JP7444754B2 - プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法 - Google Patents

プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法 Download PDF

Info

Publication number
JP7444754B2
JP7444754B2 JP2020180813A JP2020180813A JP7444754B2 JP 7444754 B2 JP7444754 B2 JP 7444754B2 JP 2020180813 A JP2020180813 A JP 2020180813A JP 2020180813 A JP2020180813 A JP 2020180813A JP 7444754 B2 JP7444754 B2 JP 7444754B2
Authority
JP
Japan
Prior art keywords
laser
cantilever
light image
image
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020180813A
Other languages
English (en)
Other versions
JP2022071711A (ja
Inventor
有吾 小野田
雅次 繁野
利浩 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2020180813A priority Critical patent/JP7444754B2/ja
Priority to CN202110687515.3A priority patent/CN114486729A/zh
Priority to TW110128129A priority patent/TW202217318A/zh
Publication of JP2022071711A publication Critical patent/JP2022071711A/ja
Application granted granted Critical
Publication of JP7444754B2 publication Critical patent/JP7444754B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法に関する。
プローブ顕微鏡は、試料表面にプローブを近づけながらカンチレバーを走査して、試料の表面観察または物性計測などを実施する。プローブ顕微鏡は、カンチレバーの背面にレーザを照射し、反射光をフォトディテクタで検出して、カンチレバーの変位を検出する(光てこ方式)。カンチレバーに対するレーザの光軸調整には、カメラにより撮影したカンチレバーの画像が利用される。カメラが撮影する画像では、レーザ光像が大きく広がり、背景光の影響を受ける。そのため、レーザの位置を特定することが困難であり、光軸調整に長時間を要するという問題がある。
特開平9-145314号公報 特開2000-329772号公報
本発明が解決しようとする課題は、光軸調整時間を短縮することができるプローブ顕微鏡およびプローブ顕微鏡の光軸調整方法を提供することである。
(1)プローブ顕微鏡は、カンチレバーと、第1レーザと、撮像装置と、無限遠光学系と、移動機構と、第1回動部と、制御部と、を有する。カンチレバーは、プローブを有する。第1レーザは、カンチレバーに入射する第1レーザ光を出射する。撮像装置は、カンチレバーおよび第1レーザ光の画像を撮影する。無限遠光学系は、カンチレバーと撮像装置との間に形成され、第1レーザ光が入射する。移動機構は、第1レーザ光とカンチレバーとの相対位置を変化させる。第1回動部は、第1レーザを回動して、無限遠光学系に対する第1レーザ光の第1入射角度を変化させる。制御部は、移動機構および第1回動部の動作を制御する。制御部は、無限遠光学系において第1レーザ光から発生する第1ゴースト光の第1ゴースト光像の位置から、第1レーザ光の第1レーザ光像の位置を、撮像装置が撮影した画像において取得する。制御部は、第1レーザ光像の位置がカンチレバーの所定位置に接近するように、移動機構および第1回動部のうち少なくとも一方を駆動する。
(9)プローブ顕微鏡の光軸調整方法は、前述されたプローブ顕微鏡を使用して、第1工程と、第2工程と、を実施する。第1工程では、無限遠光学系において第1レーザ光から発生する第1ゴースト光の第1ゴースト光像の位置から、第1レーザ光の第1レーザ光像の位置を、撮像装置が撮影した画像において取得する。第2工程では、第1レーザ光像の位置がカンチレバーの所定位置に接近するように、移動機構および第1回動部のうち少なくとも一方を駆動する。
第1ゴースト光は、無限遠光学系において発生するので、対物レンズの焦点距離の影響を受けない。撮像装置が撮影した画像には第1ゴースト光像が鮮明に映るので、第1ゴースト光像の位置の特定が容易である。第1ゴースト光は第1レーザ光から発生するので、両者の相対位置には密接な関係がある。第1ゴースト光像の位置を利用することにより、第1レーザ光像の位置が容易に取得される。これにより、光軸調整時間を短縮することができる。
(2)記憶部は、第1ゴースト光像と第1レーザ光像との第1相対位置を第1入射角度の関数として表した第1関係式を記憶する。制御部は、第1関係式に第1入射角度を代入して第1相対位置を取得し、撮像装置が撮影した画像における第1ゴースト光像の位置および第1相対位置から第1レーザ光像の位置を取得する。
(10)第1工程では、第1ゴースト光像と第1レーザ光像との第1相対位置を第1入射角度の関数として表した第1関係式に第1入射角度を代入して第1相対位置を取得する。第1工程では、撮像装置が撮影した画像における第1ゴースト光像の位置および第1相対位置から第1レーザ光像の位置を取得する。
第1関係式に第1入射角度を代入することにより、第1相対位置が取得される。第1ゴースト光像の位置および第1相対位置に基づいて、第1ゴースト光像の位置が正確に特定される。これにより、光軸調整時間を短縮することができる。
