JP7415890B2 - Dark powder dispersion, dark powder dispersion and base material with colored layer - Google Patents

Dark powder dispersion, dark powder dispersion and base material with colored layer Download PDF

Info

Publication number
JP7415890B2
JP7415890B2 JP2020191647A JP2020191647A JP7415890B2 JP 7415890 B2 JP7415890 B2 JP 7415890B2 JP 2020191647 A JP2020191647 A JP 2020191647A JP 2020191647 A JP2020191647 A JP 2020191647A JP 7415890 B2 JP7415890 B2 JP 7415890B2
Authority
JP
Japan
Prior art keywords
dark
pigment
powder dispersion
composite
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020191647A
Other languages
Japanese (ja)
Other versions
JP2021191832A (en
Inventor
孝郁 伊藤
啓一 佐藤
美香 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to CN202180040473.2A priority Critical patent/CN115698205A/en
Priority to EP21818569.2A priority patent/EP4163108A1/en
Priority to PCT/JP2021/015021 priority patent/WO2021246055A1/en
Priority to KR1020227036522A priority patent/KR20220154232A/en
Priority to US17/924,438 priority patent/US20230272225A1/en
Publication of JP2021191832A publication Critical patent/JP2021191832A/en
Application granted granted Critical
Publication of JP7415890B2 publication Critical patent/JP7415890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、自動車や建物の窓カラス等の着色に用いる暗色粉分散液、暗色粉分散体ならびに着色層付基材に関する。 The present invention relates to a dark powder dispersion, a dark powder dispersion, and a substrate with a colored layer used for coloring window glass of automobiles and buildings.

一般に自動車や建物の窓ガラスに遮光フィルムを貼着することにより、車外または屋外から車内または室内を透視し得ないようにして、プライバシーを保護し且つファッション性を高めることが行われている。 BACKGROUND ART In general, a light-shielding film is attached to the window glass of a car or a building to prevent the interior or interior of the car from being seen through from outside the car or the outdoors, thereby protecting privacy and increasing fashionability.

このような遮光フィルムは、PETフィルムなどの透明フィルム基材の表面に着色層を設けたもので、当該着色層は顔料を固体媒体の樹脂に分散した顔料分散体である。このような顔料には、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料およびCo―Cr―Fe複合酸化物顔料、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックを用いることができることが知られている。 Such a light-shielding film has a colored layer provided on the surface of a transparent film base material such as a PET film, and the colored layer is a pigment dispersion in which a pigment is dispersed in a resin as a solid medium. Such pigments include Cu-Fe-Mn composite oxide pigment, Cu-Cr composite oxide pigment, Cu-Cr-Mn composite oxide pigment, Cu-Cr-Mn-Ni composite oxide pigment, Cu-Cr - Fe complex oxide pigment, Fe-Cr complex oxide pigment and Co-Cr-Fe complex oxide pigment, titanium black, titanium nitride, titanium oxynitride, dark azo pigment, perylene black pigment, aniline black pigment, carbon black It is known that it can be used.

例えば、特許文献1にはヘイズ値を低く抑えた遮光フィルムの技術が開示されている。 For example, Patent Document 1 discloses a technology for a light-shielding film with a low haze value.

特開2000-214310号公報Japanese Patent Application Publication No. 2000-214310

一般に、自動車や建物の意匠性向上のため、遮光フィルムには彩度の低い深い黒色が求められている。ところが、暗色顔料を樹脂などの固体媒体に分散した暗色粉分散体は、当該暗色顔料が有する色彩のため、彩度が高くなり、彩度の低い深い黒色が得られない場合がある。
また、当該遮光フィルムの使用用途によっては、耐湿熱性が求められる場合もあった。
Generally, in order to improve the design of automobiles and buildings, deep black with low saturation is required for light-shielding films. However, a dark powder dispersion in which a dark pigment is dispersed in a solid medium such as a resin has high chroma due to the color of the dark pigment, and deep black with low chroma may not be obtained.
Furthermore, depending on the intended use of the light-shielding film, resistance to moisture and heat may be required.

本発明は、上述の状況のもとで為されたものであり、その解決しようとする課題は、彩度が低く、深い黒色を示す暗色粉分散体や、着色層付基材、また、これらを形成するための暗色粉分散液を提供することにあり、さらには、耐湿熱性に優れた暗色粉分散体や、着色層付着基材、また、これらを形成するための暗色粉分散液を提供することにある。 The present invention was made under the above-mentioned circumstances, and the problems it seeks to solve are a dark-colored powder dispersion with low saturation and a deep black color, a base material with a colored layer, and a material for these materials. Our objective is to provide a dark-colored powder dispersion for forming a powder, and furthermore, to provide a dark-colored powder dispersion with excellent heat and humidity resistance, a colored layer adhesion substrate, and a dark-colored powder dispersion for forming these. It's about doing.

即ち、上述の課題を解決する第1の発明は、
暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、
前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする暗色粉分散液である。
That is, the first invention that solves the above problems is:
comprising a dark pigment, composite tungsten oxide particles and a solvent;
The dark powder dispersion is characterized in that the mass ratio of the dark pigment to the composite tungsten oxide particles (dark pigment mass/composite tungsten oxide fine particle mass) is 0.01 or more and 5 or less.

本発明によれば、彩度の低い深い黒色を示す暗色粉分散体、着色層付基材を実現することができる。 According to the present invention, it is possible to realize a dark-colored powder dispersion that exhibits a deep black color with low saturation and a colored layer-attached base material.

実施例8、10~12に係る着色層付基材を用いた耐湿熱評価結果を示すグラフである。12 is a graph showing the results of moisture and heat resistance evaluation using the colored layer-attached base materials of Examples 8 and 10 to 12.

本発明に係る暗色粉分散液は、暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする。そして、当該暗色粉分散液は、暗色粉分散体や着色基材を製造するのに用いられるものである。 The dark powder dispersion according to the present invention contains a dark pigment, composite tungsten oxide particles, and a solvent, and the mass ratio of the dark pigment to the composite tungsten oxide particles (dark pigment mass/composite tungsten oxide fine particle mass) It is characterized in that the value of is 0.01 or more and 5 or less. The dark powder dispersion is used to produce a dark powder dispersion or a colored base material.

以下、本発明について、(1)暗色顔料、(2)複合タングステン酸化物微粒子、(3)暗色粉分散液、(4)暗色粉分散体、(5)着色層付基材、の順に説明する。 The present invention will be explained below in the following order: (1) dark pigment, (2) composite tungsten oxide fine particles, (3) dark powder dispersion, (4) dark powder dispersion, and (5) colored layer-attached base material. .

(1)暗色顔料
暗色顔料は、遮光フィルムの着色層の暗色粉分散体に着色し、可視光透過率を下げる顔料である。
(1) Dark Pigment The dark pigment is a pigment that colors the dark powder dispersion of the colored layer of the light-shielding film and lowers the visible light transmittance.

しかし、暗色顔料は、色調として黄色みを帯びたり、緑味を帯びたりすることがある。そのため、これらの暗色顔料を用いただけでは、彩度の低い深い黒味を出すことが困難な場合がある。 However, dark pigments may have a yellowish or greenish tone. Therefore, it may be difficult to produce a deep black tone with low chroma simply by using these dark pigments.

なお、本発明において彩度とは、JIS Z 8701 1999およびJIS Z 8781-4 2013に基づくL*、a*、b*表色系における彩度c*のことである。そして、彩度c*は次式1で示される。

彩度c*=(a*+b*1/2・・・・式1
Note that in the present invention, chroma refers to chroma c* in the L*, a*, b* color system based on JIS Z 8701 1999 and JIS Z 8781-4 2013. The saturation c* is expressed by the following equation 1.

Saturation c*=(a* 2 +b* 2 ) 1/2 ...Equation 1

ここで、本発明者らは、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料、Co―Cr―Fe複合酸化物顔料、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックから選択される暗色顔料(黒色顔料)と、後述する複合タングステン酸化物微粒子とを混合使用する構成に想到した。 Here, the present inventors have discovered that Cu-Fe-Mn composite oxide pigment, Cu-Cr composite oxide pigment, Cu-Cr-Mn composite oxide pigment, Cu-Cr-Mn-Ni composite oxide pigment, Cu -Cr-Fe composite oxide pigment, Fe-Cr composite oxide pigment, Co-Cr-Fe composite oxide pigment, titanium black, titanium nitride, titanium oxynitride, dark azo pigment, perylene black pigment, aniline black pigment, carbon We came up with a configuration in which a dark pigment selected from black (black pigment) and composite tungsten oxide fine particles described below are mixed and used.

つまり、暗色顔料の黄色味や緑味を、複合タングステン酸化物微粒子の青味で補うことで、彩度の低い深い黒色を実現したものである。 In other words, by supplementing the yellowish and greenish tinges of the dark pigment with the bluish tinge of the composite tungsten oxide fine particles, a deep black color with low saturation was achieved.

これら暗色顔料のうちCu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料およびCo―Cr―Fe複合酸化物顔料は、スピネル構造を有する複合酸化物であることが知られている。そして、Cu、Fe、Mn等の化合物等を原料として、500℃以上の温度で焼成して合成されるものである。 Among these dark pigments, Cu-Fe-Mn composite oxide pigment, Cu-Cr composite oxide pigment, Cu-Cr-Mn composite oxide pigment, Cu-Cr-Mn-Ni composite oxide pigment, Cu-Cr-Fe It is known that complex oxide pigments, Fe-Cr complex oxide pigments, and Co-Cr-Fe complex oxide pigments are complex oxides having a spinel structure. It is synthesized by firing compounds such as Cu, Fe, Mn, etc. as raw materials at a temperature of 500° C. or higher.

顔料の色は、例えば、短波長領域の光を遮蔽する材料を用いると可視光の短波長領域(青色)も若干遮蔽され、暗色粉分散体は黄色味を帯びる。一方、長波長領域の光を遮蔽する材料を用いると可視光の長波長領域(赤色)も若干遮蔽され、暗色粉分散体は青みを帯びる。そして、短波長および長波長の両領域の光を遮蔽する材料を用いた場合、暗色粉分散体は緑味を帯びる。そのため、暗色顔料と複合タングステン酸化物微粒子を組み合わせることで、本発明に係る暗色粉分散体において、彩度の低い深い黒色が表現出来ることに想到したものである。
そして好ましいことには、複合タングステン酸化物微粒子が、可視光線よりも近赤外線を吸収して遮蔽するため、本発明に係る暗色粉分散体を遮光フィルムに用いると、太陽光線に含まれる近赤外線を吸収し遮蔽して、室内に入り込むことを防ぎ、室温上昇を抑制する効果を得ることができる。
Regarding the color of the pigment, for example, if a material that blocks light in the short wavelength region is used, the short wavelength region of visible light (blue) is also somewhat blocked, and the dark powder dispersion becomes yellowish. On the other hand, when a material that blocks light in the long wavelength region is used, the long wavelength region (red) of visible light is also somewhat blocked, and the dark powder dispersion becomes bluish. When a material that blocks light in both short wavelength and long wavelength regions is used, the dark powder dispersion becomes greenish. Therefore, by combining a dark pigment and composite tungsten oxide fine particles, we have come up with the idea that a deep black color with low saturation can be expressed in the dark powder dispersion according to the present invention.
Preferably, the composite tungsten oxide fine particles absorb and shield near-infrared rays more than visible light, so when the dark-colored powder dispersion according to the present invention is used in a light-shielding film, the near-infrared rays contained in sunlight can be absorbed and shielded. By absorbing and shielding, it can be prevented from entering the room, and the effect of suppressing the rise in room temperature can be obtained.

暗色顔料の平均分散粒子径は、200nm以下が好ましく、1nm以上100nm以下がさらに好ましい。これは、暗色顔料の平均分散粒子径が200nmを超えると、暗色粉分散体のヘイズが高くなることがあるからである。なお、暗色顔料の平均分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。 The average dispersed particle size of the dark pigment is preferably 200 nm or less, more preferably 1 nm or more and 100 nm or less. This is because if the average dispersed particle size of the dark pigment exceeds 200 nm, the haze of the dark powder dispersion may increase. Note that the average dispersed particle size of the dark pigment can be measured using an ELS-8000 manufactured by Otsuka Electronics Co., Ltd., etc., which is based on the dynamic light scattering method.

