JP7393097B2 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
JP7393097B2
JP7393097B2 JP2020023707A JP2020023707A JP7393097B2 JP 7393097 B2 JP7393097 B2 JP 7393097B2 JP 2020023707 A JP2020023707 A JP 2020023707A JP 2020023707 A JP2020023707 A JP 2020023707A JP 7393097 B2 JP7393097 B2 JP 7393097B2
Authority
JP
Japan
Prior art keywords
vehicle
rate
threshold
obstacle
wrap rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020023707A
Other languages
English (en)
Other versions
JP2021128619A (ja
Inventor
悠平 宮本
浩平 諸冨
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2020023707A priority Critical patent/JP7393097B2/ja
Priority to CN202110170931.6A priority patent/CN113264040B/zh
Priority to US17/169,830 priority patent/US11760343B2/en
Priority to DE102021103358.6A priority patent/DE102021103358A1/de
Publication of JP2021128619A publication Critical patent/JP2021128619A/ja
Application granted granted Critical
Publication of JP7393097B2 publication Critical patent/JP7393097B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、車両の進行領域内に位置する物体である障害物の車両に対するラップ率が閾値ラップ率以上であれば車輪に制動力を付与する自動制動制御を実行し、当該ラップ率が閾値ラップ率未満であれば障害物との衝突を回避するように舵角を制御する自動操舵制御を実行する車両制御装置に関する。
従来から、障害物との衝突を回避するため又は障害物と衝突したときの衝突被害を軽減するために車輪に制動力を付与する自動制動制御を実行する車両制御装置が知られている。障害物は、車両の進行領域内に位置し且つ車両と衝突又は車両に最接近するまでにかかると予測される時間である衝突余裕時間(以下、「TTC」と称呼する。TTCは、Time To Collisionの略である。)が最も短い(即ち、)物体である。
例えば、特許文献1に記載された車両制御装置(以下、「第1従来装置」と称呼する。)は、車両と障害物との車幅方向おける重なり度合を示すラップ率が所定の閾値ラップ率以上である場合、自動制動制御を実行する。一方、ラップ率が閾値ラップ率未満である場合には、運転者がステアリングホイールを操作することにより障害物との衝突を回避する可能性が高い。このような場合に自動制動制御が実行されると、運転者に違和感を与える可能性が高い。このため、第1従来装置は、ラップ率が閾値ラップ率未満である場合、自動制動制御を実行しない。
更に、特許文献2に記載された車両制御装置(以下、「第2従来装置」と称呼する。)は、車両が自車線からはみ出すことなく障害物との衝突を回避するために車両が障害物の側方の回避領域を走行するように車両の舵角を変更する自動操舵制御を実行する。
特開2017-56795号公報 特開2017-43262号公報
第2従来装置では、自動操舵制御を実行したときに車両が通過する領域(回避領域)に障害物以外の物体である通行阻害物が存在することによって車両の通行が阻害される場合、どのように車両を制御すればよいのかが検討されていない。当然ながら、第1従来装置においても、上記した状況下における車両の制御は検討されていない。
本発明は前述した課題に対処するためになされたものである。即ち、本発明の目的の一つは、自動操舵制御を実行しようとする場合に通行阻害物が存在するとき、適切に車両を制御する車両制御装置を提供することにある。