(3)プローブ顕微鏡は、第2レーザと、第2回動部と、をさらに有する。第2レーザは、カンチレバーに入射する第2レーザ光を出射する。第2回動部は、第2レーザを回動して、無限遠光学系に対する第2レーザ光の第2入射角度を変化させる。移動機構は、第1レーザ光および第2レーザ光と、カンチレバーとの相対位置を変化させる。記憶部は、無限遠光学系において第2レーザ光から発生する第2ゴースト光の第2ゴースト光像と、第2レーザ光の第2レーザ光像との第2相対位置を、第2入射角度の関数として表した第2関係式を記憶する。制御部は、撮像装置が撮影した画像から、第1ゴースト光像と第2ゴースト光像とのゴースト光相対位置を取得する。制御部は、第1関係式に第1入射角度を代入して、第1相対位置を取得する。制御部は、第2関係式に第2入射角度を代入して、第2相対位置を取得する。制御部は、ゴースト光相対位置、第1相対位置および第2相対位置から、第1レーザ光像と第2レーザ光像とのレーザ光相対位置を取得する。制御部は、レーザ光相対位置が所定相対位置に接近するように、移動機構、第1回動部および第2回動部のうち少なくとも一つを駆動する。
(4)第1レーザは、カンチレバーの変位計側に使用される計測用レーザ光を出射する計測用レーザである。第2レーザは、カンチレバーの励振に使用される励振用レーザ光を出射する励振用レーザである。
これにより、第1レーザ光および第2レーザ光が所定相対位置に配置され、プローブ顕微鏡の感度が高くなる。したがって、プローブ顕微鏡の精度が向上する。
(5)プローブ顕微鏡は、カンチレバーを支持するレバー支持部をさらに有する。撮像装置が撮影する画像において、第1ゴースト光像がレバー支持部と重なるように、第1ゴースト光像の位置が調整されている。
レバー支持部の表面は一様であるため、第1ゴースト光像がレバー支持部と重なることにより、第1ゴースト光像の視認性が向上する。
(6)プローブ顕微鏡は、撮像装置に撮影される第1ゴースト光を選別する選別部材をさらに有する。
選別された第1ゴースト光像の位置を利用することにより、第1レーザ光像の位置の特定が容易になる。これにより、光軸調整時間を短縮することができる。
(7)制御部は、撮像装置が撮影した画像における複数の第1ゴースト光像の代表位置から、第1レーザ光像の位置を取得する。
複数の第1ゴースト光像の代表位置を利用することにより、第1レーザ光像の位置の特定が容易になる。これにより、光軸調整時間を短縮することができる。
(8)プローブ顕微鏡は、対物レンズと、対物レンズ交換機構と、をさらに有する。対物レンズは、無限遠光学系から出射した第1レーザ光を集光する。対物レンズ交換機構は、対物レンズを交換可能に保持する。
これにより、カンチレバーの種類に応じて、最適な倍率の対物レンズを使用することができる。
プローブ顕微鏡の制御部は、撮像装置が撮影した画像における第1ゴースト光像の位置から第1レーザ光像の位置を取得する。これにより、第1レーザ光像の位置が容易に取得されるので、光軸調整時間を短縮することができる。
実施形態のプローブ顕微鏡の概略構成図。 対物レンズ交換機構の説明図。 第1レーザの移動による第1レーザ光像の挙動の説明図。 第1レーザの回動による第1レーザ光像の挙動の説明図。 第1ゴースト光の発生原理の説明図。 第1レーザの回動による第1ゴースト光像の挙動の説明図。 対物レンズの焦点が合っていない場合の撮影画像。 対物レンズの焦点が合っている場合の撮影画像。 第2レーザの光軸調整の説明図。
以下、実施形態のプローブ顕微鏡およびプローブ顕微鏡の光軸調整方法を、図面を参照して説明する。
(プローブ顕微鏡)
図1は、実施形態のプローブ顕微鏡の概略構成図である。本願において直交座標系のZ方向、X方向およびY方向が以下のように定義される。Z方向は、対物レンズ18とカンチレバー3との離間方向である。+Z方向は、カンチレバー3の先端部から対物レンズ18に向かう方向である。例えば、Z方向は鉛直方向であり、+Z方向は鉛直上方である。X方向およびY方向は、Z方向に垂直な方向である。例えば、X方向およびY方向は水平方向である。+X方向は、図1の紙面に向かって右方向である。
プローブ顕微鏡1は、カンチレバーユニット5と、レーザユニット10と、光軸調整ユニット20と、制御部35と、記憶部36と、を有する。
カンチレバーユニット5は、カンチレバー3と、プローブ2と、レバー支持部4と、フォトディテクタ6と、を有する。
カンチレバー3は、細長い平板状に形成される。カンチレバー3の法線方向は、Z方向と交差する。プローブ2は、カンチレバー3の-X方向の先端部に配置される。プローブ2は、カンチレバー3の-Z方向の表面に配置され、-Z方向に向かって先細る。プローブ顕微鏡1は、プローブ2を試料Sの表面に近づけて、試料Sの表面観察または物性計測などを実施する。レバー支持部4は、カンチレバー3の+X方向の基端部に配置される。レバー支持部4は、カンチレバー3を片持ち梁として支持する。
フォトディテクタ6は、カンチレバーユニット5の近傍に配置される。フォトディテクタ6は、カンチレバー3の背面(+Z方向の表面)で反射した第1レーザ光D1を検出する。プローブ顕微鏡1は、フォトディテクタ6による第1レーザ光D1の検出位置から、カンチレバー3の変位を検出する。プローブ顕微鏡1は、コンタクトモードで動作する場合に、試料Sの表面にプローブ2を近づけて、カンチレバー3を走査する。プローブ顕微鏡1は、フォトディテクタ6で検出したカンチレバー3の変位が一定になるように、試料SをZ方向に移動させる。プローブ顕微鏡1は、試料SのZ方向の移動量に基づいて、試料Sの表面観察または物性計測などを実施する。
レーザユニット10は、カンチレバー3に対してレーザ光D1,D2を入射させる。レーザユニット10は、第1レーザ11と、第2レーザ12と、ダイクロイックキューブ13と、偏光ビームスプリッタ(Polarizing Beam Splitter、以下PBSと言う。)15と、第1回動部31と、第2回動部32と、対物レンズ18と、対物レンズ交換機構40と、移動機構30と、を有する。
第1レーザ11は、例えばカンチレバー3の先端部の変位計側に使用する計測用レーザである。第1レーザ11は、例えば波長635nmの第1レーザ光D1を出射する。第1レーザ光D1は、カンチレバー3の-X方向の先端部に入射する。
第2レーザ12は、例えばカンチレバー3の励振に使用する励振用レーザである。第2レーザ12は、例えば波長785nmの第2レーザ光D2を出射する。第2レーザ光D2は、カンチレバー3の+X方向の基端部に入射する。
