸9に装着した取外工具4Aと工具マガジン21が収納した装着工具4Bを交換する時、主軸ヘッド7の位置と工具マガジン21の角度に関する関数Fに基づき、主軸ヘッド7と工具マガジン21が収納した工具4とが干渉しない第一範囲と、主軸ヘッド7と工具マガジン21が干渉する第二範囲との境界を設定する(S1)。制御装置30は工具4の交換位置迄主軸ヘッド7と工具マガジン21とを駆動する。CPU31が工具マガジン21を駆動開始後(S4)、工具マガジン21の所在角度θnが所定角度範囲に在るか否か判定する(S5、S6)。所定角度範囲は角度θ3以上且つ角度θ4未満の範囲である。工具マガジン21の所在角度θnが所定角度範囲に在ると判定した時(S5:NO、S6:YES)、主軸ヘッド7の所在位置Pnと、工具マガジン21を所定の回動減速条件で停止した時の工具マガジン21の停止角度θsに応じた境界の位置Pとの間の移動可能距離Dcを算出する(S45)。CPU31は主軸ヘッド7の制動距離Deが、算出した移動可能距離Dcよりも大きいか否か判定する(S8)。CPU31が制動距離Deは移動可能距離Dcよりも大きくないと判定した時(S8:NO)、主軸ヘッド7を加速する(S14)。 The control device 30 of the first and second embodiments is a control device 30 for a machine tool 1 equipped with a spindle 9 on which a tool 4 is attached, a spindle head 7 that supports the spindle 9 and is movable between a machining area where the tool 4 is machined and an exchange area where the tool 4 is exchanged, and a rotatable tool magazine 21 that stores a plurality of tools 4 including tools 4A and 4B. When exchanging a removal tool 4A attached to the spindle 9 with an attachment tool 4B stored in the tool magazine 21 by moving the spindle head 7 and rotating the tool magazine 21, the control device 30 sets a boundary between a first range in which the spindle head 7 and the tool 4 stored in the tool magazine 21 do not interfere with each other and a second range in which the spindle head 7 and the tool magazine 21 interfere with each other based on a function F related to the position of the spindle head 7 and the angle of the tool magazine 21 (S1). The control device 30 drives the spindle head 7 and the tool magazine 21 to the exchange position of the tool 4. After the CPU 31 starts driving the tool magazine 21 (S4), it determines whether the location angle θn of the tool magazine 21 is within a predetermined angle range (S5, S6). The predetermined angle range is a range equal to or greater than angle θ3 and less than angle θ4. When it is determined that the location angle θn of the tool magazine 21 is within the predetermined angle range (S5: NO, S6: YES), it calculates the movable distance Dc between the location position Pn of the spindle head 7 and the boundary position P corresponding to the stop angle θs of the tool magazine 21 when the tool magazine 21 is stopped under a predetermined rotation deceleration condition (S45). The CPU 31 determines whether the braking distance De of the spindle head 7 is greater than the calculated movable distance Dc (S8). When the CPU 31 determines that the braking distance De is not greater than the movable distance Dc (S8: NO), it accelerates the spindle head 7 (S14).

第一、第二実施形態の制御装置30は、主軸ヘッド7の所在位置Pnと工具マガジン21の停止角度θsに応じた境界の位置Pとの距離を移動可能距離Dcとして算出することで、主軸ヘッド7が移動する間に工具マガジン21が回動する量を考慮して移動可能距離Dcを算出できる。故に制御装置30は、S8で主軸ヘッド7の制動距離Deは移動可能距離Dcよりも小さいと判定し、S14で主軸ヘッド7を加速する頻度を従来の装置よりも高め、工具交換に必要な時間を従来よりも短縮できる。 The control device 30 of the first and second embodiments calculates the distance between the position Pn of the spindle head 7 and the boundary position P corresponding to the stop angle θs of the tool magazine 21 as the movable distance Dc, and can calculate the movable distance Dc by taking into account the amount by which the tool magazine 21 rotates while the spindle head 7 moves. Therefore, the control device 30 determines in S8 that the braking distance De of the spindle head 7 is smaller than the movable distance Dc, and accelerates the spindle head 7 more frequently in S14 than conventional devices, thereby making it possible to shorten the time required for tool replacement compared to conventional devices.