本発明の車両制御装置(以下、「本発明装置」とも呼称する。)は、
車両の周辺に位置する物体及び前記車両が現在走行している自車線に関する情報を含む周辺情報を取得する情報取得装置(24、26)と、
前記車両に制動力を付与可能に構成された制動アクチュエータ(54)と、
前記車両の舵角を変更可能に構成された操舵アクチュエータ(66)と、
前記制動アクチュエータ及び前記操舵アクチュエータを制御する制御ユニット(20、40、50、60)と、
を備える。
前記制御ユニットは、
前記車両の進行領域内に位置する物体と前記車両とが衝突する可能性を表す衝突指標値を前記周辺情報に基いて取得するとともに(ステップ415)、前記衝突指標値が表す前記車両と衝突する可能性が最も高い物体である障害物と前記車両との前記車両の車幅方向における重なり度合を表すラップ率を前記周辺情報に基いて取得し(ステップ420及びステップ425)、
前記ラップ率が所定の閾値ラップ率以上である場合(ステップ430「Yes」)、前記障害物についての衝突指標値と衝突回避閾値とが所定の条件を満たしたときに成立する実行条件が成立したときに(ステップ440「Yes」)前記制動アクチュエータを駆動して前記車両に前記制動力を付与する自動制動制御を実行し(ステップ445)、
前記ラップ率が前記閾値ラップ率未満であって(ステップ430「No」)更に前記車両が前記自車線からはみ出すことなく前記障害物との衝突を回避し且つ前記障害物以外の物体である通行阻害物によって前記車両の通行が阻害されない回避領域が存在する場合(ステップ455「Yes」)、前記実行条件が成立したときに(ステップ465「Yes」)前記車両を前記回避領域に向けて走行させるように前記操舵アクチュエータに前記舵角を変更させる自動操舵制御を実行し(ステップ470)、
前記ラップ率が前記閾値ラップ率未満であって(ステップ430「No」)更に前記回避領域が存在しない場合(ステップ455「No」)、前記通行阻害物が存在していれば(ステップ475「Yes」)、前記実行条件が成立したとの条件を少なくとも含む特殊条件が成立したときに(ステップ485、ステップ705「Yes」、ステップ715「Yes」)前記自動制動制御を実行する(ステップ720)、
ように構成されている。
本発明装置は、ラップ率が閾値ラップ率以下である場合には、回避スペースが存在し且つ実行条件が成立するとき、自動操舵制御を実行する。ラップ率が閾値ラップ率以下である場合に、通行阻害物が存在することにより回避スペースが存在しないとき、自動操舵制御が実行されると通行阻害物に車両が衝突する可能性があるので、自動操舵制御は実行されない。このような状況下においては、ラップ率が閾値ラップ率未満であったとしても、運転者が障害物との衝突を回避するための操舵操作を行う可能性は比較的低いと考えられる。このため、本発明装置は、ラップ率が閾値ラップ率未満であって且つ通行阻害物が存在することにより回避スペースが存在しない場合において、特殊条件が成立していれば、自動制動制御を実行する。これによって、本発明装置は、運転者が上記操舵操作を行おうとしているときに自動制動制御が実行されることにより運転者に違和感を与える可能性をできるだけ低減しつつ、障害物との衝突を回避するための制御を適切に実行できる。
本発明の一態様において、
前記制御ユニットは、
前記ラップ率が前記閾値ラップ率未満であって(ステップ430「No」)更に前記回避領域が存在しない場合(ステップ455「No」)、前記通行阻害物が存在していれば(ステップ475「Yes」)、前記障害物及び前記通行阻害物を一つの仮想的な物体と見做した仮想障害物と前記車両との前記車両の車幅方向における重なり度合を表す仮想ラップ率を取得し(ステップ480)、
前記仮想ラップ率が前記閾値ラップ率以上であって(ステップ705「Yes」)且つ前記実行条件が成立した場合(ステップ715「Yes」)、前記特殊条件が成立したと判定する、
ように構成されている。
上記態様によれば、仮想障害物と車両との重なり度合が仮想ラップ率として取得される。仮想ラップ率が閾値ラップ率以上であれば運転者が上記操舵操作を行う可能性は低いため、自動制動制御が実行される。上記態様によれば、仮想ラップ率に応じて自動制動制御を実行するかが決定されるため、運転者が操舵操作を行おうとしているときに自動制動制御が実行されることによって運転者に違和感を与える可能性を更に低減できる。
本発明の一態様であって、
前記制御ユニットは、