プローブ顕微鏡1は、ダイナミックモードで動作する場合に、カンチレバー3を共振周波数で振動させながら、試料Sの表面にプローブ2を近づけて、カンチレバー3を走査する。プローブ顕微鏡1は、フォトディテクタ6で検出したカンチレバー3の変位振幅が一定になるように、試料SをZ方向に移動させる。プローブ顕微鏡1は、試料SのZ方向の移動量に基づいて、試料Sの表面観察または物性計測などを実施する。プローブ顕微鏡1は、第2レーザ12に代えて、ピエゾ素子によりカンチレバーを励振してもよい。なお、カンチレバーをレーザで励振する場合、レバー部分のみが振動するため、理想的な振動状態に極めて近い振動状態を実現でき、高精度な測定が可能になるという利点がある。カンチレバーをピエゾ素子により励振する場合、レバー部分以外の部分が振動してしまいノイズの原因になりやすいものの、励振用レーザの調整が不要になるという利点がある。
ダイクロイックキューブ13は、第1レーザ光D1および第2レーザ光D2を合波して、PBS15に入射させる。
PBS15は、入射光をP偏光とS偏光とに分離する。PBS15の分光面16は、例えばS偏光を反射してP偏光を透過させる。PBS15の端面17には反射防止処理(ARコート)が施されている。レーザ光D1,D2は、S偏光に偏光されてPBS15に入射する。レーザ光D1,D2は、PBS15の分光面16で反射されて、PBS15から-Z方向に出射する。
プローブ顕微鏡1の光軸上に、1/4波長板または偏光板などの光学素子が適宜配置されてもよい。
第1回動部31は、第1レーザ11を回動することにより、PBS15に対する第1レーザ光D1の第1入射角度を変化させる。
第2回動部32は、第2レーザ12を回動することにより、PBS15に対する第2レーザ光D2の第2入射角度を変化させる。
対物レンズ18は、PBS15から出射したレーザ光D1,D2を、カンチレバー3に向けて集光する。
図2は、対物レンズ交換機構の説明図である。カンチレバー3の種類に応じて対物レンズ18の最適な倍率が異なるため、対物レンズ18は交換可能であることが望ましい。対物レンズ交換機構40は、レンズ支持部41に対して、対物レンズ18を交換可能に保持する。レンズ支持部41は、アリ溝42を有する。アリ溝42は、開口部の幅が底部の幅より小さい溝である。対物レンズ18は、アリ溝42と係合するホゾ48を有する。レンズ支持部41のアリ溝42に対物レンズ18のホゾ48が係合することにより、対物レンズ18が位置決めされる。押さえネジ45は、対物レンズ18をレンズ支持部41に固定する。対物レンズ交換機構は、図2の例に限られず、倍率が異なる複数の対物レンズ18を備えたレボルバであってもよい。
移動機構30は、図1に示されるレーザユニット10とカンチレバーユニット5との相対位置を変化させることにより、レーザ光D1,D2とカンチレバー3との相対位置を変化させる。移動機構30は、レーザユニット10およびカンチレバーユニット5のうち少なくとも一方を、X方向、Y方向およびZ方向に移動させることが可能である。
光軸調整ユニット20は、カンチレバー3に対するレーザ光D1,D2の光軸調整に利用される。光軸調整ユニット20は、照明装置21と、ビームスプリッタ23と、結像レンズ28と、カメラ(撮像装置)25と、を有する。
照明装置21は、カンチレバー3を照明する照明光22を出射する。ビームスプリッタ23は、照明光22をカンチレバー3に向けて反射する。ビームスプリッタ23は、カンチレバー3からの散乱光Rを結像レンズ28に向けて透過させる。結像レンズ28は、カンチレバー3からの散乱光Rをカメラ25に向けて集光する。
カメラ25は、撮像素子26を有する。カメラ25は、カンチレバー3からの散乱光Rの画像を撮影する。カメラ25が撮影する画像には、カンチレバー3の像に加えて、カンチレバー3の近傍に結像した第1レーザ光D1の第1レーザ光像d1および第2レーザ光D2の第2レーザ光像d2が映る(図9参照)。
カンチレバー3とカメラ25との間に配置された対物レンズ18と結像レンズ28との間に、光が平行に進行する無限遠光学系PLが形成される。無限遠光学系PLに配置された光学素子に対して、レーザ光D1,D2および照明光22が入射する。実施形態では、PBS15に対してレーザ光D1,D2が入射し、ビームスプリッタ23に対して照明光22が入射する。レーザ光D1,D2および照明光22が入射する光学素子は、これらに限られない。PBS15に対するレーザ光D1,D2の入射角度は、無限遠光学系PLに対するレーザ光D1,D2の入射角度に相当する。PBS15に対するレーザ光D1,D2の入射角度は、対物レンズ18に対するレーザ光D1,D2の入射角度に相当する。
制御部35は、プローブ顕微鏡1の各部の動作を制御する。プローブ顕微鏡1は、CPU(Central Processing Unit)、メモリ、補助記憶装置などを有する。CPUは、メモリおよび補助記憶装置に記憶されたプログラムを実行することにより、制御部35として機能する。後述されるように、制御部35は、カメラ25が撮影した画像を解析して、レーザ光像d1,d2の位置を取得する。制御部35は、レーザ光像d1,d2が所定位置に接近するように、移動機構30、第1回動部31および第2回動部32の動作を制御する。
記憶部36は、後述される第1関係式および第2関係式を記憶する。
(レーザ光像およびゴースト光像)
第1レーザ11の移動および回動による第1レーザ光像d1の挙動について説明する。
図3は、第1レーザの移動による第1レーザ光像の挙動の説明図である。図4は、第1レーザの回動による第1レーザ光像の挙動の説明図である。図3および図4では、理解を容易にするため、プローブ顕微鏡1の構成部材の一部の図示が省略されている。第2レーザ12の移動および回動による第2レーザ光像d2の挙動についても、第1レーザ光像d1と同様である。
図3には、第1レーザ11を移動させた場合が示されている。第1レーザ11の移動前後で、PBS15に対する第1レーザ光D1の第1入射角度は変化しない。第1レーザ11の移動後の第1レーザ光D1mは、移動前の第1レーザ光D1と平行にPBS15および対物レンズ18に入射する。第1レーザ11の移動前後の第1レーザ光D1,D1mは、対物レンズ18により同じ位置に集光される。第1レーザ11の移動前後の第1レーザ光像d1,d1mは、同じ位置にある。このように、第1レーザ11が移動しても、第1レーザ光像d1は移動しない。