回動減速条件は、工具マガジン21を現在の角速度Rnから工具マガジン21の最大回動減速度RAdで減速する条件である。制御装置30は、主軸ヘッド7が移動する間に工具マガジン21が回動する量を、最大回動減速度RAdを用いて最も小さく見積もって移動可能距離Dcを算出できる。故に制御装置30は、S8で主軸ヘッド7の制動距離Deは移動可能距離Dcよりも小さいと判定し、S14で主軸ヘッド7を加速した時に、主軸ヘッド7と工具マガジン21が干渉することを抑制できる。 The rotation deceleration condition is a condition for decelerating the tool magazine 21 from the current angular velocity Rn at the maximum rotation deceleration RAd of the tool magazine 21. The control device 30 can calculate the movable distance Dc by estimating the amount by which the tool magazine 21 rotates while the spindle head 7 moves as small as possible using the maximum rotation deceleration RAd. Therefore, the control device 30 determines in S8 that the braking distance De of the spindle head 7 is smaller than the movable distance Dc, and can suppress interference between the spindle head 7 and the tool magazine 21 when the spindle head 7 is accelerated in S14.

第二実施形態の制御装置30のCPU31は工具マガジン21の所在角度θnが所定角度範囲に在ると判定した時(S5:NO、S6:YES)、工具マガジン21を回動減速条件で停止する迄の期間、主軸ヘッド7を所定の加速条件で加速した時の主軸ヘッド7の移動距離Dmが、移動可能距離Dc以下であるか否か判定する(S54)。CPU31は移動距離Dmが移動可能距離Dc以下であると判定した時(S54:YES)、主軸ヘッド7の制動距離DeがS45で算出した移動可能距離Dcよりも大きいか否か判定する(S8)。CPU31は移動距離Dmが移動可能距離Dc以下でないと判定した時(S54:NO)、主軸ヘッド7の所在位置Pnと、工具マガジン21の所在角度θnに応じた境界の位置Pとの間の距離を移動可能距離Dcとして算出し(S55)、主軸ヘッド7の制動距離Deが算出した移動可能距離Dcよりも大きいか否か判定する(S8)。工具マガジン21が回動減速条件で停止するよりも早く、主軸ヘッド7が移動可能距離Dcで移動した時、主軸ヘッド7は工具マガジン21と干渉する。第二実施形態の制御装置30は、工具マガジン21が停止する迄の期間に主軸ヘッド7が所定の加速条件で加速しながら移動した場合の移動距離Dmが、移動可能距離Dc以下であるか否かに応じて、S8で制動距離Deとの比較に用いる移動可能距離Dcを変更する(S55)。故に第二実施形態の制御装置30は、主軸ヘッド7の移動距離Dmを考慮して、主軸ヘッド7と工具マガジン21が干渉することを抑制できる。 When the CPU 31 of the control device 30 of the second embodiment determines that the tool magazine 21 location angle θn is within a predetermined angle range (S5: NO, S6: YES), it determines whether the movement distance Dm of the spindle head 7 when the spindle head 7 is accelerated under a predetermined acceleration condition during the period until the tool magazine 21 is stopped under the rotation deceleration condition is equal to or less than the movable distance Dc (S54). When the CPU 31 determines that the movement distance Dm is equal to or less than the movable distance Dc (S54: YES), it determines whether the braking distance De of the spindle head 7 is greater than the movable distance Dc calculated in S45 (S8). When the CPU 31 determines that the moving distance Dm is not equal to or less than the movable distance Dc (S54: NO), it calculates the distance between the location Pn of the spindle head 7 and the boundary position P corresponding to the location angle θn of the tool magazine 21 as the movable distance Dc (S55), and determines whether the braking distance De of the spindle head 7 is greater than the calculated movable distance Dc (S8). When the spindle head 7 moves the movable distance Dc faster than the tool magazine 21 stops under the rotation deceleration condition, the spindle head 7 interferes with the tool magazine 21. The control device 30 of the second embodiment changes the movable distance Dc used for comparison with the braking distance De in S8 depending on whether the moving distance Dm when the spindle head 7 moves while accelerating under a predetermined acceleration condition during the period until the tool magazine 21 stops is equal to or less than the movable distance Dc (S55). Therefore, the control device 30 of the second embodiment can suppress interference between the spindle head 7 and the tool magazine 21 by taking into account the movement distance Dm of the spindle head 7.