(2)複合タングステン酸化物微粒子
本発明に用いる複合タングステン酸化物微粒子について、(a)複合タングステン酸化物微粒子の性状、(b)複合タングステン酸化物微粒子の製造方法、の順に説明する。
(2) Composite tungsten oxide fine particles The composite tungsten oxide fine particles used in the present invention will be explained in the following order: (a) properties of the composite tungsten oxide fine particles, and (b) method for producing the composite tungsten oxide fine particles.

(a)複合タングステン酸化物微粒子の性状
複合タングステン酸化物微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される組成を有するとき近赤外線吸収する特性を発揮し、近赤外線吸収微粒子となることから好ましい構成である。
(a) Properties of composite tungsten oxide fine particles Composite tungsten oxide fine particles have a general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe , Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S , Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, Yb, W is tungsten, O is oxygen, When it has a composition expressed as 0.001≦x/y≦1, 2.0<z/y≦3.0), it exhibits near-infrared absorbing properties and becomes near-infrared absorbing fine particles, so it is a preferable configuration. be.

当該一般式MxWyOzで示される複合タングステン酸化物微粒子について、さらに説明する。
一般式MxWyOz中のM元素、x、y、zの値およびその結晶構造は、近赤外線吸収微粒子の自由電子密度と密接な関係があり、近赤外線吸収特性に大きな影響を及ぼす。
The composite tungsten oxide fine particles represented by the general formula MxWyOz will be further explained.
The M element in the general formula MxWyOz, the values of x, y, and z, and its crystal structure are closely related to the free electron density of the near-infrared absorbing fine particles, and have a large influence on the near-infrared absorption characteristics.

一般に、三酸化タングステン(WO)中には有効な自由電子が存在しないため、近赤外線吸収特性が低い。
ここで本発明者らは、当該タングステン酸化物へ、M元素(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素を添加して複合タングステン酸化物とすることで、当該複合タングステン酸化物中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線吸収材料として有効なものとなり、且つ、当該複合タングステン酸化物は化学的に安定な状態を保ち、耐候性に優れた近赤外線吸収材料として有効なものとなることを知見したものである。さらに、M元素は、Cs、Rb、K、Tl,Ba、Cu、Al、Mn、Inが好ましいこと、なかでも、M元素がCs、Rbであると、当該複合タングステン酸化物が六方晶構造を取り易くなり、可視光線を透過し、近赤外線を吸収し遮蔽する特性を発揮する。
Generally, tungsten trioxide (WO 3 ) has low near-infrared absorption characteristics because there are no effective free electrons.
Here, the present inventors added M element (however, M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, By adding one or more elements selected from Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, and Yb to form a composite tungsten oxide. , free electrons are generated in the composite tungsten oxide, and absorption characteristics derived from free electrons are expressed in the near-infrared region, making it effective as a near-infrared absorbing material with a wavelength of around 1000 nm, and the composite tungsten oxide It was discovered that it is effective as a near-infrared absorbing material that maintains a chemically stable state and has excellent weather resistance.Furthermore, the M element includes Cs, Rb, K, Tl, Ba, Cu, Al, Mn, and In are preferable; in particular, when the M element is Cs and Rb, the composite tungsten oxide tends to have a hexagonal structure, and has the property of transmitting visible light and absorbing and shielding near-infrared rays. demonstrate.

ここで、M元素の添加量を示すxの値についての本発明者らの知見を説明する。
x/yの値が0.001以上であれば、十分な量の自由電子が生成され目的とする近赤外線吸収特性を得ることが出来る。そして、M元素の添加量が多いほど、自由電子の供給量が増加し、近赤外線吸収特性も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1以下であれば、複合タングステン微粒子に不純物相が生成されるのを回避できるので好ましい。
Here, the findings of the present inventors regarding the value of x indicating the amount of addition of the M element will be explained.
If the value of x/y is 0.001 or more, a sufficient amount of free electrons will be generated and the desired near-infrared absorption characteristics can be obtained. As the amount of M element added increases, the amount of free electrons supplied increases and the near-infrared absorption characteristics also improve, but this effect is saturated when the value of x/y is about 1. Further, it is preferable that the value of x/y is 1 or less, since it is possible to avoid the formation of impurity phases in the composite tungsten fine particles.

次に、酸素量の制御を示すzの値についての本発明者らの知見を説明する。
一般式MxWyOzで示される複合タングステン微粒子において、z/yの値は2.0<z/y≦3.0であることが好ましく、より好ましくは2.2≦z/y≦3.0であり、さらに好ましくは2.6≦z/y≦3.0、最も好ましくは2.7≦z/y≦3.0である。このz/yの値が2.0を超えていれば、当該複合タングステン酸化物中に目的以外の化合物であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので、有効な近赤外線吸収材料として適用できるためである。一方、このz/yの値が3.0以下であれば当該タングステン酸化物中に必要とされる量の自由電子が生成され、効率よい近赤外線吸収材料となる。
Next, the findings of the present inventors regarding the value of z, which indicates the control of the amount of oxygen, will be explained.
In the composite tungsten fine particles represented by the general formula MxWyOz, the value of z/y is preferably 2.0<z/y≦3.0, more preferably 2.2≦z/y≦3.0. , more preferably 2.6≦z/y≦3.0, most preferably 2.7≦z/y≦3.0. If the value of z/y exceeds 2.0, it is possible to avoid the appearance of the crystal phase of WO2 , which is a compound other than the target compound, in the composite tungsten oxide, and it is also possible to This is because it can be used as an effective near-infrared absorbing material since it can obtain chemical stability. On the other hand, if the value of z/y is 3.0 or less, the required amount of free electrons will be generated in the tungsten oxide, making it an efficient near-infrared absorbing material.

当該複合タングステン酸化物微粒子は、六方晶以外に、正方晶、立方晶のタングステンブロンズの構造をとるが、いずれの構造をとるときも近赤外線吸収材料として有効である。しかしながら、当該複合タングステン酸化物微粒子がとる結晶構造によって、近赤外線領域の吸収位置が変化する傾向がある。即ち、近赤外線領域の吸収位置は、立方晶よりも正方晶のときが長波長側に移動し、六方晶のときは正方晶のときよりも、さらに長波長側へ移動する傾向がある。また、当該吸収位置の変動に付随して、可視光線領域の吸収は六方晶が最も少なく、次に正方晶であり、立方晶はこの中では最も大きい。 The composite tungsten oxide fine particles have a hexagonal, tetragonal, or cubic tungsten bronze structure, but any structure is effective as a near-infrared absorbing material. However, the absorption position in the near-infrared region tends to change depending on the crystal structure of the composite tungsten oxide fine particles. That is, the absorption position in the near-infrared region tends to move toward longer wavelengths in tetragonal crystals than in cubic crystals, and further toward longer wavelengths in hexagonal crystals than in tetragonal crystals. Further, along with the variation of the absorption position, the hexagonal crystal has the least absorption in the visible light region, followed by the tetragonal crystal, and the cubic crystal has the highest absorption among these.

以上の知見から、可視光領域の光をより透過させ、近赤外線領域の光をより遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。 Based on the above findings, it is preferable to use hexagonal tungsten bronze for applications that transmit more light in the visible region and block more light in the near-infrared region. When the composite tungsten oxide fine particles have a hexagonal crystal structure, the fine particles have improved transmission in the visible light region and improved absorption in the near-infrared region.

六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.29≦x/y≦0.39である。理論的にはz/y=3の時、x/yの値が0.33となることで、添加M元素が六角形の空隙の全てに配置されると考えられる。
当該複合タングステン酸化物微粒子の平均分散粒子径は、800nm以下1nm以上であることが好ましく、さらに好ましくは、200nm以下1nm以上である。複合タングステン酸化物微粒子の平均分散粒子径が、200nm以下であることが好ましいことは、暗色粉分散液中の複合タングステン酸化物微粒子においても同様である。これは、平均分散粒子径が200nm以下であれば、ヘイズを低く抑えることができるからである。平均分散粒子径は1nm以上であることが好ましく、より好ましくは10nm以上である。なお、平均分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the amount of the added M element is preferably 0.2 or more and 0.5 or less in x/y value, and more preferably 0. .29≦x/y≦0.39. Theoretically, it is considered that when z/y=3, the value of x/y is 0.33, so that the added M element is arranged in all the hexagonal voids.
The average dispersed particle size of the composite tungsten oxide fine particles is preferably 800 nm or less and 1 nm or more, more preferably 200 nm or less and 1 nm or more. The average dispersed particle diameter of the composite tungsten oxide fine particles is preferably 200 nm or less, and this also applies to the composite tungsten oxide fine particles in the dark powder dispersion. This is because haze can be kept low if the average dispersed particle diameter is 200 nm or less. The average dispersed particle diameter is preferably 1 nm or more, more preferably 10 nm or more. The average dispersed particle diameter can be measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd., which is based on the dynamic light scattering method.

そして、これらの複合タングステン酸化物微粒子を、単独で樹脂などの固体媒体に分散した複合タングステン酸化物微粒子分散体は、L、a*、b*表色系でa*、b*が負の値を示し、青みを帯びる。可視光透過率が70%を超える高い領域では青みの着色はそれほど強くないが、可視光透過率が5~70%と低い領域では強く着色する。さらに可視光透過率が1%未満と極端に低い場合には膜が黒くなり青みが目立たなくなるが、彩度が高く、深みのある黒色は実現できない。 A composite tungsten oxide fine particle dispersion in which these composite tungsten oxide fine particles are dispersed alone in a solid medium such as a resin has negative values for a* and b* in the L, a*, b* color system. and has a bluish tinge. In regions where the visible light transmittance is high, exceeding 70%, the bluish coloration is not so strong, but in regions where the visible light transmittance is low, such as 5 to 70%, the coloring is strong. Furthermore, if the visible light transmittance is extremely low, such as less than 1%, the film becomes black and the blue tint becomes less noticeable, but a deep black with high saturation cannot be achieved.

(b)複合タングステン酸化物微粒子の製造方法
一般式MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
まず、タングステン化合物出発原料について説明する。
タングステン化合物出発原料には、三酸化タングステン粉末、二酸化タングステン粉末、または酸化タングステンの水和物、または、六塩化タングステン粉末、またはタングステン酸アンモニウム粉末、または、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、またはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であることが好ましい。
(b) Method for producing composite tungsten oxide fine particles Composite tungsten oxide fine particles represented by the general formula MxWyOz can be obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere.
First, the tungsten compound starting material will be explained.
Tungsten compound starting materials include tungsten trioxide powder, tungsten dioxide powder, hydrated tungsten oxide, tungsten hexachloride powder, ammonium tungstate powder, or after dissolving tungsten hexachloride in alcohol. Tungsten oxide hydrate powder obtained by drying, or tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate it, and drying it. Alternatively, it is preferably one or more selected from tungsten compound powder obtained by drying an ammonium tungstate aqueous solution and metal tungsten powder.

複合タングステン酸化物微粒子を製造する場合には、出発原料が溶液である各元素は容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や、六塩化タングステン溶液を用いることがさらに好ましい。これら原料を用い、不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して複合タングステン酸化物微粒子を得ることができる。さらに、元素Mを元素単体または化合物の形態で含有するタングステン化合物を出発原料とする。 When producing composite tungsten oxide fine particles, it is more preferable to use an ammonium tungstate aqueous solution or a tungsten hexachloride solution from the viewpoint that each element whose starting material is a solution can be easily and uniformly mixed. Composite tungsten oxide fine particles can be obtained by heat-treating these raw materials in an inert gas atmosphere or a reducing gas atmosphere. Furthermore, a tungsten compound containing element M in the form of a single element or a compound is used as a starting material.

ここで、各成分が分子レベルで均一混合した出発原料を製造するためには各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物出発原料が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。 Here, in order to produce a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each material in a solution, and the tungsten compound starting material containing element M is dissolved in a solvent such as water or an organic solvent. Preferably, it is possible. Examples include, but are not limited to, tungstates, chloride salts, nitrates, sulfates, oxalates, oxides, carbonates, hydroxides, etc. containing element M, and those in the form of solutions If so, it is preferable.