図4には、第1レーザ11を回動させた場合が示されている。第1レーザ11の回動前後で、PBS15に対する第1レーザ光D1の第1入射角度θ1が変化する。第1レーザ11の回動後の第1レーザ光D1rは、回動前の第1レーザ光D1とは異なる角度で対物レンズ18に入射する。第1レーザ11の回動前後の第1レーザ光D1,D1rは、対物レンズ18により異なる位置に集光される。図4の例において、カンチレバー3の背面では、第1レーザ11の回動後の第1レーザ光像d1rが、回動前の第1レーザ光像d1に対して+X方向に移動する。カメラ25の撮影画像では、第1レーザ11の回動後の第1レーザ光像d1rが、回動前の第1レーザ光像d1に対して-X方向に移動する。このように、第1レーザ11が回動すると、第1レーザ光像d1が移動する。第1レーザ光像d1の位置は、第1レーザ11の回動角度(および回動方向)の関数である。第1レーザ11の回動角度は、PBS15に対する第1レーザ光D1の第1入射角度θ1に相当する。PBS15に対する第1レーザ光D1の第1入射角度θ1は、対物レンズ18に対する第1レーザ光D1の第1入射角度に相当する。
第1レーザ光D1から発生する第1ゴースト光G1について説明する。
図5は、第1ゴースト光の発生原理の説明図である。図5では、理解を容易にするため、プローブ顕微鏡1の構成部材の一部の図示が省略されている。第2レーザ光D2から発生する第2ゴースト光G2についても、第1ゴースト光G1と同様である。
前述されたように、第1レーザ光D1は、S偏光に偏光されてPBS15に入射する。第1レーザ光D1は、分光面16で反射されてPBS15から出射する。
ただし、第1レーザ光D1の全部がS偏光ではなく、第1レーザ光D1はP偏光を含んでいる。PBS15の分光面16は、S偏光の全部を反射しP偏光の全部を透過するのではなく、S偏光の一部を透過しP偏光の一部を反射する。PBS15の端面17には反射防止処理が施されているが、PBS15の端面17は一部のレーザ光を反射する。
PBS15に入射し分光面16で反射された第1レーザ光D1の一部が、PBS15の端面17aで反射されて、第1ゴースト光G1aが発生する。第1ゴースト光G1aは、分光面16を透過して、PBS15からカメラ25に向かって出射する。
PBS15に入射した第1レーザ光D1の一部が、分光面16を透過して、第1ゴースト光G1bが発生する。第1ゴースト光G1aは、端面17bおよび分光面16で反射されて、PBS15からカメラ25に向かって出射する。
このように、PBS15に入射した第1レーザ光D1の、予定外の反射および透過に起因して、第1ゴースト光G1が発生する。前述された第1ゴースト光G1a,G1bの他にも、様々な第1ゴースト光G1が発生する。PBS15を透過するのは主にP偏光であるため、第1ゴースト光G1はP偏光であることが多い。
無限遠光学系PLで発生した第1ゴースト光G1は、結像レンズ28によりカメラ25に向かって集光される。カメラ25が撮影する画像には、前述されたカンチレバー3および第1レーザ光像d1に加えて、第1ゴースト光G1の第1ゴースト光像g1が映る。第1ゴースト光G1は第1レーザ光D1から発生するので、第1ゴースト光像g1と第1レーザ光像d1との相対位置には密接な関係がある。後述されるように、制御部35は、第1ゴースト光像g1の位置に基づいて第1レーザ光像d1の位置を取得する。
前述されたように、第1レーザ光D1から複数の第1ゴースト光G1が発生する。第1レーザ光像d1の位置の取得には、複数の第1ゴースト光像g1が利用されてもよいし、いずれか一つの第1ゴースト光像g1が利用されてもよい。前者の場合には、複数の第1ゴースト光像g1の代表位置に基づいて、第1レーザ光像d1の位置が取得される。例えば、代表位置は重心位置である。後者の場合には、利用する第1ゴースト光像g1が選別される。PBS15とカメラ25との間に、第1ゴースト光G1の選別部材24が配置される。選別部材24は、カメラ25により撮影される第1ゴースト光G1を選別する。複数の第1ゴースト光G1は、偏光方向や光強度などが異なる。選別部材24は、偏光板やNDフィルタなどである。選別部材24が偏光板の場合に、特定の偏光方向の第1ゴースト光G1aが選別部材24を透過して、カメラ25に撮影される。NDフィルタは、全波長光の光強度を低減する。選別部材24がNDフィルタの場合に、光強度の大きい第1ゴースト光G1aが選別部材24を透過して、カメラ25に撮影される。
第1レーザ11の移動および回動による第1ゴースト光像g1の挙動について説明する。第2レーザ12の移動および回動による第2ゴースト光像g2の挙動についても、第1ゴースト光像g1と同様である。
第1レーザ11を移動させた場合の第1ゴースト光像g1の挙動は、第1レーザ光像d1の挙動と同様である。第1レーザ11の移動後の第1ゴースト光G1は、移動前の第1ゴースト光G1と平行に結像レンズ28に入射する。第1レーザ11の移動前後の第1ゴースト光G1は、結像レンズ28により同じ位置に集光される。第1レーザ11が移動しても、第1ゴースト光像g1は移動しない。
図6は、第1レーザの回動による第1ゴースト光像の挙動の説明図である。図6では、理解を容易にするため、プローブ顕微鏡1の構成部材の一部の図示が省略されている。第1レーザ11の回動前後で、PBS15に対する第1レーザ光D1の第1入射角度θ1が変化する。第1レーザ11の回動前後で、PBS15の分光面16および端面17に対する第1レーザ11の入射角度も変化する。例えば、PBS15の端面17で第1レーザ11が反射されて第1ゴースト光G1が発生する。第1レーザ11の回動後の第1ゴースト光G1rは、回動前の第1ゴースト光G1とは異なる角度で結像レンズ28に入射する。第1レーザ11の回動前後の第1ゴースト光G1,G1rは、結像レンズ28により異なる位置に集光される。図6の例において、カメラ25の撮影画像では、第1レーザ11の回動後の第1ゴースト光像g1rが、回動前の第1ゴースト光像g1に対して+X方向に移動する。このように、第1レーザ11が回動すると、第1ゴースト光像g1が移動する。第1ゴースト光像g1の位置は、第1レーザ11の回動角度(および回動方向)の関数である。第1レーザ11の回動角度は、PBS15に対する第1レーザ光D1の第1入射角度θ1に相当する。