所定の加速条件は、主軸ヘッド7を現在の速度から主軸ヘッド7の最大加速度Amaxで加速する条件である。第二実施形態の制御装置30は、工具マガジン21が停止する迄の期間に主軸ヘッド7が所定の加速条件で加速しながら移動した時の移動距離Dmを、主軸ヘッド7の最大加速度Amaxを用いて最も大きく見積もることができる。故に制御装置30は、S8で主軸ヘッド7の制動距離Deは移動可能距離Dcよりも大きいと判定し、S14で主軸ヘッド7を最大加速度Amaxで加速した時にも、主軸ヘッド7と工具マガジン21が干渉することを抑制できる。 The specified acceleration condition is a condition for accelerating the spindle head 7 from the current speed at the maximum acceleration Amax of the spindle head 7. The control device 30 of the second embodiment can estimate the maximum travel distance Dm when the spindle head 7 travels while accelerating under the specified acceleration condition during the period until the tool magazine 21 stops, using the maximum acceleration Amax of the spindle head 7. Therefore, the control device 30 determines in S8 that the braking distance De of the spindle head 7 is greater than the movable distance Dc, and can suppress interference between the spindle head 7 and the tool magazine 21 even when the spindle head 7 is accelerated at the maximum acceleration Amax in S14.

第二実施形態の制御装置30のCPU31が主軸ヘッド7を駆動開始後(S2)、主軸ヘッド7の所在位置Pnが所定位置範囲に在るか否か判定する(S3、S21)。所定位置範囲は位置P3以上且つ位置P2未満の範囲である。CPU31は主軸ヘッド7の所在位置Pnが所定位置範囲に在ると判定した時(S3:NO、S21:YES)、工具マガジン21の所在角度θnと、主軸ヘッド7を所定の減速条件で停止した時の主軸ヘッド7の停止位置Psに応じた境界の角度θとの間の回動可能角度Kcを算出する(S62)。CPU31は工具マガジン21の制動角度Keが、算出した回動可能角度Kcよりも大きいか否か判定する(S23)。CPU31が制動角度Keは回動可能角度Kcよりも大きくないと判定した時(S23:NO)、工具マガジン21を回動加速する(S30)。第二実施形態の制御装置30は、工具マガジン21の所在角度θnで、工具マガジン21が移動する間に主軸ヘッド7が移動する距離を考慮して回動可能角度Kcを算出できる。故に制御装置30は、S23で工具マガジン21の制動角度Keは回動可能角度Kcよりも小さいと判定し(S23:NO)、S30で工具マガジン21を回動加速する頻度を従来の装置よりも高め、工具交換に必要な時間を従来よりも短縮できる。 After the CPU 31 of the control device 30 of the second embodiment starts driving the spindle head 7 (S2), it determines whether the location Pn of the spindle head 7 is within a predetermined position range (S3, S21). The predetermined position range is a range equal to or greater than position P3 and less than position P2. When the CPU 31 determines that the location Pn of the spindle head 7 is within the predetermined position range (S3: NO, S21: YES), it calculates the rotation angle Kc between the location angle θn of the tool magazine 21 and the boundary angle θ corresponding to the stop position Ps of the spindle head 7 when the spindle head 7 is stopped under a predetermined deceleration condition (S62). The CPU 31 determines whether the braking angle Ke of the tool magazine 21 is greater than the calculated rotation angle Kc (S23). When the CPU 31 determines that the braking angle Ke is not greater than the rotation angle Kc (S23: NO), it accelerates the rotation of the tool magazine 21 (S30). The control device 30 of the second embodiment can calculate the rotation angle Kc by taking into account the distance that the spindle head 7 moves while the tool magazine 21 moves, at the location angle θn of the tool magazine 21. Therefore, the control device 30 determines in S23 that the braking angle Ke of the tool magazine 21 is smaller than the rotation angle Kc (S23: NO), and increases the frequency of accelerating the rotation of the tool magazine 21 in S30 compared to conventional devices, thereby making it possible to reduce the time required for tool replacement compared to conventional devices.