次に、不活性ガス雰囲気または還元性ガス雰囲気中における熱処理について説明する。
まず、不活性ガス雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な近赤外線吸収力を有し熱線遮蔽微粒子として効率が良い。不活性ガスとしてはAr、N等の不活性ガスを用いることがよい。
また、還元性雰囲気中における熱処理条件としては、出発原料を、まず還元性ガス雰囲気中にて100℃以上650℃以下で熱処理し、次いで不活性ガス雰囲気中にて650℃以上1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないが、Hが好ましい。そして、還元性ガスとしてHを用いる場合は、還元性雰囲気の組成として、例えば、Ar、N等の不活性ガスにHを体積比で0.1%以上を混合することが好ましく、さらに好ましくは0.2%以上混合したものである。Hが体積比で0.1%以上であれば効率よく還元を進めることができる。
水素で還元された出発原料粉末は、マグネリ相を含み、良好な熱線遮蔽特性を示す。従って、この状態でも熱線遮蔽微粒子として使用可能である。
Next, heat treatment in an inert gas atmosphere or a reducing gas atmosphere will be explained.
First, the heat treatment conditions in an inert gas atmosphere are preferably 650° C. or higher. The starting material heat-treated at 650° C. or higher has sufficient near-infrared absorbing power and is efficient as heat ray-shielding fine particles. As the inert gas, it is preferable to use an inert gas such as Ar or N2 .
Furthermore, as for the heat treatment conditions in a reducing atmosphere, the starting materials are first heat treated in a reducing gas atmosphere at a temperature of 100°C or more and 650°C or less, and then at a temperature of 650°C or more and 1200°C or less in an inert gas atmosphere. It is best to heat treat it with The reducing gas at this time is not particularly limited, but H 2 is preferable. When H 2 is used as the reducing gas, the composition of the reducing atmosphere is preferably such that 0.1% or more by volume of H 2 is mixed with an inert gas such as Ar or N 2 . More preferably, it is mixed in an amount of 0.2% or more. If the H 2 content is 0.1% or more by volume, reduction can proceed efficiently.
The hydrogen-reduced starting material powder contains a Magnelli phase and exhibits good heat shielding properties. Therefore, even in this state, it can be used as heat ray shielding particles.

本発明に係る複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alの1種類以上を含有する化合物、好ましくは、酸化物で被覆された表面処理されていることは、耐候性向上の観点から好ましい。前記表面処理を行うには、Si、Ti、Zr、Alの1種類以上を含有する化合物有機化合物を用いて公知の表面処理を行えばよい。例えば、複合タングステン酸化物微粒子と有機ケイ素化合物を混合し、加水分解等を行えばよい。 The fact that the surface of the composite tungsten oxide fine particles according to the present invention is coated with a compound containing one or more of Si, Ti, Zr, and Al, preferably an oxide, improves weather resistance. Preferable from this point of view. In order to perform the surface treatment, a known surface treatment may be performed using an organic compound containing one or more of Si, Ti, Zr, and Al. For example, composite tungsten oxide fine particles and an organosilicon compound may be mixed and hydrolyzed.

(3)暗色粉分散液
本発明に係る暗色粉分散液は、上述した暗色顔料と複合タングステン酸化物とを適宜な溶媒中に混合・分散したものである。
(3) Dark powder dispersion The dark powder dispersion according to the present invention is obtained by mixing and dispersing the above-mentioned dark pigment and composite tungsten oxide in an appropriate solvent.

以下、本発明に係る暗色粉分散液について、(a)暗色顔料と複合タングステン酸化物微粒子の配合割合、(b)溶媒、(c)分散剤、(d)暗色粉分散液の製造方法、(e)その他の添加剤、の順に説明する。 Below, regarding the dark powder dispersion according to the present invention, (a) blending ratio of the dark pigment and composite tungsten oxide fine particles, (b) solvent, (c) dispersant, (d) method for producing the dark powder dispersion, ( e) Other additives will be explained in this order.

(a)暗色顔料と複合タングステン酸化物微粒子の配合割合
本実施形態に係る暗色粉分散液に含まれる、暗色顔料と複合タングステン酸化物微粒子との配合割合(暗色顔料質量/複合タングステン酸化物微粒子質量)の値は0.01以上5以下、好ましくは0.05以上1以下、より好ましくは0.1以上0.2以下である。つまり、暗色顔料と複合タングステン酸化物微粒子とを所定比率で組み合わせることで、暗色顔料の黄色味や緑味を、複合タングステン酸化物微粒子の青味で補うことで、彩度の低い深い黒色を実現したものである。
(a) Blending ratio of dark pigment and composite tungsten oxide fine particles Blending ratio of dark pigment and composite tungsten oxide fine particles contained in the dark powder dispersion according to this embodiment (dark pigment mass/composite tungsten oxide fine particles mass ) is 0.01 or more and 5 or less, preferably 0.05 or more and 1 or less, more preferably 0.1 or more and 0.2 or less. In other words, by combining a dark pigment and composite tungsten oxide fine particles at a predetermined ratio, the yellowish and greenish tinges of the dark pigment are compensated for by the blue tinge of the composite tungsten oxide fine particles, resulting in a deep black with low saturation. This is what I did.

顔料の色は、紫外線を遮蔽する材料を用いると可視光の短波長領域(青色)も若干遮蔽され、暗色粉分散体は黄色味を帯びる。一方、近赤外線を遮蔽する材料を用いると可視光の長波長領域(赤色)も若干遮蔽され青みを帯びる。そして、紫外線および近赤外線両方を遮蔽する材料を用いた場合、緑味を帯びる。そのため、暗色顔料と複合タングステン酸化物微粒子を組み合わせることで、本実施形態の暗色粉分散体において、彩度の低い深い黒色が表現出来ることに想到したものである。
そして、複合タングステン酸化物微粒子は、可視光線よりも近赤外線を吸収して遮蔽するため、本実施形態に係る暗色粉分散体を遮光フィルムに用いたり、着色層付基材に用いると、太陽光線に含まれる近赤外線を吸収し遮蔽して、室内や車内に入り込むことを防ぎ、温度の上昇を抑制することができる。
When a material that blocks ultraviolet rays is used, the short wavelength range of visible light (blue) is also slightly blocked, and the dark-colored powder dispersion becomes yellowish. On the other hand, when a material that blocks near-infrared rays is used, the long wavelength region of visible light (red) is also slightly blocked, giving it a bluish tinge. When a material that blocks both ultraviolet and near-infrared rays is used, it becomes greenish. Therefore, by combining a dark pigment and composite tungsten oxide fine particles, we have come up with the idea that a deep black color with low saturation can be expressed in the dark powder dispersion of this embodiment.
Composite tungsten oxide fine particles absorb and shield near-infrared rays more than visible light, so when the dark-colored powder dispersion according to this embodiment is used in a light-shielding film or a substrate with a colored layer, sunlight rays can be absorbed and shielded. It absorbs and shields near-infrared rays contained in the air, preventing it from entering the interior of a room or car, and suppressing temperature rises.

(b)溶媒
本発明に係る暗色粉分散液に用いる溶媒は、特に限定されるものではなく、塗布・練り込み条件、塗布・練り込み環境、さらに、無機バインダーや樹脂バインダーを含有させるときは、当該バインダーに合わせて適宜選択すれば良い。例えば、水、エタノ-ル、プロパノ-ル、ブタノ-ル、イソプロピルアルコ-ル、イソブチルアルコ-ル、ジアセトンアルコ-ルなどのアルコ-ル類、メチルエ-テル、エチルエ-テル、プロピルエ-テルなどのエ-テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能である。
さらに、当該溶媒には、樹脂のモノマーやオリゴマーを用いてもよい。さらには、スチレン樹脂などをトルエンに溶解した液状樹脂、プラスチック用の液状の可塑剤を用いてもよい。
また、上述した溶媒の混合物を用いてもよい。
(b) Solvent The solvent used for the dark-colored powder dispersion according to the present invention is not particularly limited, and the coating/kneading conditions, coating/kneading environment, and when containing an inorganic binder or resin binder, What is necessary is just to select suitably according to the said binder. For example, water, alcohols such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether, propyl ether, etc. Various organic solvents such as ethers, esters, ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, and isobutyl ketone, and aromatic hydrocarbons such as toluene can be used.
Furthermore, a resin monomer or oligomer may be used as the solvent. Furthermore, a liquid resin prepared by dissolving styrene resin or the like in toluene, or a liquid plasticizer for plastics may be used.
Also, mixtures of the above-mentioned solvents may be used.

本実施形態の暗色粉分散液には、暗色顔料と複合タングステン酸化物微粒子の合計100質量部に対して溶媒が50質量部以上2000質量部以下含まれることが望しく、200質量部以上がさらに望ましい。 The dark powder dispersion of this embodiment desirably contains 50 parts by mass or more and 2000 parts by mass or less of a solvent based on a total of 100 parts by mass of the dark pigment and composite tungsten oxide fine particles, and further contains 200 parts by mass or more. desirable.

(c)分散剤
暗色粉分散液中における微粒子の分散安定性を一層向上させるために、各種の分散剤、界面活性剤、カップリング剤などの添加も勿論可能である。また、溶媒に水や水溶性の有機物を用いる場合は、必要に応じて酸やアルカリを添加して、当該分散液のpH調整をしてもよい。
(c) Dispersant In order to further improve the dispersion stability of the fine particles in the dark powder dispersion, it is of course possible to add various dispersants, surfactants, coupling agents, etc. Further, when water or a water-soluble organic substance is used as the solvent, an acid or alkali may be added as necessary to adjust the pH of the dispersion.

分散剤は、アミノ基を備えた高分子分散剤が望ましい。上述した暗色顔料粒子や複合タングステン酸化物微粒子の表面に吸着し、当該複合タングステン酸化物微粒子の凝集を防ぎ、暗色粉分散体中でこれらの微粒子を均一に分散させる効果を発揮するものである。アミノ基を備えた高分子分散剤のアミン価は5~100mgKOH/gであることが好ましく、分子量Mwは2000~200000であることが好ましい。 The dispersant is preferably a polymer dispersant having an amino group. It adsorbs on the surface of the above-mentioned dark pigment particles and composite tungsten oxide fine particles, prevents the agglomeration of the composite tungsten oxide fine particles, and exhibits the effect of uniformly dispersing these fine particles in the dark powder dispersion. The amine value of the polymeric dispersant having an amino group is preferably 5 to 100 mgKOH/g, and the molecular weight Mw is preferably 2,000 to 200,000.

本実施形態に係るアミノ基高分子分散剤は、当該分散剤の分子にアミノ基などの塩基性基を備えた化合物である。このような分散剤の分子にアミノ基などの塩基性基を有する化合物としては、主鎖にポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、アマイド樹脂が例示される。より好ましいのは、主鎖にアクリル樹脂を備える化合物である。 The amino group polymeric dispersant according to this embodiment is a compound having a basic group such as an amino group in the molecule of the dispersant. Examples of compounds having a basic group such as an amino group in the molecule of the dispersant include polyolefin resins, polyester resins, acrylic resins, polyurethane resins, and amide resins in the main chain. More preferred is a compound having an acrylic resin in its main chain.

また、このようなアミノ基を備えた高分子分散剤の好ましい市販品例としては、Disperbyk-112、Disperbyk-116、Disperbyk-130、Disperbyk-161、Disperbyk-162、Disperbyk-164、Disperbyk-166、Disperbyk-167、Disperbyk-168、Disperbyk-2001、Disperbyk-2020、Disperbyk-2050、Disperbyk-2070、Disperbyk-2150等のビックケミー・ジャパン社製のアミノ基高分子分散剤、アジスパーPB821、アジスパーPB822、アジスパーPB711等の味の素ファインテクノ社製のアミノ基高分子分散剤、ディスパロン1860、ディスパロンDA703-50、ディスパロンDA7400等の楠本化成社製のアミノ基高分子分散剤、EFKA-4400、EFKA-4401、EFKA-5044、EFKA-5207、EFKA-6225、EFKA-4330、EFKA-4047、EFKA-4060等のBASFジャパン社製のアミノ基高分子分散剤、等が挙げられる。 Preferred commercially available examples of such polymeric dispersants having amino groups include Disperbyk-112, Disperbyk-116, Disperbyk-130, Disperbyk-161, Disperbyk-162, Disperbyk-164, Disperbyk-166, Amino-based polymer dispersants manufactured by BYK Chemie Japan, such as Disperbyk-167, Disperbyk-168, Disperbyk-2001, Disperbyk-2020, Disperbyk-2050, Disperbyk-2070, and Disperbyk-2150, Adisper PB821, Ajisper PB822, Ajisper PB711 Amino group polymer dispersants manufactured by Ajinomoto Fine-Techno Co., Ltd. such as Disparon 1860, Disparon DA703-50, Disparon DA7400, amino group polymer dispersants manufactured by Kusumoto Kasei Co., Ltd. such as EFKA-4400, EFKA-4401, EFKA-5044 , EFKA-5207, EFKA-6225, EFKA-4330, EFKA-4047, EFKA-4060 and other amino group polymer dispersants manufactured by BASF Japan.