前記ラップ率が前記閾値ラップ率以上である場合(ステップ430「Yes」)、及び、前記ラップ率が前記閾値ラップ率未満であって(ステップ430「No」)更に前記回避領域が存在する場合(ステップ455「Yes」)の何れかの場合における前記実行条件が成立するか否かの判定では(ステップ440、ステップ465)、前記衝突回避閾値を前記ラップ率が小さくなるほど前記実行条件が成立し難くなるような値に設定し(ステップ435、ステップ460、図5)、
前記ラップ率が前記閾値ラップ率未満であって(ステップ430「No」)更に前記回避領域が存在しない場合であって(ステップ455「No」)且つ前記通行阻害物が存在している場合における(ステップ475「Yes」)前記実行条件が成立するか否かの判定では(ステップ715)、前記衝突回避閾値を前記仮想ラップ率が小さくなるほど前記実行条件が成立し難くなるような値に設定する(ステップ710)、
ように構成された、
これによって、ラップ率に応じた適切なタイミングで実行条件が成立することになり、自動制動制御及び自動操舵制御を適切なタイミングで実行することができる。更に、仮想ラップ率に応じた適切なタイミングで実行条件が成立することになり自動制動制御を適切なタイミングで実行することができる。
なお、上記説明においては、発明の理解を助けるために、後述する実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、発明の各構成要素は、前記名称及び/又は符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
図1は、本発明の実施形態に係る車両制御装置(本制御装置)の概略システム構成図である。 図2Aは、ラップ率の演算処理を説明するための図である。 図2Bは、回避領域に他物体が存在しない場合の自車線の状況の説明図である。 図3は、回避領域に他物体が存在する場合の自車線の状況の説明図である。 図4は、図1に示した衝突回避ECUのCPUが実行する衝突回避制御ルーチンを示したフローチャートである。 図5は、閾値時間マップの説明図である。 図6は、図1に示した衝突回避ECUのCPUが実行する回避領域判定ルーチンを示したフローチャートである。 図7は、図1に示した衝突回避ECUのCPUが実行する制動制御再判定ルーチンを示したフローチャートである。 図8は、本制御装置の第1変形例の衝突回避ECUのCPUが実行する衝突回避制御ルーチンを示したフローチャートである。
以下、図1乃至図7を参照しながら、本発明の実施形態に係る車両制御装置(以下、「本制御装置」と称呼する。)10を説明する。図1は、本制御装置10及びその本制御装置10が適用される車両VAを示している。
図1に示すように、本制御装置10は、衝突回避ECU(以下、「CAECU」と称呼する。)20、エンジンECU40、ブレーキECU50及びステアリングECU60を備える。これらのECUはCAN(Controller Area Network)を介してデータ交換可能(通信可能)に互いに接続されている。
ECUは、エレクトロニックコントロールユニットの略称であり、CPU、ROM、RAM及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。ECUは「制御ユニット」又は「コントローラ」と称呼される場合がある。CPUは、メモリ(ROM)に格納されたインストラクション(ルーチン)を実行することにより各種機能を実現する。上記ECU20、40、50及び60の総て又は幾つかは、一つのECUに統合されてもよい。
更に、本制御装置10は、複数の車輪速センサ22、カメラ装置24、ミリ波レーダ装置26及び加速度センサ28を備える。これらはCAECU20に接続されている。
車輪速センサ22は車両VAの車輪毎に設けられる。各車輪速センサ22は、対応する車輪が所定角度回転する毎に一つの車輪パルス信号を発生させる。CAECU20は、各車輪速センサ22から送信されてくる車輪パルス信号の単位時間におけるパルス数をカウントし、そのパルス数に基いて各車輪の回転速度(車輪速度)を取得する。CAECU20は、各車輪の車輪速度に基いて車両VAの速度を示す車速Vsを取得する。一例として、CAECU20は、四つの車輪の車輪速度の平均値を車速Vsとして取得する。
カメラ装置24は、車両VAの車室内のフロントウィンドウの上部に配設されている。カメラ装置24は、車両VAの前方領域の画像(カメラ画像)の画像データを取得し、その画像から物体情報(カメラ物体情報)及び白線情報等を取得する。