本発明の制御装置、工作機械、制御方法、及び制御プログラムは上記実施形態の他に種々変更できる。制御装置30は工作機械1とは別の装置でもよい。工具マガジン21の角度の設定方法は適宜変更してよく、制御装置30は工具マガジン21の角度の設定方法に応じて処理を制御処理を変更してよい。S5、S6で規定する所定角度範囲は適宜変更してよい。S3、S21で規定する所定位置範囲は適宜変更してよい。 The control device, machine tool, control method, and control program of the present invention can be modified in various ways in addition to the above-described embodiments. The control device 30 may be a device separate from the machine tool 1. The method for setting the angle of the tool magazine 21 may be modified as appropriate, and the control device 30 may change the control process depending on the method for setting the angle of the tool magazine 21. The specified angle range defined in S5 and S6 may be modified as appropriate. The specified position range defined in S3 and S21 may be modified as appropriate.

制御装置30が制御処理を行う為の指令を含むプログラムはCPU31がプログラムを行う迄に、制御装置30の記憶装置34に記憶されればよい。従って、プログラムの取得方法、取得経路及びプログラムを記憶する機器の夫々は適宜変更してもよい。CPU31が行うプログラムはケーブル又は無線通信を介して、他の装置から受信し、フラッシュメモリ等の記憶装置に記憶してもよい。他の装置は例えば、PC、及びネットワーク網を介して接続されるサーバを含む。 The program including the instructions for the control device 30 to perform control processing may be stored in the storage device 34 of the control device 30 before the CPU 31 executes the program. Therefore, the program acquisition method, acquisition path, and device that stores the program may each be changed as appropriate. The program executed by the CPU 31 may be received from another device via a cable or wireless communication and stored in a storage device such as a flash memory. The other device may include, for example, a PC and a server connected via a network.

制御装置30が行う処理の一部又は全部はCPU31とは別の電子機器(例えば、ASIC)が行ってもよい。制御装置30が行う処理は複数の電子機器(例えば、複数のCPU)が分散処理してもよい。制御装置30が行う処理の各ステップは必要に応じて順序の変更、ステップの省略、及び追加ができる。本発明の範囲は制御装置30上で稼動しているオペレーティングシステム(OS)等が、CPU31の指令で各処理の一部又は全部を行う態様も含む。例えば、上記実施形態に以下の変更を適宜加えてもよい。 A part or all of the processing performed by the control device 30 may be performed by an electronic device (e.g., an ASIC) other than the CPU 31. The processing performed by the control device 30 may be distributed among multiple electronic devices (e.g., multiple CPUs). The order of each step of the processing performed by the control device 30 may be changed, steps may be omitted, or steps may be added as necessary. The scope of the present invention also includes an embodiment in which an operating system (OS) running on the control device 30 performs a part or all of each process at the command of the CPU 31. For example, the following modifications may be made to the above embodiment as appropriate.

工具マガジン21の所定の回動減速条件、主軸ヘッド7の所定の加速条件、所定の減速条件は適宜変更してよいし、複数の条件から選択可能であってもよい。例えば、所定の回動減速条件は最大回動減速度(-RAmax)でもよいし、所定の減速条件は最大減速度(-Amax)でもよい。CPU31は第一実施形態の制御処理のS22で、図12の第二実施形態の角度算出処理を実行してもよい。制御装置30は第二実施形態の距離算出処理と同様に、第二実施形態の角度算出処理で主軸ヘッド7を所定の減速条件で停止する迄の期間、工具マガジン21を所定の回動加速条件で加速した時の工具マガジン21の回動角度が、回動可能角度Kc以下であるか否か判定してもよい。該時、回動角度が回動可能角度Kc以下であるか否かに応じて、制動角度Keとの比較に用いる回動可能角度を変えてもよい。 The predetermined rotation deceleration condition of the tool magazine 21, the predetermined acceleration condition of the spindle head 7, and the predetermined deceleration condition may be changed as appropriate, and may be selectable from a plurality of conditions. For example, the predetermined rotation deceleration condition may be the maximum rotation deceleration (-RAmax), or the predetermined deceleration condition may be the maximum deceleration (-Amax). The CPU 31 may execute the angle calculation process of the second embodiment of FIG. 12 in S22 of the control process of the first embodiment. As in the distance calculation process of the second embodiment, the control device 30 may determine whether the rotation angle of the tool magazine 21 when the tool magazine 21 is accelerated under the predetermined rotation acceleration condition is equal to or less than the rotation angle Kc during the period until the spindle head 7 is stopped under the predetermined deceleration condition in the angle calculation process of the second embodiment. At that time, the rotation angle used for comparison with the braking angle Ke may be changed depending on whether the rotation angle is equal to or less than the rotation angle Kc.