さらに、アミノ基高分子分散剤へ水酸基および/またはカルボキシル基を有する分散剤を併用してもよいし、アミノ基を備えた高分子分散剤が水酸基および/またはカルボキシル基を備えてもよい。このような高分子分散剤は、いずれも上述した複合タングステン酸化物微粒子の表面に吸着し、当該複合タングステン酸化物微粒子の凝集を防ぎ、暗色粉分散体中でこれらの微粒子を均一に分散させる効果を発揮するものである。 Furthermore, a dispersant having a hydroxyl group and/or a carboxyl group may be used in combination with the amino group polymer dispersant, or a polymer dispersant having an amino group may have a hydroxyl group and/or a carboxyl group. All of these polymeric dispersants have the effect of adsorbing on the surface of the composite tungsten oxide fine particles described above, preventing the agglomeration of the composite tungsten oxide fine particles, and uniformly dispersing these fine particles in the dark powder dispersion. It is something that demonstrates the.

水酸基を備えた高分子分散剤のOH価は、10~200mgKOH/gであることが好ましく、分子量Mwは1000~150000であることが好ましい。
本実施形態に係る水酸基を備えた高分子分散剤としては、水酸基を備えたアクリル樹脂(アクリルポリオールということもある)、水酸基を有するアクリル・スチレン共重合体などが挙げられる。
当該水酸基を備えた高分子分散剤には、アクリルポリオール類や、東亜合成社製のUHシリーズ等の市販品が挙げられる。
The OH number of the polymeric dispersant having a hydroxyl group is preferably 10 to 200 mgKOH/g, and the molecular weight Mw is preferably 1000 to 150,000.
Examples of the polymer dispersant having a hydroxyl group according to the present embodiment include an acrylic resin having a hydroxyl group (sometimes referred to as an acrylic polyol), an acrylic-styrene copolymer having a hydroxyl group, and the like.
Examples of the polymer dispersant having a hydroxyl group include acrylic polyols and commercially available products such as the UH series manufactured by Toagosei.

カルボキシル基を備えた高分子分散剤の酸価は0.1~100mgKOH/gであることが好ましく、分子量Mwは2000~200000であることが好ましい。
本実施形態に係るカルボキシル基を備えた高分子分散剤としては、カルボキシル基をを備えたアクリル樹脂やアクリル・スチレン共重合体等が挙げられる。
カルボキシル基を備えた高分子分散剤には、酸価が1以上の市販のアクリル樹脂や、東亜合成社製のUCシリーズやUFシリーズ等が挙げられる。
The acid value of the polymer dispersant having a carboxyl group is preferably 0.1 to 100 mgKOH/g, and the molecular weight Mw is preferably 2,000 to 200,000.
Examples of the polymer dispersant having carboxyl groups according to this embodiment include acrylic resins and acrylic-styrene copolymers having carboxyl groups.
Examples of the polymer dispersant having a carboxyl group include commercially available acrylic resins having an acid value of 1 or more, UC series and UF series manufactured by Toagosei Co., Ltd., and the like.

本発明に係る暗色粉分散液において、これらの高分子分散剤の合計の含有量は、暗色顔料と複合タングステン酸化物微粒子との合計100質量部に対し、分散剤の固形分として20質量部以上200質量部以下であることが好ましい。これは高分子分散剤の含有量が当該範囲にあることで、暗色顔料と複合タングステン酸化物微粒子とが暗色粉分散体中で均一に分散し、低いヘイズを実現できるからである。具体的には、暗色顔料と複合タングステン酸化物微粒子の合計100質量部に対し、アミノ基高分子分散剤を20質量部以上含有させることで暗色粉分散体のヘイズ値を低減させることが出来、200質量部以下含有させることで、暗色粉分散体の機械的強度を確保できる。 In the dark powder dispersion according to the present invention, the total content of these polymer dispersants is 20 parts by mass or more as solid content of the dispersant, based on 100 parts by mass of the dark pigment and composite tungsten oxide fine particles. It is preferably 200 parts by mass or less. This is because when the content of the polymer dispersant is within this range, the dark pigment and composite tungsten oxide fine particles are uniformly dispersed in the dark powder dispersion, and low haze can be achieved. Specifically, the haze value of the dark powder dispersion can be reduced by containing 20 parts by mass or more of the amino group polymer dispersant for a total of 100 parts by mass of the dark pigment and composite tungsten oxide fine particles. By containing 200 parts by mass or less, the mechanical strength of the dark powder dispersion can be ensured.

(d)暗色粉分散液の製造方法
暗色粉分散液を製造する際の分散方法は、暗色顔料と複合タングステン酸化物微粒子を分散液中へ均一に分散する方法であればよく、例えば、ビ-ズミル、ボ-ルミル、サンドミル、ペイントシェーカー、超音波ホモジナイザ-など用いることができる。
(d) Method for producing dark powder dispersion The dispersion method for producing dark powder dispersion may be any method that uniformly disperses the dark pigment and composite tungsten oxide fine particles in the dispersion. A mill, ball mill, sand mill, paint shaker, ultrasonic homogenizer, etc. can be used.

また、暗色粉分散液を得るために、暗色顔料と溶媒と適宜添加される高分子分散剤を含む顔料分散液と、複合タングステン酸化物微粒子と溶媒と適宜添加される高分子分散剤を含む複合タングステン酸化物分散液を、それぞれ上述の分散方法で調製し、暗色顔料と複合タングステン酸化物微粒子の配合割合が所定の値になるように混合してもよい。 In addition, in order to obtain a dark powder dispersion, a pigment dispersion containing a dark pigment, a solvent, and an appropriately added polymer dispersant, and a composite containing a composite tungsten oxide fine particle, a solvent, and an appropriately added polymer dispersant are prepared. A tungsten oxide dispersion liquid may be prepared using the above-described dispersion method, and the dark pigment and the composite tungsten oxide fine particles may be mixed in a predetermined proportion.

(e)その他の添加剤
後述する「(4)暗色粉分散体」や「(5)着色層付基材」において耐湿熱性が求められる場合、当該耐湿熱性の向上の為、それらの製造に用いる暗色粉分散液ヘ、さらに添加剤を添加することも好ましい構成である。
(e) Other additives If heat-and-moisture resistance is required for "(4) Dark-colored powder dispersion" and "(5) Substrate with colored layer" described later, use in their production to improve the heat-and-moisture resistance. It is also a preferred configuration to further add additives to the dark powder dispersion.

本発明者らは、本発明に係る暗色粉分散体や着色層付基材が、耐湿熱性を求められる状況下で使用される場合もあることに鑑み、暗色粉分散体や着色層付基材の近赤外線遮蔽特性が、水分や熱により経時的に低下する原因について研究を行った。そして、空気中から侵入してきた水分や、暗色粉由来の金属イオンあるいは外界からの紫外線等が、当該暗色粉分散体や着色層付基材を構成する固体媒体や透明フィルム基材へ触媒的に作用することで、分解劣化を引き起こす。そして、当該分解劣化の際に発生した分解物(ラジカル)が、複合タングステン酸化物微粒子中の元素Mを脱離させてしまうため、近赤外線遮蔽特性が経時的に低下すると推察するに至った。 In view of the fact that the dark powder dispersion and the base material with a colored layer according to the present invention may be used in situations where heat and humidity resistance is required, We conducted research on the cause of the near-infrared shielding properties of materials decreasing over time due to moisture and heat. Moisture that has entered from the air, metal ions derived from dark-colored powder, or ultraviolet rays from the outside world catalytically affect the solid medium and transparent film base material that make up the dark-colored powder dispersion and colored layer-coated base material. This action causes decomposition and deterioration. Then, it was concluded that the decomposition products (radicals) generated during the decomposition and deterioration detach the element M from the composite tungsten oxide fine particles, so that the near-infrared shielding properties deteriorate over time.

本発明者らは、上述の推察に基づき、暗色粉分散液中へ、添加材として金属不活剤や金属塩を添加することにより、暗色粉分散体中や着色層付基材中へ金属不活剤や金属塩を存在させる構成に想到した。当該構成により、金属不活剤や金属塩が赤外線遮蔽材料微粒子の近傍または/および表面に存在することとなる。すると、当該金属不活剤や金属塩の作用により、空気中等から侵入する水分が十分に捕捉される。また、この金属不活剤や金属塩の作用により、暗色粉由来の金属イオンや、紫外線等によって発生したラジカルも補足され、有害ラジカルが連鎖的に発生することが抑制される。この結果、赤外線遮蔽特性の経時的な低下が抑制されることに想到した。
尤も、これら金属不活剤や金属塩の作用については未解明な点も多く、前記以外の作用が働いている可能性も考えられる為、前記作用に限定されるわけではない。
Based on the above-mentioned speculation, the present inventors have determined that by adding metal deactivators and metal salts as additives to the dark powder dispersion, metals can be removed from the dark powder dispersion and the base material with the colored layer. We came up with a structure in which an activator and metal salt are present. With this configuration, the metal deactivator and metal salt are present near and/or on the surface of the infrared shielding material fine particles. Then, due to the action of the metal deactivator or metal salt, moisture entering from the air or the like is sufficiently captured. Further, due to the action of the metal deactivator and metal salt, metal ions derived from dark powder and radicals generated by ultraviolet rays are also captured, thereby suppressing the chain generation of harmful radicals. As a result, the inventors have come up with the idea that the deterioration of the infrared shielding properties over time can be suppressed.
However, there are many unknown points regarding the effects of these metal deactivators and metal salts, and it is possible that effects other than those described above may be at work, so they are not limited to the effects described above.

金属不活化剤の具体例としては、サリチル酸誘導体であるN-(2H-1,2,4-トリアゾール-5-イル)サリチルアミド、N,N─ビス(6,5─ジ─t─ブチルサリチロイル)ヒドラジン、N,N─ビス(6─t─ブチルメチルサリチロイル)ヒドラジン等、ヒドラジン誘導体であるドデカン二酸ビス[N2-(2-ヒドロキシベンゾイル)ヒドラジド]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-N´-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパノイル]プロパンヒドラジド等、
シュウ酸誘導体であるN,N´-ビス[2-[2-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エチルカルボニルオキシ]エチル]オキサミド、N´-ベンジリデンヒドラジド、オキサリル-ビス(ベンジリデンヒドラジド)等を好ましく挙げることが出来る。
また、金属塩の具体例としては、乳酸塩である乳酸マグネシウム、乳酸アルミニウム、乳酸カルシウム等や、炭酸塩である炭酸カルシウム、炭酸マグネシウム(炭酸水酸化マグネシウム)、炭酸ストロンチウム等、を好ましく挙げることが出来る。
Specific examples of metal deactivators include N-(2H-1,2,4-triazol-5-yl) salicylamide, a salicylic acid derivative, and N,N-bis(6,5-di-t-butyl salicylamide). Dodecanedioic acid bis[N2-(2-hydroxybenzoyl)hydrazide], 3-(3,5 -di-tert-butyl-4-hydroxyphenyl)-N'-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl]propane hydrazide, etc.
Oxalic acid derivatives N,N'-bis[2-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethylcarbonyloxy]ethyl]oxamide, N'-benzylidene hydrazide, oxalyl-bis (Benzylidene hydrazide) and the like can be preferably mentioned.
Preferred examples of metal salts include lactate such as magnesium lactate, aluminum lactate, and calcium lactate, and carbonates such as calcium carbonate, magnesium carbonate (magnesium carbonate hydroxide), and strontium carbonate. I can do it.