なお、カメラ物体情報は、前方領域に位置する物体(車両及び歩行者等)までの距離、当該物体の方位及び当該物体の幅等を含む。白線情報は、車両VAが現在走行している車線である自車線SL(図2B及び図3を参照。)を区画する右白線RWL及び左白線LWLの車両VAに対する位置等を含む。
ミリ波レーダ装置26は、車両VAの前端の車幅方向の中央(以下、「前端中央部」と称呼する。)付近に設けられている。ミリ波レーダ装置26は、車両VAの前方の所定範囲に伝播するミリ波を発信する。そのミリ波は、他の車両、歩行者及び二輪車等の立体物(物体)により反射される。ミリ波レーダ装置26はこの反射波を受信し、当該反射波に基いてレーダ物体情報を取得する。レーダ物体情報は、物体までの距離、物体の車両VAに対する相対速度、及び物体の車両VAに対する方位等を含む。
加速度センサ28は、車両VAに作用する前後方向の加速度、車幅方向(横方向)の加速度(以下、「横加速度」と称呼する場合もある。)、及び高さ方向の加速度を検出し、これらの加速度を表す検出信号をCAECU20に送信する。
CAECU20は、カメラ物体情報及びレーダ物体情報に基いて物体を認識する。より詳細には、CAECU20は、レーダ物体情報に基いて物体までの距離(縦位置)及び物体の相対速度を特定する。更に、CAECU20は、カメラ物体情報に基いて物体の車幅方向における幅(横幅)及び物体の車幅方向における位置(横位置)を特定する。
エンジンECU40は、アクセルペダル操作量センサ42及びエンジンセンサ44と接続され、これらのセンサの検出信号を受け取る。
アクセルペダル操作量センサ42は、車両VAのアクセルペダル(不図示)の操作量(即ち、アクセルペダル操作量AP)を検出する。運転者がアクセルペダルを操作していない場合のアクセルペダル操作量APは「0」である。
エンジンセンサ44は、図示しない「車両VAの駆動源であるガソリン燃料噴射式・火花点火・内燃機関」の運転状態量を検出するセンサである。エンジンセンサ44は、スロットル弁開度センサ、機関回転速度センサ及び吸入空気量センサ等である。
更に、エンジンECU40は、「スロットル弁アクチュエータ及び燃料噴射弁」等のエンジンアクチュエータ46と接続されている。エンジンECU40は、エンジンアクチュエータ46を駆動することによって内燃機関が発生するトルクを変更し、以て、車両VAの駆動力を調整する。
エンジンECU40は、アクセルペダル操作量APが大きくなるほど目標スロットル弁開度TAtgtが大きくなるように目標スロットル弁開度TAtgtを決定する。エンジンECU40は、スロットル弁の開度が目標スロットル弁開度TAtgtに一致するようにスロットル弁アクチュエータを駆動する。
ブレーキECU50は、車輪速センサ22及びブレーキペダル操作量センサ52と接続され、これらのセンサの検出信号を受け取る。
ブレーキペダル操作量センサ52は、車両VAのブレーキペダル(不図示)の操作量(即ち、ブレーキペダル操作量BP)を検出する。ブレーキペダルが操作されていない場合のブレーキペダル操作量BPは「0」である。
ブレーキECU50は、車輪速センサ22からの車輪パルス信号に基いて各車輪の回転速度及び車速VsをCAECU20と同様に取得する。なお、ブレーキECU50はこれらをCAECU20から取得してもよい。
更に、ブレーキECU50は、ブレーキアクチュエータ54と接続されている。ブレーキアクチュエータ54は油圧制御アクチュエータである。ブレーキアクチュエータ54は、ブレーキペダルの踏力によって作動油を加圧するマスタシリンダと、各車輪に設けられる周知のホイールシリンダを含む摩擦ブレーキ装置と、の間の油圧回路(何れも、図示略)に配設される。ブレーキアクチュエータ54はホイールシリンダに供給する油圧を調整し、車両VAの制動力を調整する。なお、ブレーキアクチュエータ54は「制動アクチュータ」と称呼される場合がある。
ブレーキECU50は、ブレーキペダル操作量BPに基いて「負の値である目標加速度」を決定する。ブレーキECU50は、車両VAの実際の加速度が目標加速度に一致するようにブレーキアクチュエータ54を駆動する。
ステアリングECU60は、周知の電動パワーステアリングシステムの制御装置であって、操舵角センサ62及び操舵用モータ66に接続されている。操舵用モータ66は、車両VAの「図示しないステアリングホイール、ステアリングホイールに連結された図示しないステアリングシャフト及び操舵用ギア機構等を含む図示しないステアリング機構」に組み込まれている。なお、操舵用モータ66は「操舵アクチュータ」と称呼される場合がある。