前述されたように、カメラ25の撮影画像では、第1レーザ11の回動後の第1レーザ光像d1rが、回動前の第1レーザ光像d1に対して-X方向に移動する。逆に、第1レーザ11の回動後の第1ゴースト光像g1rは、回動前の第1ゴースト光像g1に対して+X方向に移動する。第1レーザ11の移動前後において、第1レーザ光像d1および第1ゴースト光像g1は、相互に逆方向に移動する。
前述されたように、第1レーザ光像d1の位置は、PBS15に対する第1レーザ光D1の第1入射角度θ1の関数である。第1ゴースト光像g1の位置も、第1入射角度θ1の関数である。両者の差分により、第1ゴースト光像g1と第1レーザ光像d1との第1相対位置が得られる。第1相対位置(距離および方向)L1は、第1入射角度θ1の関数として、第1関係式L1(θ1)で表される。第2レーザ12についても同様である。第2ゴースト光像g2と第2レーザ光像d2との第2相対位置(距離および方向)L2は、PBS15に対する第2レーザ光D2の第2入射角度θ2の関数として、第2関係式L2(θ2)で表される。第1関係式L1(θ1)および第2関係式L2(θ2)は、プローブ顕微鏡1の出荷前に、予め実験またはシミュレーションなどにより取得される。第1関係式L1(θ1)および第2関係式L2(θ2)は、記憶部36に保存される。
(プローブ顕微鏡の光軸調整)
プローブ顕微鏡の光軸調整について説明する。
プローブ顕微鏡1では、試料Sの種類等に応じて、様々な種類のカンチレバー3および対物レンズ18が使用される。カンチレバー3および対物レンズ18を交換する度に、プローブ顕微鏡の光軸調整が実施される。
第1レーザ光D1の光軸調整について説明する。前述されたように、第1レーザ11は、例えばカンチレバー3の先端部の変位計側に使用する計測用レーザである。カンチレバー3の先端部に第1レーザ光D1の焦点が結ばれると、フォトディテクタ6による受光量が大きくなり、カンチレバー3の変位に対する感度が高くなる。カンチレバー3の先端部に第1レーザ光D1の焦点が結ばれるように、第1レーザ光D1の光軸調整が実施される。光軸調整は、カメラ25の撮影画像に基づいて、移動機構30、第1回動部および第2回動部のうち少なくとも一つを駆動することにより実施される。光軸調整は、制御部35が自動的に実施してもよいし、作業者が手作業で実施してもよい。
図7は、対物レンズの焦点が合っていない場合の撮影画像である。すなわち、図7の例では、対物レンズ18の焦点距離に対してカンチレバー3が離間している。前述されたように、カメラ25の撮影画像には、カンチレバー3、第1レーザ光像d1および第1ゴースト光像g1が映っている。対物レンズの焦点が合っていないので、カンチレバー3の輪郭がぼやけて、第1レーザ光像d1が大きく広がっている。カンチレバー3の外側には、試料Sの表面が映っている。試料Sの表面は多様であり、第1レーザ光像d1は背景光に埋もれて見にくくなる。特に試料Sの表面が暗色である場合には、散乱光が弱くなるので、第1レーザ光像d1の位置を特定することが困難である。そのため、カンチレバー3の先端部に第1レーザ光像d1が配置されるように光軸調整することが困難である。
カメラ25の撮影画像において、第1ゴースト光像g1は鮮明に映っている。第1ゴースト光像g1は、無限遠光学系PLで発生するので、対物レンズ18の焦点距離の影響を受けないからである。制御部35は、カメラ25の撮影画像における第1ゴースト光像g1の位置から、第1レーザ光像d1の位置を取得する(第1工程)。制御部35は、記憶部36から第1関係式L1(θ1)を読み出し、第1入射角度θ1を代入して、第1ゴースト光像g1と第1レーザ光像d1との第1相対位置L1を取得する。制御部35は、第1ゴースト光像g1の位置に、第1相対位置L1を加算して、第1レーザ光像d1の位置を取得する。
図8は、対物レンズの焦点が合っている場合の撮影画像である。すなわち、図8の例では、対物レンズ18の焦点距離に対してカンチレバー3が接近している。制御部35は、第1レーザ光像d1の位置がカンチレバーの先端部(所定位置)に接近するように、移動機構30および第1回動部31のうち少なくとも一方を駆動する(第2工程)。制御部35は、移動機構30を駆動して、レーザユニット10とカンチレバーユニット5とのZ方向の相対位置を調整する。これにより、対物レンズ18の焦点距離にカンチレバー3が接近して、対物レンズ18の焦点が合う。制御部35は、移動機構30および第1回動部31のうち少なくとも一方を駆動して、カンチレバー3に対する第1レーザ光像d1のXY方向の相対位置を調整する。これにより、第1レーザ光像d1がカンチレバー3の先端部に配置されて、第1レーザ光D1の光軸調整が完了する。
前述されたように、カメラ25の撮影画像において、レバー支持部4の外側には試料Sの表面が映っている。試料Sの表面は多様であるため、第1ゴースト光像g1が試料Sと重なると、第1ゴースト光像g1の視認性が低下する。カメラ25の撮影画像において、第1ゴースト光像g1がカンチレバー3のレバー支持部4と重なって映るように、第1ゴースト光像g1の位置が調整されている。レバー支持部4の表面は一様である。第1ゴースト光像g1がレバー支持部4と重なることにより、第1ゴースト光像g1の視認性が向上する。第1ゴースト光像g1の位置の調整は、PBS15を傾斜させて、第1ゴースト光像g1を第1レーザ光像d1より大きく動かすことにより実施可能である。第1ゴースト光像g1の位置の調整は、カメラ25の傾斜と第1レーザ11の回動とを併用することによっても実施可能である。後者の場合には、プローブ顕微鏡1の装置構成が簡略化される。
第2レーザ光D2の光軸調整について説明する。前述されたように、第2レーザ12は、例えばカンチレバー3の励振に使用する励振用レーザである。第2レーザ12は、カンチレバー3の共振周波数の近傍に変調されている。カンチレバー3の基端部の所定位置に第2レーザ光D2の焦点が結ばれると、カンチレバー3の振幅が大きくなり、フォトディテクタ6の感度が高くなる。カンチレバー3は、共振周波数に応じて大きさおよび長さが異なる。それぞれのカンチレバー3を振動させるため、第2レーザ光D2の最適な照射位置が存在する。カンチレバー3の基端部の所定位置に第2レーザ光D2の焦点が結ばれるように、第2レーザ光D2の光軸調整が実施される。