また、金属不活化剤や金属塩の添加量(但し、本発明においては、当該金属不活化剤や金属塩が、結晶水や水和水を含む場合、当該結晶水や水和水の質量を除いた、金属不活化剤や金属塩自体の質量を添加量とする。)は、暗色顔料に対し質量比で2倍以上10倍以下とすることが好ましい。これは、暗色顔料に対し質量比で2倍以上の添加量することで、金属不活化剤や金属塩の効果を得ることが出来ることによる。一方、暗色顔料に対し質量比で10倍以以下の添加量とすることで、金属不活化剤や金属塩による光の散乱の為にフィルムの透明性が維持出来なくなることを回避出来ることによる。 In addition, the amount of the metal inactivator or metal salt added (however, in the present invention, if the metal inactivator or metal salt contains crystal water or hydration water, the mass of the crystal water or hydration water is The mass of the removed metal deactivator or metal salt itself is defined as the added amount.) is preferably 2 times or more and 10 times or less of the dark pigment. This is because the effects of metal deactivators and metal salts can be obtained by adding more than twice the mass ratio of the dark pigment. On the other hand, by making the amount added 10 times or less by mass relative to the dark pigment, it is possible to avoid the inability to maintain the transparency of the film due to light scattering caused by the metal deactivator or metal salt.

暗色粉分散液ヘ各種の金属不活化剤や金属塩を添加するのは、暗色粉分散液を調製した後に添加することが好ましい。そして、金属不活化剤や金属塩が粉末の場合は、暗色粉分散体中や着色層付基材における光の散乱の発生を抑制するために、粒径を小さくすることが好ましい。具体的には、5nm~100nmの粒径が望ましい。100nm以下であれば光の散乱を抑制でき、フィルムの透明度を担保することが出来る。5nm以上であれば、金属不活化剤や金属塩が過粉砕となる事態を回避出来、生産性の観点からも好ましい。 It is preferable to add various metal inactivators and metal salts to the dark powder dispersion after preparing the dark powder dispersion. When the metal deactivator or metal salt is a powder, it is preferable to reduce the particle size in order to suppress the occurrence of light scattering in the dark powder dispersion or in the colored layer-coated base material. Specifically, a particle size of 5 nm to 100 nm is desirable. If it is 100 nm or less, light scattering can be suppressed and the transparency of the film can be ensured. If it is 5 nm or more, it is possible to avoid a situation where the metal deactivator or metal salt is over-pulverized, which is preferable from the viewpoint of productivity.

上述の観点から、金属不活化剤や金属塩が粉末状である場合、粉末状の金属不活化剤や金属塩と、適宜な溶媒とを混合して粉砕処理し、粉砕液を調製することが好ましい。
溶媒は、特に限定されるものではなく、暗色粉分散系や、暗色粉分散体、着色層付基材に合わせて適宜選択すれば良い。例えば、水、エタノ-ル、プロパノ-ル、ブタノ-ル、イソプロピルアルコ-ル、イソブチルアルコ-ル、ジアセトンアルコ-ルなどのアルコ-ル類、メチルエ-テル、エチルエ-テル、プロピルエ-テルなどのエ-テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能である。さらに、当該溶媒として、樹脂のモノマーやオリゴマーを用いてもよい。さらには、スチレン樹脂などをトルエンに溶解した液状樹脂、プラスチック用の液状の可塑剤を用いてもよい。
また、上述した溶媒の混合物を用いてもよい。
From the above point of view, when the metal deactivating agent or metal salt is in powder form, it is possible to mix the powdered metal deactivating agent or metal salt with an appropriate solvent and pulverize it to prepare a pulverizing liquid. preferable.
The solvent is not particularly limited, and may be appropriately selected depending on the dark powder dispersion system, the dark powder dispersion, and the colored layer-attached base material. For example, water, alcohols such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether, propyl ether, etc. Various organic solvents such as ethers, esters, ketones such as acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone, and aromatic hydrocarbons such as toluene can be used. Furthermore, a resin monomer or oligomer may be used as the solvent. Furthermore, a liquid resin prepared by dissolving styrene resin or the like in toluene, or a liquid plasticizer for plastics may be used.
Also, mixtures of the above-mentioned solvents may be used.

上述した粉砕処理の方法としては、一般的な粉砕方法で良く、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどを用いることができる。
調製された粉砕液を暗色粉分散液に添加する際は、例えば、超音波処理を5分間~10分間行うことで、粉砕液を暗色粉分散液ヘ均一に分散させることが好ましい。
As the method for the above-mentioned pulverization treatment, a general pulverization method may be used, and a bead mill, ball mill, sand mill, paint shaker, ultrasonic homogenizer, etc. can be used.
When adding the prepared pulverizing liquid to the dark powder dispersion, it is preferable to uniformly disperse the pulverizing liquid into the dark powder dispersion by, for example, performing ultrasonic treatment for 5 to 10 minutes.

(4)暗色粉分散体
本発明に係る暗色粉分散体は、上述した暗色顔料と複合タングステン酸化物微粒子とを適宜な固体媒体中に分散して得られる。
具体的には、暗色粉分散液に固体媒体を構成する樹脂を添加し、暗色粉分散体形成用分散液(塗工液)を得る。そして、適宜な基材表面へ、当該暗色粉分散体形成用分散液をコーティングし、溶媒を蒸発等の所定の方法で除去して樹脂を硬化させれば、基材表面に暗色粉分散体が着色層として設けられた着色層付基材が得られる。
(4) Dark powder dispersion The dark powder dispersion according to the present invention is obtained by dispersing the above-mentioned dark pigment and composite tungsten oxide fine particles in an appropriate solid medium.
Specifically, a resin constituting the solid medium is added to a dark powder dispersion to obtain a dispersion for forming a dark powder dispersion (coating solution). Then, by coating the dispersion liquid for forming a dark-colored powder dispersion on the surface of an appropriate base material and curing the resin by removing the solvent by a predetermined method such as evaporation, a dark-colored powder dispersion is formed on the surface of the base material. A colored layer-attached base material provided as a colored layer is obtained.

本発明に係る暗色粉分散液から得られる暗色粉分散体は、当該暗色粉分散液における暗色顔料や複合タングステン酸化物微粒子の分散状態と配合割合とを維持している。その結果として、本発明に係る暗色粉分散体は、暗色粉分散体形成用分散液(塗工液)や、後述するマスターバッチを、固体媒体の樹脂により可視光透過率が5~70%になるように希釈して形成すると、彩度c*が10以下、近赤外透過率が50%以下を実現できる。彩度c*は、5以下であることが好ましく、4以下がより好ましく、3以下がさらに好ましい。彩度c*がより低くなることで、目視で確認出来る深い黒色を実現出来、自動車や建物の窓を深い黒色とすることが出来るので意匠性が向上する。 The dark powder dispersion obtained from the dark powder dispersion according to the present invention maintains the dispersion state and blending ratio of the dark pigment and composite tungsten oxide fine particles in the dark powder dispersion. As a result, the dark-colored powder dispersion according to the present invention has a visible light transmittance of 5 to 70% when the dispersion liquid for forming the dark-colored powder dispersion (coating liquid) and the masterbatch described below are mixed with the solid medium resin. When diluted and formed so as to have a saturation c* of 10 or less and a near-infrared transmittance of 50% or less, it is possible to achieve. The saturation c* is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less. By lowering the saturation c*, it is possible to achieve a deep black that can be visually confirmed, and the windows of cars and buildings can be made deep black, which improves design.

さらに、暗色顔料としてCu-Fe-Mn複合酸化物顔料および/またはCu-Cr複合酸化物顔料を選択した場合、複合タングステン酸化物微粒子や媒体である樹脂等と混合した暗色粉分散体において、当該暗色顔料、複合タングステン酸化物微粒子、樹脂等の混合比を制御することにより、c*の値を4.5以下の値に保ちながら、可視光透過率や近赤外透過率を所望値に設定することが出来た。この結果、用途等に応じた光学的特性を有する暗色粉分散体の開発が容易になり、好ましい構成である。 Furthermore, when a Cu-Fe-Mn composite oxide pigment and/or a Cu-Cr composite oxide pigment is selected as the dark pigment, in a dark powder dispersion mixed with composite tungsten oxide fine particles and a resin as a medium, the corresponding By controlling the mixing ratio of dark pigment, composite tungsten oxide fine particles, resin, etc., visible light transmittance and near-infrared transmittance can be set to desired values while keeping c* value below 4.5. I was able to do it. As a result, it becomes easy to develop a dark-colored powder dispersion having optical properties depending on the application, etc., and this is a preferable configuration.

また、本発明に係る暗色粉分散液の溶媒には、硬化により固体媒体となる樹脂のモノマーを用いてもよい。溶媒として樹脂のモノマーを用いた場合、コーティングの方法は、基材表面に近赤外線遮蔽材料微粒子分散体が均一にコートできればよく、特に限定されないが、例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が挙げられる。また、暗色顔料と複合タングステン酸化物微粒子とを、直接バインダー樹脂中に分散した暗色粉分散体は、基材表面に塗布後、溶媒を蒸発させる必要が無く、環境的、工業的に好ましい。 Further, as the solvent for the dark powder dispersion according to the present invention, a resin monomer that becomes a solid medium upon curing may be used. When a resin monomer is used as a solvent, the coating method is not particularly limited as long as the near-infrared shielding material fine particle dispersion can be uniformly coated on the surface of the substrate, and examples include bar coating, gravure coating, and spray coating. method, dip coating method, etc. Further, a dark powder dispersion in which a dark pigment and composite tungsten oxide fine particles are directly dispersed in a binder resin does not require evaporation of the solvent after being applied to the surface of a substrate, and is preferable from an environmental and industrial perspective.

上述した固体媒体としては、例えば、樹脂としてUV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が目的に応じて選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂が挙げられる。これらの樹脂は、単独使用であっても混合使用であっても良い。 As the above-mentioned solid medium, for example, UV curing resin, thermosetting resin, electron beam curing resin, room temperature curing resin, thermoplastic resin, etc. can be selected depending on the purpose. Specifically, polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluororesin, polycarbonate resin, acrylic resin. , polyvinyl butyral resin. These resins may be used alone or in combination.

さらに、高分子分散剤を含有する暗色粉分散液の溶媒成分を揮発させ、暗色顔料と複合タングステン酸化物微粒子と高分子分散剤とを含む暗色顔料分散粉と、溶融温度以上に温度を上げて溶融させたポリカーボネート樹脂等とを混合して暗色顔料含有マスターバッチを製造し、当該マスターバッチと溶融温度以上に温度を上げて溶融させたポリカーボネート樹脂等と溶融混合し、公知の方法でフィルムや板(ボード)状に形成し暗色粉分散体を作ることも出来る。 Furthermore, the solvent component of the dark powder dispersion containing the polymeric dispersant is volatilized, and the temperature is raised above the melting temperature of the dark pigment dispersion containing the dark pigment, composite tungsten oxide fine particles, and the polymeric dispersant. A dark pigment-containing masterbatch is produced by mixing a molten polycarbonate resin, etc., and the masterbatch is melt-mixed with a polycarbonate resin, etc. that has been melted at a temperature higher than the melting temperature, and then a film or plate is produced by a known method. It is also possible to form a dark-colored powder dispersion by forming it into a (board) shape.

(5)着色層付基材
本発明に係る暗色粉分散体を着色層として、透明ガラス基材や透明フィルム基材といった透明基材表面に設ければ、着色層付基材とすることができる。透明ガラス基材には、ソーダライムガラスなどの板ガラス、透明フィルム基材には、PETフィルムのような樹脂フィルムを用いることができる。
もちろん、2枚以上の透明基材で暗色粉分散体を挟んで、着色層付基材としてもよい。
(5) Substrate with colored layer If the dark powder dispersion according to the present invention is provided as a colored layer on the surface of a transparent substrate such as a transparent glass substrate or a transparent film substrate, it can be used as a substrate with a colored layer. . A plate glass such as soda lime glass can be used as the transparent glass substrate, and a resin film such as PET film can be used as the transparent film substrate.
Of course, the dark-colored powder dispersion may be sandwiched between two or more transparent substrates to form a substrate with a colored layer.

本発明について、実施例を参照しながらより具体的に説明する。
まず、評価方法について、(1)可視光透過率と近赤外透過率、(2)L*、a*、b*表色系の特性と彩度c*、(3)分散平均粒子径、の順に説明する。
The present invention will be described in more detail with reference to Examples.
First, regarding the evaluation method, (1) visible light transmittance and near-infrared transmittance, (2) characteristics of L*, a*, b* color system and chroma c*, (3) dispersion average particle diameter, I will explain in this order.