1 :工作機械
4、4A、4B :工具
7 :主軸ヘッド
9 :主軸
21 :工具マガジン
30 :制御装置
31 :CPU
34 :記憶装置
1: Machine tool 4, 4A, 4B: Tool 7: Spindle head 9: Spindle 21: Tool magazine 30: Control device 31: CPU
34: Storage device

Claims (8)

工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンとを備える工作機械の制御装置であって、前記主軸ヘッドの移動と前記工具マガジンの回動で前記主軸に装着した前記工具と前記工具マガジンが収納した前記工具を交換する時、前記工具マガジンの角度に対する前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉する前記主軸ヘッドの位置を示す関数に基づき、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉しない第一範囲と、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉する第二範囲との境界を設定する設定部と、前記工具の交換位置迄前記主軸ヘッドと前記工具マガジンとを駆動する駆動部とを備える制御装置において、
前記駆動部が前記工具マガジンを駆動開始後、前記工具マガジンの所在角度が所定角度範囲に在るか否か判定する角度判定部と、
前記角度判定部が前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記主軸ヘッドの所在位置と、前記工具マガジンを所定の回動減速条件で停止した時の前記工具マガジンの停止角度に応じた前記境界との間の移動可能距離を算出する距離算出部と、
前記主軸ヘッドの制動距離が、前記距離算出部が算出した前記移動可能距離よりも大きいか否か判定する距離判定部と、
前記距離判定部が前記制動距離は前記移動可能距離よりも大きくないと判定した時、前記主軸ヘッドを加速する加速部と
を備えることを特徴とする制御装置。
A control device for a machine tool including a spindle on which a tool is attached, a spindle head supporting the spindle and movable between a machining area where machining is performed by the tool and an exchange area where the tool is exchanged, and a rotatable tool magazine storing a plurality of the tools, the control device comprising: a setting unit that sets a boundary between a first range in which the spindle head and the tools stored in the tool magazine do not interfere and a second range in which the spindle head and the tools stored in the tool magazine interfere with each other based on a function indicating a position of the spindle head where the spindle head and the tools stored in the tool magazine interfere with each other relative to an angle of the tool magazine when the tool attached to the spindle is exchanged for the tool stored in the tool magazine by moving the spindle head and rotating the tool magazine; and a drive unit that drives the spindle head and the tool magazine to a tool exchange position,
an angle determination unit that determines whether or not a location angle of the tool magazine is within a predetermined angle range after the drive unit starts driving the tool magazine;
a distance calculation unit that calculates, when the angle determination unit determines that the location angle of the tool magazine is within the predetermined angle range, a movable distance between a location of the spindle head and the boundary according to a stop angle of the tool magazine when the tool magazine is stopped under a predetermined rotation deceleration condition;
a distance determination unit that determines whether or not a braking distance of the spindle head is greater than the movable distance calculated by the distance calculation unit;
an acceleration unit that accelerates the spindle head when the distance determination unit determines that the braking distance is not greater than the movable distance.
前記回動減速条件は、前記工具マガジンを現在の角速度から前記工具マガジンの最大回動減速度で減速する条件であることを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, characterized in that the rotation deceleration condition is a condition for decelerating the tool magazine from a current angular velocity at a maximum rotation deceleration of the tool magazine. 前記角度判定部が前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記工具マガジンを前記回動減速条件で停止する迄の期間、前記主軸ヘッドを所定の加速条件で加速した時の前記主軸ヘッドの移動距離が、前記移動可能距離以下であるか否か判定する干渉判定部を更に備え、
前記距離判定部は、
前記干渉判定部が前記移動距離は前記移動可能距離以下であると判定した時、前記主軸ヘッドの前記制動距離が前記距離算出部が算出した前記移動可能距離よりも大きいか否か判定し、
前記干渉判定部が前記移動距離は前記移動可能距離以下でないと判定した時、前記主軸ヘッドの前記所在位置と、前記工具マガジンの前記所在角度に応じた前記境界との間の距離を前記移動可能距離として算出し、前記主軸ヘッドの前記制動距離が前記距離判定部が算出した前記移動可能距離よりも大きいか否か判定することを特徴とする請求項1又は2に記載の制御装置。
an interference determination unit that, when the angle determination unit determines that the location angle of the tool magazine is within the predetermined angle range, determines whether or not a moving distance of the spindle head when the spindle head is accelerated under predetermined acceleration conditions during a period until the tool magazine is stopped under the rotation deceleration conditions is equal to or shorter than the movable distance,
The distance determination unit is