操舵角センサ62は、車両VAの操舵角θを検出し、操舵角θを表す検出信号をステアリングECU60に出力する。
操舵用モータ66は、ステアリングECU60によって向き及び大きさ等が制御される電力に応じてトルクを発生し、このトルクによって操舵アシストトルクを加えたり、左右の操舵輪を操舵したりする。即ち、操舵用モータ66を用いて舵角を制御できる。なお、上記電力は車両VAに搭載された図示しないバッテリから供給される。
(作動の概要)
CAECU20は、カメラ物体情報及びレーダ物体情報に基いて、車両VAの進行領域内に存在している物体を特定する。即ち、車両VAの右前端部の予測経路と左前端部の予想経路との間の領域(進行領域)に位置している物体を特定する。予想経路は、車両VAの現在の進行方向に基いて推定される。
特定された物体が一つである場合、CAECU20はその特定した物体を障害物OBと見做し、その物体のTTCを演算する。特定された物体が複数である場合、CAECU20はその複数の物体のそれぞれのTTCを演算し、それらの物体の中から最小のTTCを有する物体を障害物OBとして選択する。
CAECU20は、車両VAと障害物OBとの後述するラップ率Lpを取得(演算)する。ラップ率Lpは、障害物と車両VAとの車両VAの車幅方向における重なり度合を表す。
次に、CAECU20は、ラップ率Lpが閾値ラップ率Lpth以上であるか否かを判定する。CAECU20は、ラップ率Lpが閾値ラップ率Lpth以上であると判定した場合、障害物OBのTTCが閾値時間Tth以下になったとき、後述の自動制動制御を開始する。障害物OBのTTCが閾値時間Tth以下になることは、実行条件が成立することと同義である。閾値時間Tthは、ラップ率が小さいほど短くなるように設定される(図5を参照。)。閾値時間Tthは「衝突回避閾値」と称呼される場合もある。自動制動制御は、それ自体周知の制御であり、障害物OBの手前で車両VAを停止させることにより障害物OBのとの衝突を回避するために、車輪に制動力を発生させる制御である。
これに対し、CAECU20は、ラップ率Lpが閾値ラップ率Lpth未満であると判定した場合、回避領域SPが存在するか否かを判定する。なお、回避領域SPは、車両VAが自車線SLからはみ出すことなく(車両VAの全体が自車線SL内に留まりながら)、障害物OBとの衝突を回避し且つ障害物OB以外の物体である通行阻害物POによって車両VAの通行が阻害されない領域である。
より具体的に述べると、CAECU20は、以下の条件1及び条件2の両方が成立する場合、回避領域SPが存在すると判定する。
条件1:車両VAが自車線SLからはみ出すことなく障害物OBを回避できること。
条件2:車両VAの通行が通行阻害物POに阻害されることなく障害物OBを回避できること。
CAECU20は回避領域SPが存在すると判定した場合、障害物のTTCが閾値時間Tth以下になったとき、自動操舵制御を開始する。自動操舵制御は、それ自体周知の制御であり、車両VAが回避領域SPを通る経路を沿って走行し、以て、車両VAが自車線SLからはみ出さずに障害物OBとの衝突を回避するように、車両VAの舵角を自動的に変更する制御である。
一方、CAECU20は、回避領域SPが存在しないと判定した場合、通行阻害物POが存在するか否かを判定する。CAECU20は、通行阻害物POが存在すると判定した場合(即ち、条件2が成立しないことに起因して回避領域SPが存在しないと判定した場合)、仮想ラップ率VLpを演算により取得する。仮想ラップ率VLpは、障害物OB及び通行阻害物を一つの仮想的な物体(以下、「仮想障害物」とも称呼する。)と見做したときの当該仮想障害物と車両VAとのラップ率Lpである。仮想ラップ率VLpの詳細な取得処理は後述するが、仮想ラップ率VLpは障害物のラップ率Lpよりも大きくなる。なお、仮想障害物の車両VAからの距離及び相対速度は、障害物OBの車両VAからの距離及び相対速度とそれぞれ同じである。
CAECU20は、仮想ラップ率VLpが閾値ラップ率Lpth以上であるか否かを判定する。CAECU20は、仮想ラップ率VLpが閾値ラップ率Lpth以上であって且つ障害物OBのTTCが閾値時間Tth以下であるとの特殊条件が成立する場合、自動制動制御を実行する。これに対して、CAECU20は、上記特殊条件が成立しない場合、自動制動制御及び自動操舵制御の何れも実行しない。特に、仮想ラップ率VLpが閾値ラップ率Lpth未満である場合、運転者がステアリングホイールを操作することにより障害物との衝突を回避する可能性が高い。このような場合に自動制動制御が実行されると、運転者に違和感を与えてしまう可能性が高いので、CAECU20は、仮想ラップ率VLpが閾値ラップ率Lpth未満である場合、自動制動制御を実行しないようにしている。