(1)可視光透過率と近赤外透過率
試料の可視光透過率と近赤外透過率とは、分光光度計(日立製作所製UH4150)で測定した。そして、可視光透過率と近赤外透過率はISO9050に準拠して波長750nmから1500nmにおいて測定した。
(1) Visible light transmittance and near-infrared transmittance The visible light transmittance and near-infrared transmittance of the sample were measured with a spectrophotometer (UH4150 manufactured by Hitachi, Ltd.). The visible light transmittance and near-infrared transmittance were measured at wavelengths from 750 nm to 1500 nm in accordance with ISO9050.

(2)L*、a*、b*表色系の特性と彩度c*
試料のL*、a*、b*表色系の特性は、分光光度計(日立製作所製UH4150)で測定した。彩度c*は次式2で算出した。

彩度c*=(a*+b*1/2・・・・式2

なお、L*、a*、b*表色系の特性は、次の手順で測定した。
試料の分光透過率(透過率の波長依存性)を測定する。
測定された分光透過率をJIS Z 8701 1999に基づいて、D65光源・10°の視野でのX10、Y10、Z10の色味値に変換する。
変換されたX10、Y10、Z10の色味値をJIS Z 8781-4 2013に基づいて、L*、a*、b*に変換する。
(2) Characteristics of L*, a*, b* color system and saturation c*
The characteristics of the L*, a*, b* color system of the sample were measured using a spectrophotometer (UH4150 manufactured by Hitachi, Ltd.). The saturation c* was calculated using the following formula 2.

Saturation c*=(a* 2 +b* 2 ) 1/2 ...Equation 2

Note that the characteristics of the L*, a*, and b* color systems were measured using the following procedure.
Measure the spectral transmittance (wavelength dependence of transmittance) of the sample.
The measured spectral transmittance is converted into tint values of X 10 , Y 10 , and Z 10 based on JIS Z 8701 1999 using a D65 light source and a field of view of 10°.
The converted color values of X 10 , Y 10 , and Z 10 are converted into L*, a*, and b* based on JIS Z 8781-4 2013.

(3)分散平均粒子径
平均分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定した。
(3) Dispersion average particle diameter The average dispersion particle diameter was measured using an ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering.

(実施例1~12、比較例1~8)
(a)暗色粉分散液の調製
暗色粉分散液として、Cu-Fe-Mn複合酸化物顔料の分散液の調製について説明する。
Cu-Fe-Mn複合酸化物顔料(大日精化製ダイピロキサイドTMブラック#3550)100質量部と、溶媒としてMIBK800質量部と、分散剤a(アミンを含有する基とアクリル主鎖を有する分散剤、アミン価42mgKOH/g)100質量部とを容器に入れ、0.3mmジルコニアビーズを用いて、ペイントシェーカーにて20時間粉砕した。そして、平均分散粒子径100nmのCu-Fe-Mn複合酸化物顔料の分散液を得た。
(Examples 1 to 12, Comparative Examples 1 to 8)
(a) Preparation of dark powder dispersion The preparation of a Cu-Fe-Mn complex oxide pigment dispersion as a dark powder dispersion will be described.
100 parts by mass of Cu-Fe-Mn composite oxide pigment (Dipyroxide TM Black #3550 manufactured by Dainichiseika Chemical Co., Ltd.), 800 parts by mass of MIBK as a solvent, and dispersant a (a dispersion having an amine-containing group and an acrylic main chain). amine value: 42 mg KOH/g) were placed in a container and pulverized for 20 hours in a paint shaker using 0.3 mm zirconia beads. A dispersion of a Cu--Fe--Mn composite oxide pigment having an average dispersed particle size of 100 nm was obtained.

暗色粉分散液として、Cu-Cr複合酸化物顔料の分散液の調製について説明する。
Cu-Cr複合酸化物顔料(大日精化製ダイピロキサイドブラック#9510)100質量部と、溶媒としてMIBK800質量部と、分散剤a100質量部とを容器に入れ、0.3mmジルコニアビーズを用いて、ペイントシェーカーにて20時間粉砕した。そして、平均分散粒子径150nmのCu-Fe-Mn複合酸化物顔料の分散液を得た。
The preparation of a dispersion of a Cu-Cr complex oxide pigment as a dark powder dispersion will be explained.
100 parts by mass of Cu-Cr composite oxide pigment (Dipyroxide Black #9510 manufactured by Dainichiseika Chemical Co., Ltd.), 800 parts by mass of MIBK as a solvent, and 100 parts by mass of dispersant a were placed in a container, and 0.3 mm zirconia beads were used. , and pulverized in a paint shaker for 20 hours. Then, a dispersion liquid of a Cu--Fe--Mn composite oxide pigment having an average dispersed particle size of 150 nm was obtained.

(b)複合タングステン酸化物微粒子分散液の調製
複合タングステン酸化物微粒子分散液として、Cs0.33WO粒子分散液の調製について説明する。
Cs0.33WO粒子(住友金属鉱山製)100質量部と、溶媒としてMIBK300質量部と、分散剤a100質量部とを容器に入れ、0.3mmジルコニアビーズを用いて、ペイントシェーカーにて20時間粉砕した。そして、平均分散粒子径30nmのCs0.33WO粒子分散液を得た。
(b) Preparation of composite tungsten oxide fine particle dispersion The preparation of a Cs 0.33 WO 3 particle dispersion as a composite tungsten oxide fine particle dispersion will be described.
100 parts by mass of Cs 0.33 WO 3 particles (manufactured by Sumitomo Metal Mining), 300 parts by mass of MIBK as a solvent, and 100 parts by mass of dispersant a were placed in a container, and mixed with a paint shaker for 20 minutes using 0.3 mm zirconia beads. Time crushed. Then, a Cs 0.33 WO 3 particle dispersion liquid with an average dispersed particle diameter of 30 nm was obtained.

(c)暗色粉分散液と暗色粉分散体形成用分散液(塗工液)の調製
Cu-Fe-Mn複合酸化物顔料の分散液100質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例1~3に係る暗色粉分散液を調製した。
Cu-Fe-Mn複合酸化物顔料の分散液20質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例4~7に係る暗色粉分散液を調製した。
Cu-Fe-Mn複合酸化物顔料の分散液10質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例8、10~12に係る暗色粉分散液を調製した。
Cu-Cr複合酸化物顔料の分散液20質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例9に係る暗色粉分散液を調製した。
Cs0.33WO粒子分散液100質量部のみをもって、比較例1~5に係る暗色粉分散液とした。
Cu-Fe-Mn複合酸化物顔料の分散液100質量部のみをもって、比較例6~8に係る暗色粉分散液とした。
(c) Preparation of dark powder dispersion and dispersion for forming dark powder dispersion (coating solution) 100 parts by mass of Cu-Fe-Mn complex oxide pigment dispersion and 100 parts by mass of Cs 0.33 WO 3 particle dispersion dark powder dispersions according to Examples 1 to 3 were prepared.
Dark powder dispersions according to Examples 4 to 7 were prepared by mixing 20 parts by mass of a Cu-Fe-Mn composite oxide pigment dispersion and 100 parts by mass of a Cs 0.33 WO 3 particle dispersion.
Dark powder dispersions according to Examples 8 and 10 to 12 were prepared by mixing 10 parts by mass of a Cu-Fe-Mn composite oxide pigment dispersion and 100 parts by mass of a Cs 0.33 WO 3 particle dispersion. .
A dark powder dispersion according to Example 9 was prepared by mixing 20 parts by mass of a Cu-Cr composite oxide pigment dispersion and 100 parts by mass of a Cs 0.33 WO 3 particle dispersion.
Only 100 parts by mass of the Cs 0.33 WO 3 particle dispersion was used to prepare dark powder dispersions according to Comparative Examples 1 to 5.
Dark powder dispersions according to Comparative Examples 6 to 8 were prepared using only 100 parts by mass of the Cu-Fe-Mn composite oxide pigment dispersion.

さらに、実施例10に係る暗色粉分散液では、Cs0.33WO粒子100質量部に対し、炭酸水酸化マグネシウム(関東化学製)が800質量部となるように添加した。 Furthermore, in the dark powder dispersion according to Example 10, 800 parts by mass of magnesium carbonate hydroxide (manufactured by Kanto Kagaku) was added to 100 parts by mass of Cs 0.33 WO 3 particles.

さらに、実施例11に係る暗色粉分散液では、Cs0.33WO粒子100質量部に対し、乳酸マグネシウム(関東化学製)が632質量部となるように添加した。
尚、当該乳酸マグネシウム(関東化学製)は3水和物であったので、水和水込みの乳酸マグネシウムとしての添加量は800質量部となった。
Further, in the dark powder dispersion according to Example 11, 632 parts by mass of magnesium lactate (manufactured by Kanto Kagaku) was added to 100 parts by mass of Cs 0.33 WO 3 particles.
Note that since the magnesium lactate (manufactured by Kanto Kagaku) was a trihydrate, the amount added as magnesium lactate including hydrated water was 800 parts by mass.

さらに、実施例12に係る暗色粉分散液では、Cs0.33WO粒子100質量部に対し、サリチル酸誘導体(N-(2H-1,2,4-トリアゾール-5-イル)サリチルアミド)(ADEKA製)が200質量部となるように添加した。
以上、実施例1~12、比較例1~8に係る暗色粉分散液の配合比率を表1に記載する。
Furthermore, in the dark powder dispersion according to Example 12 , salicylic acid derivative (N-(2H- 1,2,4 -triazol-5-yl) salicylamide) ( (manufactured by ADEKA) was added in an amount of 200 parts by mass.
The blending ratios of the dark powder dispersions according to Examples 1 to 12 and Comparative Examples 1 to 8 are listed in Table 1.

調整した実施例1~12、比較例1~8に係る暗色粉分散液のそれぞれへ、紫外線硬化樹脂(東亜合成製 アロニックスUV3701)を混合して、実施例1~12、比較例1~8に係る暗色粉分散体形成用分散液(塗工液)を調製した。 An ultraviolet curable resin (Aronix UV3701 manufactured by Toagosei Co., Ltd.) was mixed into each of the prepared dark powder dispersions according to Examples 1 to 12 and Comparative Examples 1 to 8. A dispersion liquid (coating liquid) for forming a dark-colored powder dispersion was prepared.

ここで、実施例1~12、比較例1~8に係る暗色粉分散体形成用分散液(塗工液)において、後述する硬化後の暗色粉分散体の可視光透過率が、実施例1では40%、実施例2では35%、実施例3では30%、実施例4では65%、実施例5では50%、実施例6では35%、実施例7では20%、実施例8では65%、実施例9では55%、実施例10では65%、実施例11では65%、実施例12では65%、比較例1では15%、比較例2では30%、比較例3では40%、比較例4では50%、比較例5では65%、比較例6では40%、比較例7では30%、比較例8では20%となることを目論んで、暗色粉分散液と紫外線硬化樹脂とを混合したものである。 Here, in the dispersions (coating liquids) for forming dark-colored powder dispersions according to Examples 1 to 12 and Comparative Examples 1 to 8, the visible light transmittance of the dark-colored powder dispersions after curing, which will be described later, is the same as that of Example 1. 40% in Example 2, 35% in Example 3, 65% in Example 4, 50% in Example 5, 35% in Example 6, 20% in Example 7, and 20% in Example 8. 65% in Example 9, 65% in Example 10, 65% in Example 11, 65% in Example 12, 15% in Comparative Example 1, 30% in Comparative Example 2, 40% in Comparative Example 3 %, 50% in Comparative Example 4, 65% in Comparative Example 5, 40% in Comparative Example 6, 30% in Comparative Example 7, and 20% in Comparative Example 8. It is a mixture of resin.