when the interference determination unit determines that the moving distance is equal to or less than the movable distance, it determines whether or not the braking distance of the spindle head is greater than the movable distance calculated by the distance calculation unit;
3. The control device according to claim 1, wherein, when the interference determination unit determines that the moving distance is not equal to or less than the movable distance, a distance between the location of the spindle head and the boundary corresponding to the location angle of the tool magazine is calculated as the movable distance, and it is determined whether the braking distance of the spindle head is greater than the movable distance calculated by the distance determination unit.
前記加速条件は、前記主軸ヘッドを現在の速度から前記主軸ヘッドの最大加速度で加速する条件であることを特徴とする請求項3に記載の制御装置。 The control device according to claim 3, characterized in that the acceleration condition is a condition for accelerating the spindle head from its current speed at its maximum acceleration. 前記駆動部が前記主軸ヘッドを駆動開始後、前記主軸ヘッドの前記所在位置が所定位置範囲に在るか否か判定する位置判定部と、
前記位置判定部が前記主軸ヘッドの前記所在位置が前記所定位置範囲に在ると判定した時、前記工具マガジンの前記所在角度と、前記主軸ヘッドを所定の減速条件で停止した時の前記主軸ヘッドの停止位置に応じた前記境界との間の回動可能角度を算出する角度算出部と、
前記工具マガジンの制動角度が、前記角度算出部が算出した前記回動可能角度よりも大きいか否か判定する回動角度判定部と、
前記回動角度判定部が前記制動角度は前記回動可能角度よりも大きくないと判定した時、前記工具マガジンを回動加速する回動加速部と
を更に備えることを特徴とする請求項1~4の何れかに記載の制御装置。
a position determination unit that determines whether or not the position of the spindle head is within a predetermined position range after the drive unit starts driving the spindle head;
an angle calculation unit that calculates, when the position determination unit determines that the location of the spindle head is within the predetermined position range, a rotation angle between the location angle of the tool magazine and the boundary corresponding to a stop position of the spindle head when the spindle head is stopped under a predetermined deceleration condition;
a rotation angle determination unit that determines whether or not a braking angle of the tool magazine is greater than the rotation angle calculated by the angle calculation unit;
The control device according to any one of claims 1 to 4, further comprising a rotation acceleration unit that accelerates the rotation of the tool magazine when the rotation angle determination unit determines that the braking angle is not greater than the rotational angle.
工具を装着する主軸と、
前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、
複数の前記工具を収納する回動可能な工具マガジンと、
請求項1~5の何れか一つに記載の制御装置と
を備えることを特徴とする工作機械。
A spindle on which tools are attached;
a spindle head that supports the spindle and is movable between a machining area where the tool is used for machining and an exchange area where the tool is exchanged;
a rotatable tool magazine for storing a plurality of the tools;
A machine tool comprising: a control device according to any one of claims 1 to 5.
工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンとを備える工作機械の制御方法であって、前記主軸ヘッドの移動と前記工具マガジンの回動で前記主軸に装着した前記工具と前記工具マガジンが収納した前記工具を交換する時、前記工具マガジンの角度に対する前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉する前記主軸ヘッドの位置を示す関数に基づき、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉しない第一範囲と、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉する第二範囲との境界を設定する設定工程と、前記工具の交換位置迄前記主軸ヘッドと前記工具マガジンとを駆動する駆動工程とを備える制御方法において、
前記駆動工程で前記工具マガジンを駆動開始後、前記工具マガジンの所在角度が所定角度範囲に在るか否か判定する角度判定工程と、
前記角度判定工程で前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記主軸ヘッドの所在位置と、前記工具マガジンを所定の減速条件で停止した時の前記工具マガジンの停止角度に応じた前記境界との間の移動可能距離を算出する算出工程と、
前記主軸ヘッドの制動距離が、前記算出工程で算出した前記移動可能距離よりも大きいか否か判定する距離判定工程と、
前記距離判定工程で前記制動距離は前記移動可能距離よりも大きくないと判定した時、前記主軸ヘッドを加速する加速工程と
を備えることを特徴とする制御方法。
A control method for a machine tool including a spindle on which a tool is mounted, a spindle head supporting the spindle and movable between a machining area where machining is performed by the tool and an exchange area where the tool is exchanged, and a rotatable tool magazine storing a plurality of the tools, the control method including: a setting step of setting a boundary between a first range in which the spindle head does not interfere with the tools stored in the tool magazine and a second range in which the spindle head interferes with the tools stored in the tool magazine based on a function indicating a position of the spindle head where the spindle head interferes with the tools stored in the tool magazine relative to an angle of the tool magazine when the tool mounted on the spindle is exchanged for the tool stored in the tool magazine by moving the spindle head and rotating the tool magazine; and a driving step of driving the spindle head and the tool magazine to a tool exchange position,