図9は、第2レーザの光軸調整の説明図である。カメラ25の撮影画像には、カンチレバー3、第1レーザ光像d1および第1ゴースト光像g1に加えて、第2レーザ光像d2および第2ゴースト光像g2が映っている。前述されたように、第1レーザ光D1の波長と第2レーザ光D2の波長とが異なる。この場合には、光色の違いにより、第1レーザ光像d1および第1ゴースト光像g1と第2レーザ光像d2および第2ゴースト光像g2とが区別される。第2レーザ光D2の光軸調整は、第1レーザ光D1の光軸調整と同様に実施することができる。制御部35は、記憶部から第2関係式L2(θ2)を読み出し、第2入射角度θ2を代入して、第2ゴースト光像g2と第2レーザ光像d2との第2相対位置L2を取得する。制御部35は、第2ゴースト光像g2の位置に、第2相対位置L2を加算して、第2レーザ光像d2の位置を取得する。制御部35は、第2レーザ光像d2の位置が、カンチレバー3の基端部(所定位置)に接近するように、移動機構30および第2回動部32のうち少なくとも一方を駆動する。
プローブ顕微鏡1は、カンチレバー3を励振して計測する。そのため、カンチレバー3に対する第1レーザ光D1の入射位置と第2レーザ光の入射位置との関係が重要である。制御部35は、第1レーザ光像d1と第2レーザ光像d2とのレーザ光相対位置Ldを以下のように取得する。制御部35は、カメラ25の撮影画像を解析して、第1ゴースト光像g1と第2ゴースト光像g2とのゴースト光相対位置Lgを取得する。カメラ25の撮影画像には第1ゴースト光像g1および第2ゴースト光像g2が鮮明に映っているので、ゴースト光相対位置Lgは正確に取得される。制御部35は、第1関係式L1(θ1)に第1入射角度θ1を代入して、第1ゴースト光像g1と第1レーザ光像d1との第1相対位置L1を取得する。制御部35は、第2関係式L2(θ2)に第2入射角度θ2を代入して、第2ゴースト光像g2と第2レーザ光像d2との第2相対位置L2を取得する。制御部35は、以下の式(1)によりレーザ光相対位置Ldを取得する。
Ld=L1-L2-Lg ・・・ (1)
制御部35は、算出したレーザ光相対位置Ldが、第1レーザ光像d1と第2レーザ光像d2との所定相対位置に接近するように、移動機構30、第1回動部31および第2回動部32のうち少なくとも一つを駆動する。以上により、第2レーザ光D2の光軸調整が完了する。
以上に詳述したように、実施形態のプローブ顕微鏡1は、カンチレバー3と、第1レーザ11と、カメラ25と、無限遠光学系PLと、移動機構30と、第1回動部31と、制御部35と、を有する。カンチレバー3は、プローブ2を有する。第1レーザ11は、カンチレバー3に入射する第1レーザ光D1を出射する。カメラ25は、カンチレバー3および第1レーザ光D1の画像を撮影する。無限遠光学系PLは、カンチレバー3とカメラ25との間に形成され、第1レーザ光D1が入射する。移動機構30は、第1レーザ光D1とカンチレバー3との相対位置を変化させる。第1回動部31は、第1レーザ11を回動して、無限遠光学系PLに対する第1レーザ光D1の第1入射角度θ1を変化させる。制御部35は、移動機構30および第1回動部31の動作を制御する。制御部35は、無限遠光学系PLにおいて前記第1レーザ光D1から発生した第1ゴースト光G1の第1ゴースト光像g1の位置から、第1レーザ光D1の第1レーザ光像d1の位置を、カメラ25が撮影した画像において取得する。制御部35は、第1レーザ光像d1の位置がカンチレバー3の所定位置に接近するように、移動機構30および第1回動部31のうち少なくとも一方を駆動する。
実施形態のプローブ顕微鏡1の光軸調整方法は、プローブ顕微鏡1を使用して、第1工程と、第2工程と、を実施する。第1工程では、無限遠光学系PLにおいて前記第1レーザ光D1から発生した第1ゴースト光G1の第1ゴースト光像g1の位置から、第1レーザ光D1の第1レーザ光像d1の位置を、カメラ25が撮影した画像において取得する。第2工程では、第1レーザ光像d1の位置がカンチレバーの所定位置に接近するように、移動機構および第1回動部のうち少なくとも一方を駆動する。
第1ゴースト光G1は、無限遠光学系PLにおいて発生するので、対物レンズ18の焦点距離の影響を受けない。カメラ25が撮影した画像には第1ゴースト光像g1が鮮明に映るので、第1ゴースト光像g1の位置の特定が容易である。第1ゴースト光G1は第1レーザ光D1から発生するので、両者の相対位置には密接な関係がある。第1ゴースト光像g1の位置を利用することにより、第1レーザ光像d1の位置が容易に取得される。これにより、光軸調整時間を短縮することができる。
以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
実施形態では、第1ゴースト光像g1の位置に基づいて、第1レーザ光像d1の位置を取得した。これに対して、第1ゴースト光像g1の位置およびカンチレバー3の輪郭の位置に基づいて、第1レーザ光像d1の位置を取得してもよい。
また、図1においては、2つのレーザ光がカンチレバー3に入射する例を示したが、カンチレバー3に入射するレーザ光は3本以上であってもよい。3本以上のレーザ光が用いられている場合、光学系の構成などからそのような取り扱いが可能であるといえる限り、任意のレーザ光を「第1レーザ光」として取り扱ってよく、「第1レーザ光」として取り扱われたレーザ光以外の任意のレーザ光を「第2レーザ光」として取り扱ってよい。
D1…第1レーザ光、d1…第1レーザ光像、D2…第2レーザ光、d2…第2レーザ光像、G1…第1ゴースト光、g1…第1ゴースト光像、G2…第2ゴースト光、g2…第2ゴースト光像、Ld…レーザ光相対位置、Lg…ゴースト光相対位置、L1…第1相対位置、L1(θ1)…第1関係式、L2…第2相対位置、L2(θ2)…第2関係式、PL…無限遠光学系、θ1…第1入射角度、θ2…第2入射角度、1…プローブ顕微鏡、2…プローブ、3…カンチレバー、4…レバー支持部、11…第1レーザ、12…第2レーザ、18…対物レンズ、24…選別部材、25…カメラ(撮像装置)、30…移動機構、31…第1回動部、32…第2回動部、35…制御部、36…記憶部、40…対物レンズ交換機構。