(d)暗色粉分散体および着色層付基材の調製
実施例1~12、比較例1~8に係る暗色粉分散体形成用分散液(塗工液)を、それぞれ厚さ50μmのPETフィルムにNo.4~No.10バーコータで塗布して塗布膜を得た。得られた塗布膜から溶媒を蒸発乾燥させた後(70℃、1分間加熱)、高圧水銀ランプを用いて紫外線照射して塗布膜を硬化させてPETフィルムの表面に暗色粉分散体を設けた。なお、当該設けられた暗色粉分散体は着色層であり、PETフィルムの表面に着色層を形成し試料フィルムとしたので、実施例1~12、比較例1~8に係る着色層付基材を調製したこととなる。
調製された実施例1~12、比較例1~8に係る着色層付基材について、彩度c*、可視光透過率と近赤外透過率とを測定した。その結果を表1に示す。尚、彩度、可視光透過率、近赤外透過率の測定においては、基材のPETフィルムを含めた値を測定した。
(d) Preparation of dark-colored powder dispersion and base material with colored layer The dispersions (coating liquids) for forming dark-colored powder dispersions according to Examples 1 to 12 and Comparative Examples 1 to 8 were applied to PET films with a thickness of 50 μm. No. 4~No. A coating film was obtained by coating with a 10-bar coater. After the solvent was evaporated and dried from the resulting coating film (heated at 70°C for 1 minute), the coating film was cured by irradiation with ultraviolet light using a high-pressure mercury lamp to provide a dark powder dispersion on the surface of the PET film. . Note that the provided dark powder dispersion is a colored layer, and since the colored layer was formed on the surface of the PET film and used as a sample film, the colored layer-attached base material according to Examples 1 to 12 and Comparative Examples 1 to 8 This means that it has been prepared.
The color saturation c*, visible light transmittance, and near-infrared transmittance of the prepared substrates with colored layers according to Examples 1 to 12 and Comparative Examples 1 to 8 were measured. The results are shown in Table 1. In addition, in the measurement of chroma, visible light transmittance, and near-infrared transmittance, values including the PET film of the base material were measured.

(e)着色層付基材の耐湿熱評価
実施例8、10~12に係る着色層付基材(試料フィルム)について、温度85℃、相対湿度90%の環境下における透過スペクトルの変化を測定し、その後、当該透過スペクトルから計算される波長1000nmにおける吸光度の経時変化を評価した。
(e) Moisture and heat resistance evaluation of colored layer-coated base materials For the colored layer-coated base materials (sample films) of Examples 8 and 10 to 12, changes in transmission spectra were measured under an environment of a temperature of 85°C and a relative humidity of 90%. Then, the change in absorbance over time at a wavelength of 1000 nm calculated from the transmission spectrum was evaluated.

着色層付基材試料(試料フィルム)の評価は以下の手順で行った。
まず作製した試料フィルムの波長200nmから2600nmの範囲における透過スペクトルを測定し、波長1000nmにおける透過率を求めた。その後、温度85℃、相対湿度90%の恒温恒湿槽に試料フィルムを投入した。
当該試料フィルムの投入後、所定日数が経過したら試料フィルムを取り出し、上述の波長範囲において透過スペクトルを測定し、波長1000nmにおける透過率を求めた。その後、試料フィルムを上述の温湿条件の恒温恒湿槽に再び投入し、所定日数が経過したら再び試料フィルムを取り出し、波長1000nmにおける透過率を求めることを繰り返した。
そして、当該波長1000nmにおける透過率を、次式3を用いて吸光度に換算し、試験開始時からの吸光度の変化率を求めた。
実施例8、10~12に係る着色層付基材の、試験開始時から所定の経過日数後の、試料フィルムにおける吸光度の変化率の値を表2に示し、試験開始時から所定の経過日数後の、試料フィルムにおける吸光度の変化率の状態を図1に示す。
尚、図1において、縦軸は、波長1000nmにおける吸光度の変化率であり、横軸は、経過日数である。
そして、実施例8係る試料フィルムのデータは短破線、実施例10係る試料フィルムのデータは実線、実施例11係る試料フィルムのデータは一点鎖線、実施例12係る試料フィルムのデータは長破線で示した。

吸光度=-log(透過率)・・・・式3
Evaluation of the colored layer-attached base material sample (sample film) was performed according to the following procedure.
First, the transmission spectrum of the prepared sample film was measured in the wavelength range of 200 nm to 2600 nm, and the transmittance at a wavelength of 1000 nm was determined. Thereafter, the sample film was placed in a constant temperature and humidity chamber at a temperature of 85° C. and a relative humidity of 90%.
After a predetermined number of days had elapsed after the sample film was introduced, the sample film was taken out, the transmission spectrum was measured in the above-mentioned wavelength range, and the transmittance at a wavelength of 1000 nm was determined. Thereafter, the sample film was again put into the constant temperature and humidity chamber under the above-mentioned temperature and humidity conditions, and after a predetermined number of days had elapsed, the sample film was taken out again and the transmittance at a wavelength of 1000 nm was repeatedly determined.
Then, the transmittance at a wavelength of 1000 nm was converted to absorbance using the following equation 3, and the rate of change in absorbance from the start of the test was determined.
Table 2 shows the values of the rate of change in absorbance in the sample films of the colored layered substrates according to Examples 8 and 10 to 12 after a predetermined number of days have passed since the start of the test. FIG. 1 shows the state of the rate of change in absorbance in the sample film after the test.
In FIG. 1, the vertical axis is the rate of change in absorbance at a wavelength of 1000 nm, and the horizontal axis is the number of days that have passed.
The data for the sample film of Example 8 is shown by a short dashed line, the data for the sample film of Example 10 is shown by a solid line, the data for the sample film of Example 11 is shown by a dashed line, and the data for the sample film of Example 12 is shown by a long broken line. Ta.

Absorbance = -log (transmittance)...Formula 3

(f)まとめ
可視光透過率40%を目論んだ配合である実施例1、比較例3、比較例6とを比べると、可視光透過率の実測値は、いずれも40%程度である。一方、彩度c*は、実施例1が低いことが判明した。
同様に、可視光透過率30%を目論んだ配合である実施例3、比較例2、比較例7とを比べると、可視光透過率の実測値は、いずれも30%程度である。一方、彩度c*は、実施例3が低いことが判明した。
同様に、可視光透過率20%を目論んだ配合である実施例7、比較例8とを比べると、可視光透過率の実測値は、いずれも20%程度である。一方、彩度c*は、実施例7が低いことが判明した。
同様に、可視光透過率65%を目論んだ配合である実施例4、比較例5とを比べると、可視光透過率の実測値は、いずれも65%程度である。一方、彩度c*は、実施例4が低いことが判明した。
(f) Summary Comparing Example 1, Comparative Example 3, and Comparative Example 6, which are formulations designed to achieve a visible light transmittance of 40%, the actual measured values of the visible light transmittance are all about 40%. On the other hand, the saturation c* was found to be low in Example 1.
Similarly, when comparing Example 3, Comparative Example 2, and Comparative Example 7, which are formulations designed to achieve visible light transmittance of 30%, the actual measured values of visible light transmittance are all about 30%. On the other hand, the saturation c* was found to be low in Example 3.
Similarly, when comparing Example 7 and Comparative Example 8, which are formulations designed to achieve a visible light transmittance of 20%, the actual measured values of the visible light transmittance are both about 20%. On the other hand, it was found that Example 7 had low chroma c*.
Similarly, when comparing Example 4 and Comparative Example 5, which are formulations designed to achieve a visible light transmittance of 65%, the actual measured values of the visible light transmittance are both about 65%. On the other hand, the saturation c* was found to be low in Example 4.

そして、実施例1~12において、暗色顔料として、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料を選択し、複合タングステン酸化物微粒子と、媒体である樹脂等との混合物である暗色粉分散体において、当該混合比を変えることにより、c*の値を4.5以下の値に保ちながら、可視光透過率や近赤外透過率を所望値に設定することが出来た。 In Examples 1 to 12, a Cu-Fe-Mn composite oxide pigment and a Cu-Cr composite oxide pigment were selected as the dark pigment, and a mixture of composite tungsten oxide fine particles and a resin etc. as a medium was used. In a certain dark-colored powder dispersion, by changing the mixing ratio, it was possible to set the visible light transmittance and near-infrared transmittance to desired values while keeping the value of c* below 4.5. .

次に、実施例8、10~12に係る着色層付基材を用いた耐湿熱評価結果を示す図1より、以下のことが判明した。
実施例8と実施例10とを比較すると、吸光度の経時変化率は実施例10の方が小さいことが判明した。これは添加剤である炭酸塩中の炭酸イオンが、着色層付基材中の金属イオンを捕捉することにより、Cs0.33WO粒子の劣化を抑制したためと推定される。
同様に、実施例8と実施例11とを比較すると、吸光度の経時変化率は実施例11の方が小さいことが判明した。これは添加剤である乳酸マグネシウム中の乳酸イオンが、着色層付基材中の金属イオンを捕捉することにより、Cs0.33WO粒子の劣化を抑制したためと推定される。
同様に、実施例8と実施例12とを比較すると、吸光度の経時変化率は実施例12の方が小さいことが判明した。これは添加剤のサリチル酸誘導体が、着色層付基材中の金属イオンを捕捉することにより、Cs0.33WO粒子の劣化を抑制したためと推定される。
Next, the following was found from FIG. 1 showing the results of moisture and heat resistance evaluation using the colored layered base materials of Examples 8 and 10 to 12.
Comparing Example 8 and Example 10, it was found that the rate of change in absorbance over time was smaller in Example 10. This is presumed to be because the carbonate ions in the carbonate additive suppressed the deterioration of the Cs 0.33 WO 3 particles by capturing the metal ions in the colored layer-attached base material.
Similarly, when Example 8 and Example 11 were compared, it was found that the rate of change in absorbance over time was smaller in Example 11. This is presumed to be because the lactate ions in the additive magnesium lactate captured the metal ions in the colored layer-attached base material, thereby suppressing the deterioration of the Cs 0.33 WO 3 particles.
Similarly, when Example 8 and Example 12 were compared, it was found that the rate of change in absorbance over time was smaller in Example 12. This is presumed to be because the additive salicylic acid derivative suppressed the deterioration of the Cs 0.33 WO 3 particles by capturing metal ions in the colored layer-coated base material.

実施例8、10~12に係る着色層付基材を用いた耐湿熱評価より、暗色粉分散液を用いたフィルムへ金属不活剤や金属塩を添加することで、無添加の暗色粉分散液を用いたフィルムに比べて、波長1000nmにおける15日(360時間)以降の吸光度の変化率を30%~50%抑制できることが判明した。
以上より、暗色顔料として、Cu-Fe-Mn複合酸化物顔料、複合タングステン酸化物微粒子と、媒体である樹脂等との混合物である暗色粉分散体に対し、サリチル酸誘導体や金属塩を添加することにより、当該暗色粉分散体の吸光度の変化を抑制、つまり耐湿熱性を向上させることが出来ることが判明した。
From the moisture and heat resistance evaluation using the colored layered substrates of Examples 8 and 10 to 12, it was found that by adding a metal deactivator or metal salt to a film using a dark powder dispersion, it was possible to obtain a dark powder dispersion without any additives. It has been found that the rate of change in absorbance after 15 days (360 hours) at a wavelength of 1000 nm can be suppressed by 30% to 50% compared to a film using a liquid.
From the above, as a dark pigment, a salicylic acid derivative or a metal salt can be added to a dark powder dispersion, which is a mixture of a Cu-Fe-Mn composite oxide pigment, composite tungsten oxide fine particles, and a resin as a medium. It was found that the change in absorbance of the dark powder dispersion can be suppressed, that is, the heat and humidity resistance can be improved.