an angle determination step of determining whether or not a position angle of the tool magazine is within a predetermined angle range after starting to drive the tool magazine in the driving step;
a calculation step of calculating a movable distance between a position of the spindle head and the boundary according to a stop angle of the tool magazine when the angle determination step determines that the position angle of the tool magazine is within the predetermined angle range; and
a distance determination step of determining whether or not a braking distance of the spindle head is greater than the movable distance calculated in the calculation step;
and an accelerating step of accelerating the spindle head when it is determined in the distance determination step that the braking distance is not greater than the movable distance.
工具を装着する主軸と、前記主軸を支持し且つ前記工具で加工する加工領域と前記工具を交換する交換領域を移動可能な主軸ヘッドと、複数の前記工具を収納する回動可能な工具マガジンとを備える工作機械の制御装置の制御部が実行可能な制御プログラムであって、前記主軸ヘッドの移動と前記工具マガジンの回動で前記主軸に装着した前記工具と前記工具マガジンが収納した前記工具を交換する時、前記工具マガジンの角度に対する前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉する前記主軸ヘッドの位置を示す関数に基づき、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉しない第一範囲と、前記主軸ヘッドと前記工具マガジンが収納した前記工具とが干渉する第二範囲との境界を設定する設定処理と、前記工具の交換位置迄前記主軸ヘッドと前記工具マガジンとを駆動する駆動処理とを実行する指示を含む制御プログラムにおいて、
前記駆動処理で前記工具マガジンを駆動開始後、前記工具マガジンの所在角度が所定角度範囲に在るか否か判定する角度判定処理と、
前記角度判定処理で前記工具マガジンの前記所在角度が前記所定角度範囲に在ると判定した時、前記主軸ヘッドの所在位置と、前記工具マガジンを所定の減速条件で停止した時の前記工具マガジンの停止角度に応じた前記境界との間の移動可能距離を算出する算出処理と、
前記主軸ヘッドの制動距離が、前記算出処理で算出した前記移動可能距離よりも大きいか否か判定する距離判定処理と、
前記距離判定処理で前記制動距離は前記移動可能距離よりも大きくないと判定した時、前記主軸ヘッドを加速する加速処理と
を前記制御装置の前記制御部に実行させる指示を含むことを特徴とする制御プログラム。
A control program executable by a control unit of a control device for a machine tool including a spindle on which a tool is attached, a spindle head supporting the spindle and movable between a machining area where machining is performed by the tool and an exchange area where the tool is exchanged, and a rotatable tool magazine storing a plurality of the tools, the control program including instructions for executing a setting process that sets a boundary between a first range in which the spindle head and the tools stored in the tool magazine do not interfere and a second range in which the spindle head and the tools stored in the tool magazine interfere with each other based on a function indicating a position of the spindle head where the spindle head and the tools stored in the tool magazine interfere with each other relative to an angle of the tool magazine when the tool attached to the spindle and the tool stored in the tool magazine are exchanged by moving the spindle head and rotating the tool magazine, and a drive process that drives the spindle head and the tool magazine to a tool exchange position,
an angle determination process for determining whether or not a position angle of the tool magazine is within a predetermined angle range after the drive process starts driving the tool magazine;
a calculation process for calculating a movable distance between a position of the spindle head and the boundary according to a stop angle of the tool magazine when the angle determination process determines that the position angle of the tool magazine is within the predetermined angle range; and
a distance determination process for determining whether or not a braking distance of the spindle head is greater than the movable distance calculated in the calculation process;
and an acceleration process for accelerating the spindle head when the distance determination process determines that the braking distance is not greater than the movable distance.
JP2020094823A 2020-05-29 2020-05-29 CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM Active JP7494575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020094823A JP7494575B2 (en) 2020-05-29 2020-05-29 CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020094823A JP7494575B2 (en) 2020-05-29 2020-05-29 CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM

Publications (2)

Publication Number Publication Date
JP2021189783A JP2021189783A (en) 2021-12-13
JP7494575B2 true JP7494575B2 (en) 2024-06-04

Family

ID=78849853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020094823A Active JP7494575B2 (en) 2020-05-29 2020-05-29 CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM

Country Status (1)

Country Link
JP (1) JP7494575B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088162A (en) 2003-09-19 2005-04-07 Yamazaki Mazak Corp Machining center
WO2013136412A1 (en) 2012-03-12 2013-09-19 三菱電機株式会社 Command generation device and command generation method
JP2013205975A (en) 2012-03-27 2013-10-07 Brother Ind Ltd Numerical control device, numerical control method, and numerical control program
JP2019067394A (en) 2017-09-29 2019-04-25 ブラザー工業株式会社 Controller, machine tool, control method, and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088162A (en) 2003-09-19 2005-04-07 Yamazaki Mazak Corp Machining center
WO2013136412A1 (en) 2012-03-12 2013-09-19 三菱電機株式会社 Command generation device and command generation method
JP2013205975A (en) 2012-03-27 2013-10-07 Brother Ind Ltd Numerical control device, numerical control method, and numerical control program
JP2019067394A (en) 2017-09-29 2019-04-25 ブラザー工業株式会社 Controller, machine tool, control method, and computer program

Also Published As

Publication number Publication date
JP2021189783A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US4984351A (en) Machine tool
JP3990441B1 (en) Automatic tool changing method and automatic tool changing device for machine tool with numerical control device
EP1116548A2 (en) A machine tool having a vertical main spindle and a method of making the same
US20220168858A1 (en) Automatic tool changer and control method therefor and machine tool including same
JP2016189039A (en) Numerical control device and control method
JP7494575B2 (en) CONTROL DEVICE, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM
JP7087894B2 (en) Controls, machine tools, control methods and computer programs
JP2006075916A (en) Protective cover opening/closing device for machine tool
JP5321515B2 (en) Numerical control device for machine tools
JP2001198751A (en) Vertical machine tool
CN114273981B (en) Horizontal five-axis numerical control machining center with abnormal component checking function
CN211554727U (en) Machine tool, machining system, and management system
CN214642458U (en) Small-size work piece processing grinding machine
KR20150074454A (en) Automatic head attachment changer of machine tool
JP7131454B2 (en) Numerical controllers, machine tools, control programs, and storage media
JP7085076B1 (en) Machine tools, control methods, and control programs
JPH10143213A (en) Multi-surface working machine and multi-surface working method
KR100738390B1 (en) Ultra narrow vertical machining center with column inside auto tool changer
JPH08141814A (en) Machining device
CN213858241U (en) Workpiece positioning clamping jaw for vertical machining center
CN108145536A (en) A kind of three axis numerically controlled machine and its localization method
WO2023189525A1 (en) Numerical control device, control method, and program
WO2022219773A1 (en) Machine tool
KR100579089B1 (en) 5-shaft wire electric discharge machine
JP2024017254A (en) Numerical control device, control method, program and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240506

R150 Certificate of patent or registration of utility model

Ref document number: 7494575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150