以上から理解されるように、本制御装置10は、通行阻害物POが存在することにより回避領域SPが存在しない場合、特殊条件(VLp≧LPth且つTTC≦Tth)が成立していれば、自動制動制御を実行する。通行阻害物POが存在することにより回避領域SPが存在しない場合には自動操舵制御が実行できないが、特殊条件が成立した場合には自動制動制御が実行される。これによって、運転者に違和感を与えず且つ車両VAが障害物OBとの衝突を回避するための適切な制御を運転者に提供することができる。
以下に、TTC、ラップ率Lp、回避領域SP及び仮想ラップ率VLpを説明する。
<TTC>
CAECU20は、物体までの距離を物体の相対速度で除算することによってTTCを取得する。
<ラップ率>
CAECU20は、以下の式1を用いてラップ率Lpを取得する。

Lp=L/W×100…式1

L:車幅方向Dy(図2A及び図2Bを参照。)において障害物が車両VAと重なっている長さ
W:車両VAの車幅
なお、図2A及び図2Bにおいて、符号Dxは車両VAの前後方向を示し、符号Dyは車両VAの左右方向である車幅方向を示している。
<回避領域SP>
CAECU20は、障害物が車両VAの前端中央部を基準にして右側で重なっているか左側で重なっているかを判定する。図2Bに示した例では、障害物OB(図2Bに示した歩行者Pd)が車両VAと左側で重なっている。この場合、CAECU20は、車両VAを現在位置から右側に進路変更して障害物OBとの衝突を回避しようとする。従って、CAECU20は、障害物OBの右側に回避領域SPが存在するか否かを判定する(即ち、上記条件1及び条件2の両方が成立するか否かを判定する)。
・条件1の判定方法
CSECU20は、障害物OBの右端点RPと右白線RWLとの間の距離Wsp(以下、「判定距離Wsp」と称呼する。)が車両VAの車幅Wに所定のマージンDを加えた値以上である場合(即ち、以下の式2が成立する場合)、条件1が成立すると判定する。

Wsp≧W+D …式2

D:所定のマージン(D>0)
なお、障害物OBが車両VAと右側で重なっている場合、CAECU20は、障害物OBの左端点と左白線LWLとの間の距離を判定距離Wspとして取得する。
・条件2の判定方法
CAECU20は、上記条件1が成立すると判定した場合、自動操舵制御を行ったと仮定したときに車両VAが通過すると予測される領域である後述の通行予測領域PAに物体が存在するか否かを判定する。CAECU20は、通行予測領域PAに物体が存在すればその物体を通行阻害物POと見做す。このため、CAECU20は、通行予測領域PAに物体が存在しないと判定した場合、条件2が成立すると判定する。
通行予測領域PAについて説明する。CAECU20は、障害物の右端点RPから車幅方向Dyの右方向に長さWspを有し、且つ、車両VAの前端から「障害物の最も車両VAに最も近い点CPから前後方向Dxにおける車両VAから遠ざかる方向において所定の長さLspだけ離れた地点」までの長さを有する長方形のスペースを回避領域SPとして設定する(図2B及び図3を参照)。長さLspは、車両VAの前後方向の長さ(車両VAの車長)程度に設定されていてもよいし、車両の2倍程度の長さに設定されていてもよい。
図2Bに示した例においては、判定距離Wspが上記式2を満たし且つ通行阻害物POが存在しないと仮定する。このため、図2Bに示した例においては、CAECU10は、回避領域SPが存在すると判定し、障害物のTTCが閾値時間Tth以下となったときに上記自動操舵制御を実行する。
<仮想ラップ率VLp>
図3を参照しながら、仮想ラップ率VLpの取得処理を説明する。
図3に示した例においては、通行予測領域PAに歩行者Pd’(通行阻害物PO)が存在している。CAECU20は、障害物OB(歩行者Pd)及び通行阻害物PO(歩行者Pd’)を含む仮想障害物のうち最も左端に位置する左端点LP及び最も右端に位置する右端点RPを取得する。図3に示した例では、歩行者Pdから左端点LPが取得され、歩行者Pd’から右端点RPが取得される。CAECU20は、左端点LP及び右端点RPと車両VAとが車幅方向Dyにおいて重なっている長さL’を車幅Wで除算した値を仮想ラップ率VLpとして取得する。図3に示した例では、長さL’は車幅Wと一致するので、仮想ラップ率VLpは「100%」である。