Claims (10)

  1. プローブを有するカンチレバーと、
    前記カンチレバーに入射する第1レーザ光を出射する第1レーザと、
    前記カンチレバーおよび前記第1レーザ光の画像を撮影する撮像装置と、
    前記カンチレバーと前記撮像装置との間に形成され、前記第1レーザ光が入射する無限遠光学系と、
    前記第1レーザ光と前記カンチレバーとの相対位置を変化させる移動機構と、
    前記第1レーザを回動して、前記無限遠光学系に対する前記第1レーザ光の第1入射角度を変化させる第1回動部と、
    前記移動機構および前記第1回動部の動作を制御する制御部と、を有し、
    前記制御部は、
    前記無限遠光学系において前記第1レーザ光から発生する第1ゴースト光の第1ゴースト光像の位置から、前記第1レーザ光の第1レーザ光像の位置を、前記撮像装置が撮影した画像において取得し、
    前記第1レーザ光像の位置が前記カンチレバーの所定位置に接近するように、前記移動機構および前記第1回動部のうち少なくとも一方を駆動する、
    プローブ顕微鏡。
  2. 前記第1ゴースト光像と前記第1レーザ光像との第1相対位置を前記第1入射角度の関数として表した第1関係式を記憶する記憶部をさらに有し、
    前記制御部は、前記第1関係式に前記第1入射角度を代入して前記第1相対位置を取得し、前記撮像装置が撮影した画像における前記第1ゴースト光像の位置および前記第1相対位置から前記第1レーザ光像の位置を取得する、
    請求項1に記載のプローブ顕微鏡。
  3. 前記カンチレバーに入射する第2レーザ光を出射する第2レーザと、
    前記第2レーザを回動して、前記無限遠光学系に対する前記第2レーザ光の第2入射角度を変化させる第2回動部と、をさらに有し、
    前記移動機構は、前記第1レーザ光および前記第2レーザ光と、前記カンチレバーとの相対位置を変化させ、
    前記記憶部は、前記無限遠光学系において前記第2レーザ光から発生する第2ゴースト光の第2ゴースト光像と、前記第2レーザ光の第2レーザ光像との第2相対位置を、前記第2入射角度の関数として表した第2関係式を記憶し、
    前記制御部は、
    前記撮像装置が撮影した画像から、前記第1ゴースト光像と前記第2ゴースト光像とのゴースト光相対位置を取得し、
    前記第1関係式に前記第1入射角度を代入して、前記第1相対位置を取得し、
    前記第2関係式に前記第2入射角度を代入して、前記第2相対位置を取得し、
    前記ゴースト光相対位置、前記第1相対位置および前記第2相対位置から、前記第1レーザ光像と前記第2レーザ光像とのレーザ光相対位置を取得し、
    前記レーザ光相対位置が所定相対位置に接近するように、前記移動機構、前記第1回動部および前記第2回動部のうち少なくとも一つを駆動する、
    請求項2に記載のプローブ顕微鏡。
  4. 前記第1レーザは、前記カンチレバーの変位計側に使用される計測用レーザ光を出射する計測用レーザであり、
    前記第2レーザは、前記カンチレバーの励振に使用される励振用レーザ光を出射する励振用レーザである、
    請求項3に記載のプローブ顕微鏡。
  5. 前記カンチレバーを支持するレバー支持部をさらに有し、
    前記撮像装置が撮影する画像において、前記第1ゴースト光像が前記レバー支持部と重なるように、前記第1ゴースト光像の位置が調整されている、
    請求項1から4のいずれか1項に記載のプローブ顕微鏡。
  6. 前記撮像装置に撮影される前記第1ゴースト光を選別する選別部材をさらに有する、
    請求項1から5のいずれか1項に記載のプローブ顕微鏡。
  7. 前記制御部は、前記撮像装置が撮影した画像における複数の前記第1ゴースト光像の代表位置から、前記第1レーザ光像の位置を取得する、
    請求項1から5のいずれか1項に記載のプローブ顕微鏡。
  8. 前記無限遠光学系から出射した前記第1レーザ光を集光する対物レンズと、
    前記対物レンズを交換可能に保持する対物レンズ交換機構と、をさらに有する、
    請求項1から7のいずれか1項に記載のプローブ顕微鏡。
  9. プローブを有するカンチレバーと、
    前記カンチレバーに入射する第1レーザ光を出射する第1レーザと、
    前記カンチレバーおよび前記第1レーザ光の画像を撮影する撮像装置と、
    前記カンチレバーと前記撮像装置との間に形成され、前記第1レーザ光が入射する無限遠光学系と、
    前記第1レーザ光と前記カンチレバーとの相対位置を変化させる移動機構と、
    前記第1レーザを回動して、前記無限遠光学系に対する前記第1レーザ光の第1入射角度を変化させる第1回動部と、
    を有するプローブ顕微鏡を使用して、
    前記無限遠光学系において前記第1レーザ光から発生する第1ゴースト光の第1ゴースト光像の位置から、前記第1レーザ光の第1レーザ光像の位置を、前記撮像装置が撮影した画像において取得する第1工程と、
    前記第1レーザ光像の位置が前記カンチレバーの所定位置に接近するように、前記移動機構および前記第1回動部のうち少なくとも一方を駆動する第2工程と、を有する、
    プローブ顕微鏡の光軸調整方法。
  10. 前記第1工程では、前記第1ゴースト光像と前記第1レーザ光像との第1相対位置を前記第1入射角度の関数として表した第1関係式に前記第1入射角度を代入して前記第1相対位置を取得し、前記撮像装置が撮影した画像における前記第1ゴースト光像の位置および前記第1相対位置から前記第1レーザ光像の位置を取得する、
    請求項9に記載のプローブ顕微鏡の光軸調整方法。
JP2020180813A 2020-10-28 2020-10-28 プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法 Active JP7444754B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020180813A JP7444754B2 (ja) 2020-10-28 2020-10-28 プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法
CN202110687515.3A CN114486729A (zh) 2020-10-28 2021-06-21 探针显微镜以及探针显微镜的光轴调整方法
TW110128129A TW202217318A (zh) 2020-10-28 2021-07-30 探針顯微鏡以及探針顯微鏡的光軸調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180813A JP7444754B2 (ja) 2020-10-28 2020-10-28 プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法