Claims (12)

暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、
前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であり、
前記暗色顔料が、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr-Mn複合酸化物顔料、Cu-Cr-Mn-Ni複合酸化物顔料、Cu-Cr-Fe複合酸化物顔料、Fe-Cr複合酸化物顔料、Co-Cr-Fe複合酸化物顔料から選択される1種類以上の暗色顔料であり、
前記複合タングステン酸化物粒子が、一般式MxWyOz(但し、Mは、Cs、Rb、K、Tl、Naの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物粒子であることを特徴とする暗色粉分散液。
comprising a dark pigment, composite tungsten oxide particles and a solvent;
The value of the mass ratio of the dark pigment and the composite tungsten oxide particles (dark pigment mass/composite tungsten oxide fine particle mass) is 0.01 or more and 5 or less,
The dark pigment is a Cu-Fe-Mn composite oxide pigment, a Cu-Cr composite oxide pigment, a Cu-Cr-Mn composite oxide pigment, a Cu-Cr-Mn-Ni composite oxide pigment, a Cu-Cr-Fe One or more types of dark pigment selected from a complex oxide pigment, a Fe-Cr complex oxide pigment, and a Co-Cr-Fe complex oxide pigment,
The composite tungsten oxide particles have a general formula MxWyOz (where M is one or more elements selected from Cs, Rb, K, Tl, and Na, W is tungsten, O is oxygen, and 0.001≦ A dark-colored powder dispersion liquid characterized by being composite tungsten oxide particles represented by x/y≦1, 2.0<z/y≦3.0 .
前記複合タングステン酸化物微粒子が六方晶の結晶構造を含むことを特徴とする請求項1に記載の暗色粉分散液。 The dark powder dispersion according to claim 1, wherein the composite tungsten oxide fine particles have a hexagonal crystal structure. 前記暗色顔料が、平均分散粒子径200nm以下の粒子であることを特徴とする請求項1または2に記載の暗色粉分散液。 The dark powder dispersion according to claim 1 or 2, wherein the dark pigment is particles with an average dispersed particle size of 200 nm or less. 前記暗色粉分散液が、金属不活剤または金属塩から選択される1種類以上を含む請求項1から3のいずれかに記載の暗色粉分散液。 The dark powder dispersion according to any one of claims 1 to 3, wherein the dark powder dispersion contains one or more selected from metal deactivators and metal salts. 前記溶媒が、水、有機溶媒、油脂、液状樹脂、プラスチック用の液状の可塑剤、または、これらの混合物から選択されることを特徴とする請求項1から4のいずれかに記載の暗色粉分散液。 The dark powder dispersion according to any one of claims 1 to 4, wherein the solvent is selected from water, organic solvents, oils and fats, liquid resins, liquid plasticizers for plastics, or mixtures thereof. liquid. 暗色顔料と複合タングステン酸化物粒子と固体媒体とを含み、
前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であり、
前記暗色顔料が、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr-Mn複合酸化物顔料、Cu-Cr-Mn-Ni複合酸化物顔料、Cu-Cr-Fe複合酸化物顔料、Fe-Cr複合酸化物顔料、Co-Cr-Fe複合酸化物顔料から選択される1種類以上の暗色顔料であり、
前記複合タングステン酸化物粒子が、一般式MxWyOz(但し、Mは、Cs、Rb、K、Tl、Naの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物粒子であることを特徴とする暗色粉分散体。
comprising a dark pigment, composite tungsten oxide particles and a solid medium;
The value of the mass ratio of the dark pigment and the composite tungsten oxide particles (dark pigment mass/composite tungsten oxide fine particle mass) is 0.01 or more and 5 or less,
The dark pigment is a Cu-Fe-Mn composite oxide pigment, a Cu-Cr composite oxide pigment, a Cu-Cr-Mn composite oxide pigment, a Cu-Cr-Mn-Ni composite oxide pigment, a Cu-Cr-Fe One or more types of dark pigment selected from a complex oxide pigment, a Fe-Cr complex oxide pigment, and a Co-Cr-Fe complex oxide pigment,
The composite tungsten oxide particles have a general formula MxWyOz (where M is one or more elements selected from Cs, Rb, K, Tl, and Na, W is tungsten, O is oxygen, and 0.001≦ A dark-colored powder dispersion characterized by being composite tungsten oxide particles represented by x/y≦1, 2.0<z/y≦3.0) .
前記複合タングステン酸化物微粒子が六方晶の結晶構造を含むことを特徴とする請求項6に記載の暗色粉分散体。 7. The dark powder dispersion according to claim 6, wherein the composite tungsten oxide fine particles have a hexagonal crystal structure. 前記暗色顔料が、平均分散粒子径200nm以下の粒子であることを特徴とする請求項6または7に記載の暗色粉分散体。 The dark-colored powder dispersion according to claim 6 or 7, wherein the dark-colored pigment is a particle having an average dispersed particle diameter of 200 nm or less. 前記分散体が、金属不活剤または金属塩から選択される1種類以上を含む請求項6から8のいずれかに記載の暗色粉分散体。 The dark-colored powder dispersion according to any one of claims 6 to 8, wherein the dispersion contains one or more selected from metal deactivators and metal salts. 前記固体媒体が樹脂であることを特徴とする請求項6から9のいずれかに記載の暗色粉分散体。 The dark powder dispersion according to any one of claims 6 to 9, wherein the solid medium is a resin. 透明基材の少なくとも一方の表面に着色層が設けられ、前記着色層が請求項6から10のいずれかに記載の暗色粉分散体であることを特徴とする着色層付基材。 A colored layer-equipped base material, characterized in that a colored layer is provided on at least one surface of a transparent base material, and the colored layer is the dark-colored powder dispersion according to any one of claims 6 to 10 . 前記透明基材が、透明フィルム基材または透明ガラス基材であることを特徴とする請求項11に記載の着色層付基材。 The colored layer-attached base material according to claim 11, wherein the transparent base material is a transparent film base material or a transparent glass base material.
JP2020191647A 2020-06-05 2020-11-18 Dark powder dispersion, dark powder dispersion and base material with colored layer Active JP7415890B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180040473.2A CN115698205A (en) 2020-06-05 2021-04-09 Dark powder dispersion liquid, and base material with colored layer
EP21818569.2A EP4163108A1 (en) 2020-06-05 2021-04-09 Substrate with dark-colored powder dispersion liquid, dark-colored powder dispersion body, and colored layer
PCT/JP2021/015021 WO2021246055A1 (en) 2020-06-05 2021-04-09 Substrate with dark-colored powder dispersion liquid, dark-colored powder dispersion body, and colored layer
KR1020227036522A KR20220154232A (en) 2020-06-05 2021-04-09 A substrate having a dark color powder dispersion, a dark color powder dispersion and a colored layer
US17/924,438 US20230272225A1 (en) 2020-06-05 2021-04-09 Dark powder dispersion liquid, dark powder dispersion body and colored layer-attached base material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020098196 2020-06-05
JP2020098196 2020-06-05

Publications (2)

Publication Number Publication Date
JP2021191832A JP2021191832A (en) 2021-12-16
JP7415890B2 true JP7415890B2 (en) 2024-01-17

Family

ID=78890576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020191647A Active JP7415890B2 (en) 2020-06-05 2020-11-18 Dark powder dispersion, dark powder dispersion and base material with colored layer

Country Status (1)

Country Link
JP (1) JP7415890B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330337A (en) 2004-05-18 2005-12-02 Sumitomo Metal Mining Co Ltd Method for producing polyester resin composition containing optically functional microparticle, polyester resin composition containing optically functional microparticle, and polyester resin base containing optically functional microparticle
JP2007311208A (en) 2006-05-18 2007-11-29 Sumitomo Metal Mining Co Ltd Near-infrared absorption filter for plasma display panel, its manufacturing method and plasma display panel
JP2007314752A (en) 2006-04-24 2007-12-06 Sumitomo Metal Mining Co Ltd Sunlight screen dispersion, sunlight screen and method for producing the same
JP2008231164A (en) 2007-03-16 2008-10-02 Sumitomo Metal Mining Co Ltd Ultraviolet ray- and near-infrared light-shielding dispersion, and ultraviolet ray- and near-infrared light-shielding item
WO2009020207A1 (en) 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. Near infrared absorbing composition and near infrared absorbing filter
JP2012229388A (en) 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film
JP2013170239A (en) 2012-02-22 2013-09-02 Sumitomo Metal Mining Co Ltd Composite tungsten oxide fine particle-dispersing polycarbonate resin composition, as well as heat ray-shielding molding and heat ray-shielding laminate using the same
JP2020533172A (en) 2017-09-15 2020-11-19 ヘコソル ゲーエムベーハー Antibacterial coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249755A (en) * 1988-05-18 1990-02-20 Sumitomo Chem Co Ltd Production of nitrobenzenes
WO2008156948A2 (en) * 2007-06-20 2008-12-24 Sun Chemical Corporation Multi-colored lustrous pearlescent pigments
KR20190043423A (en) * 2017-10-18 2019-04-26 안계진 Wood plastic composits using optic cable recycling cover line and medium density fiber board and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330337A (en) 2004-05-18 2005-12-02 Sumitomo Metal Mining Co Ltd Method for producing polyester resin composition containing optically functional microparticle, polyester resin composition containing optically functional microparticle, and polyester resin base containing optically functional microparticle
JP2007314752A (en) 2006-04-24 2007-12-06 Sumitomo Metal Mining Co Ltd Sunlight screen dispersion, sunlight screen and method for producing the same
JP2007311208A (en) 2006-05-18 2007-11-29 Sumitomo Metal Mining Co Ltd Near-infrared absorption filter for plasma display panel, its manufacturing method and plasma display panel
JP2008231164A (en) 2007-03-16 2008-10-02 Sumitomo Metal Mining Co Ltd Ultraviolet ray- and near-infrared light-shielding dispersion, and ultraviolet ray- and near-infrared light-shielding item
WO2009020207A1 (en) 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. Near infrared absorbing composition and near infrared absorbing filter
JP2012229388A (en) 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film
JP2013170239A (en) 2012-02-22 2013-09-02 Sumitomo Metal Mining Co Ltd Composite tungsten oxide fine particle-dispersing polycarbonate resin composition, as well as heat ray-shielding molding and heat ray-shielding laminate using the same
JP2020533172A (en) 2017-09-15 2020-11-19 ヘコソル ゲーエムベーハー Antibacterial coating

Also Published As

Publication number Publication date
JP2021191832A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6950691B2 (en) Near-infrared absorbing fine particle dispersion, near-infrared absorbing fine particle dispersion, near-infrared absorbing transparent base material, near-infrared absorbing transparent base material
KR102620283B1 (en) Near-infrared shielding ultrafine particle dispersion, solar radiation shielding interlayer, infrared shielding laminated structure, and method for producing near-infrared shielding ultrafine particle dispersion
JP6769562B2 (en) Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine-particle powder, infrared-absorbing fine-particle dispersion using the surface-treated infrared-absorbing fine particles, infrared-absorbing fine-particle dispersion, and methods for producing them.
JP6825577B2 (en) Composite tungsten oxide ultrafine particles and their dispersion
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JPWO2019022003A1 (en) Infrared absorbing fine particle-containing masterbatch pulverized product, infrared absorbing fine particle-containing masterbatch pulverized product-containing dispersion, infrared absorbing material-containing ink, anti-counterfeit ink using them, anti-counterfeit print film, and infrared absorbing fine particle-containing master batch pulverized product Manufacturing method
JP6870303B2 (en) Heat ray shielding dispersion and heat ray shielding laminated transparent base material
JP6879127B2 (en) Heat ray shielding particles, manufacturing method of heat ray shielding particles, heat ray shielding particle dispersion liquid, manufacturing method of heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding laminated transparent base material, heat ray shielding transparent base material
WO2021153693A1 (en) Electromagnetic wave absorbing particle dispersion, electromagnetic wave absorbing laminate, and electromagnetic wave absorbing transparent substrate
KR20150093186A (en) Near-infrared absorption filter and image pickup element
WO2016010156A1 (en) Heat-ray-shielding microparticles, heat-ray-shielding microparticle liquid dispersion, heat-ray-shielding film, heat-ray-shielding glass, heat-ray-shielding dispersion, and heat-ray-shielding laminated transparent substrate
TWI824074B (en) Surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body, and infrared absorbing substrate
JP6613674B2 (en) Heat ray shielding fine particles and heat ray shielding fine particle dispersion
JP2011026440A (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate and molded article
JP7415890B2 (en) Dark powder dispersion, dark powder dispersion and base material with colored layer
JP6866620B2 (en) Heat ray shielding film and heat ray shielding glass
JP6819250B2 (en) Heat ray shielding fine particles and heat ray shielding fine particle dispersion liquid
US20230272225A1 (en) Dark powder dispersion liquid, dark powder dispersion body and colored layer-attached base material
JP2007230848A (en) Visible light-absorbing black particulate and ink for forming visible light-absorbing film and visible light-absorbing film containing the particulate
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP6575443B2 (en) Heat ray shielding film and heat ray shielding glass
TWI666352B (en) Heat-ray shielding fine particles, heat-ray shielding fine particles dispersion liquid, heat-ray shielding film, heat-ray shielding glass, heat-ray shielding fine particles dispersion body and heat-ray shielding laminated transparent base material
JP6623944B2 (en) Heat ray shielding fine particles and heat ray shielding fine particle dispersion
JP7282326B2 (en) Light-absorbing transparent substrates, light-absorbing particle dispersions, and light-absorbing laminated transparent substrates
JP7472699B2 (en) Infrared absorbing microparticle dispersion, infrared absorbing microparticle dispersion and infrared absorbing transparent substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150