この仮想ラップ率VLpは閾値ラップ率Lpth以上であるため、CAECU10は、障害物のTTCが閾値時間Tth以下であれば、上記特殊条件が成立したと判定し、自動制動制御を実行する。
(具体的作動)
<衝突回避制御ルーチン>
CAECU20のCPU(以下、「CPU」と表記した場合、特に断りがない限り、CAECU20のCPUを指す。)は、図4にフローチャートにより示した衝突回避制御ルーチンを所定時間が経過する毎に実行する。
従って、所定のタイミングになると、CPUは、図4のステップ400から処理を開始し、ステップ405乃至ステップ425の処理をこの順に実行し、ステップ430に進む。
ステップ405:CPUは、カメラ装置24からカメラ物体情報及び白線情報を取得するとともに、ミリ波レーダ装置26からレーダ物体情報を取得する。
ステップ410:CPUは、白線情報に基いて左白線LWL及び右白線RWLを特定し、左白線LWLと右白線RWLとの間の領域を自車線SLとして特定する。
ステップ415:CPUは、カメラ物体情報及びレーダ物体情報に基いて車両VAの進行領域内に位置する物体を特定し、特定した物体のTTCを演算する。
ステップ420:CPUは、TTCが最小の物体を障害物として選択する。
ステップ425:CPUは、障害物のラップ率Lpを演算する。
ステップ430:CPUは、ラップ率Lpが閾値ラップ率Lpth以上であるか否かを判定する。
CPUは、ラップ率Lpが閾値ラップ率Lpth以上であると判定した場合、ステップ430にて「Yes」と判定し、ステップ435及びステップ440を実行する。
ステップ435:CPUは、ラップ率Lpを図5に示した閾値時間マップMapTth(Lp)に適用することによって、閾値時間Tthを取得する。
閾値時間マップMapTth(Lp)は、CAECU20のROMに予め記憶されている。図5に示した閾値時間マップMapTth(Lp)においては、縦軸はTTCを表し、横軸はラップ率Lpを表す。縦軸の値は、紙面下方向に向かうほど小さくなる。横軸の値は、中央から外側に向かうほど小さくなる。横軸の右側部分は、車両VAが障害物に対して右側に位置しているときのラップ率Lpを表し、横軸の左側部分は、車両VAが障害物に対して左側に位置しているときのラップ率Lpを表す。
閾値時間マップMapTth(Lp)によれば、ラップ率Lpが小さくなるに従って小さくなる閾値時間Tthが設定されている。即ち、ラップ率Lpが小さいほど、TTCが閾値時間Tth以下であるとの条件が成立し難くなるように閾値時間Tthは設定されている。なお、閾値ラップ率Lpth以上であるラップ率Lpに関連付けられている閾値時間Tthは自動制動制御用の閾値時間Tthである。閾値ラップ率Lpth未満であるラップ率Lpに関連付けられている閾値時間Tthは自動操舵制御用の閾値時間Tthである。
ステップ440:CPUは、障害物のTTCが閾値時間Tth以下であるか否かを判定する(即ち、実行条件が成立するか否かを判定する)。
CPUは、障害物のTTCが閾値時間Tthよりも大きいと判定した場合、ステップ440にて「No」と判定し、ステップ495に進んで本ルーチンを一旦終了する。
これに対し、CPUは、障害物のTTCが閾値時間Tth以下であると判定した場合、ステップ440にて「Yes」と判定し、ステップ445に進んで自動制動制御を実行し、ステップ495に進んで本ルーチンを一旦終了する。
自動制動制御を詳細に説明する。CPUは、所定の負の値の要求加速度GbpをエンジンECU40及びブレーキECU50に送信する。なお、要求加速度Gbpの値は、車両VAが障害物と衝突する前に停止できる値、又は、ブレーキアクチュエータ54が発生し得る最大の減速度に設定される。
エンジンECU40は、要求加速度Gbpを受信したとき、目標スロットル弁開度TAtgtを「0(最小値)」に設定する。ブレーキECU50は、ブレーキペダル操作量BPに基く目標加速度及び上記要求加速度Gbpのうち小さい方の加速度を最終目標加速度として採用する。そして、そして、ブレーキECU50は、車両VAの前後方向の加速度が上記最終目標加速度と一致するようにブレーキアクチュエータ54を制御する。
一方、CPUは、ステップ430に進んだ場合、ラップ率Lpが閾値ラップ率Lpth未満であると判定すると、ステップ430にて「No」と判定し、ステップ450及びステップ455をこの順に実行する。
ステップ450:CPUは、回避領域SPが存在するか否かを判定するための回避領域判定ルーチン(図6を参照。)を実行する。
ステップ455:CPUは、上記回避領域判定ルーチンにおける回避領域SPが存在すると判定されたか否かを判定する。