Publications (2)

Publication Number Publication Date
JP2022071711A JP2022071711A (ja) 2022-05-16
JP7444754B2 true JP7444754B2 (ja) 2024-03-06

Family

ID=81491797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180813A Active JP7444754B2 (ja) 2020-10-28 2020-10-28 プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法

Country Status (3)

Country Link
JP (1) JP7444754B2 (ja)
CN (1) CN114486729A (ja)
TW (1) TW202217318A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183869A (ja) 2015-03-25 2016-10-20 株式会社日立ハイテクサイエンス 走査プローブ顕微鏡

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183869A (ja) 2015-03-25 2016-10-20 株式会社日立ハイテクサイエンス 走査プローブ顕微鏡

Also Published As

Publication number Publication date
CN114486729A (zh) 2022-05-13
JP2022071711A (ja) 2022-05-16
TW202217318A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
US6974938B1 (en) Microscope having a stable autofocusing apparatus
JP5226480B2 (ja) 3次元形状測定装置
JP4521028B2 (ja) 両用方式光学側面計
TWI464362B (zh) 用於測量物體高度及獲得其對焦圖像的裝置與方法
JP6363382B2 (ja) 膜厚測定装置及び方法
WO2020009072A1 (ja) レーザ加工装置
JP2011504143A (ja) レーザ光機械加工
US6167148A (en) Method and system for inspecting the surface of a wafer
JP4895353B2 (ja) 干渉計、及び形状の測定方法
JP2010151745A (ja) 変位センサ
KR100679643B1 (ko) 자동초점 조절패턴을 채택하는 자동초점 조절장치 및그것을 사용한 자동초점 조절방법
JP4224472B2 (ja) 共焦点型検査装置
JP2003042731A (ja) 形状計測装置および形状計測方法
JP7444754B2 (ja) プローブ顕微鏡およびプローブ顕微鏡の光軸調整方法
WO2000033025A1 (fr) Instrument de mesure
JPH0674863A (ja) 光コネクタのコア偏心測定方法及び光コネクタ
CN107923735B (zh) 用于推导物体表面的形貌的方法和设备
JP2002296018A (ja) 3次元形状計測装置
JP2003035510A (ja) 位置検出装置
JP2852190B2 (ja) 微小位置測定装置
JP2004102228A (ja) 合焦装置及び変位センサ並びに共焦点顕微鏡
KR102058780B1 (ko) 라인 스캐닝 방식의 공초점 현미경에서의 자동초점조절 방법 및 장치
JP4037280B2 (ja) 光学測定装置
JPWO2019093209A1 (ja) レーザ加工方法、及び、レーザ加工装置
JP4150315B2 (ja) レーザプローブ計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230608

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240222

R150 Certificate of patent or registration of utility model

Ref document number: 7444754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150