CPUは、回避領域SPが存在すると判定した場合、ステップ455にて「Yes」と判定し、ステップ460及びステップ465をこの順に実行する。
ステップ460:CPUは、ラップ率Lpを上記閾値時間マップMapTth(Lp)に適用することによって、閾値時間Tthを取得する。
ステップ465:CPUは、障害物のTTCが閾値時間Tth以下であるか否かを判定する(即ち、実行条件が成立するか否かを判定する)。
CPUは、障害物のTTCが閾値時間Tthよりも大きいと判定した場合、ステップ465にて「No」と判定し、ステップ495に進んで本ルーチンを一旦終了する。これに対し、CPUは、障害物のTTCが閾値時間Tth以下であると判定した場合、ステップ465にて「Yes」と判定し、ステップ470に進んで自動操舵制御を実行する。その後、CPUは、ステップ495に進んで本ルーチンを一旦終了する。
自動操舵制御の詳細を以下に説明する。
CPUは、車両VAが自車線SLからはみ出さず且つ障害物OBとの衝突を回避するように(即ち、車両VAが回避領域SPを走行するように)車両VAの前端中央部が通過する経路である目標走行経路Rtgt(図2Bを参照。)を決定する。目標走行経路Rtgtの決定処理は、特開2017-432262号公報に記載されている。
そして、CPUは、車両VAの前端中央部が目標走行経路Rtgtに沿うように車両VAが走行するように以下の式3に従って目標操舵角θtgtを演算する。

θtgt=K1・Cb+K2・θL+K3・dL …式3

Cb:目標走行経路Rtgtの車両VAの現在位置における曲率である。左に旋回するときと右に旋回するときとでは符号が異なる。
θL:目標走行経路Rtgtと車両VAの進行方向とのずれ角である。
dL:車両VAの前端中央部と目標走行経路Rtgtとの間の車幅方向Dyにおける距離である。
K1、K2、K3:制御ゲイン(定数)である。
CAECU20がカメラ装置24から取得されるカメラ画像に基いてCb、θL及びdLを取得する。
そして、CPUは、目標操舵角θtgtをステアリングECU60に送信する。ステアリングECU60は、操舵角θが目標操舵角θtgtと一致するように操舵用モータ66を駆動することにより舵角を制御する。これにより、車両VAは自車線SLからはみ出さずに障害物OBを回避するように操舵制御される。
一方、CPUは、ステップ455に進んだときに回避領域SPが存在しないと判定した場合、ステップ455にて「No」と判定し、ステップ475に進む。ステップ475にて、CPUは、上記回避領域判定ルーチンにて通行阻害物POが存在すると判定されているか否かを判定する。
回避領域判定ルーチンにて通行阻害物POが存在しないと判定されている場合、上記条件1が成立していない。この場合、CPUは、ステップ475にて「No」と判定し、ステップ495に進んで本ルーチンを一旦終了する。この結果、自動制動制御及び自動操舵制御の何れも実行されない。
一方、回避領域判定ルーチンにて通行阻害物POが存在すると判定されている場合、CPUは、ステップ475にて「Yes」と判定し、ステップ480及びステップ485をこの順に実行し、ステップ495に進んで本ルーチンを一旦終了する。
ステップ480:CPUは、仮想ラップ率VLpを取得する。
ステップ485:CPUは、図7に示した特殊条件判定ルーチンを実行する。
<回避領域判定ルーチン>
CPUは、図4に示したステップ450に進むと、図6にフローチャートにより示した回避領域判定ルーチンの処理をステップ600から開始してステップ605に進む。
ステップ605:CPUは、障害物が車両VAの左側で車両VAと重なっているか否かを判定する。
CPUは、障害物が車両VAの左側で車両VAと重なっていると判定した場合、ステップ605にて「Yes」と判定し、ステップ610乃至ステップ620をこの順に実行する。
ステップ610:CPUは、障害物の右端点RPを取得する。
ステップ615:CPUは、右端点RPと右白線RWLとの間の距離を判定距離Wspとして取得する。
ステップ620:CPUは、判定距離Wspが「車幅WとマージンDとの加算値」以上であるか否かを判定する。
CPUは、判定距離Wspが上記加算値未満であると判定した場合、上記条件1が成立していないと判定する。この場合、CPUは、ステップ620にて「No」と判定し、ステップ625に進んで回避領域SPが存在しないと判定し、その後ステップ695に進んで本ルーチンを一旦終了する。
これに対し、CPUは、判定距離Wspが上記加算値以上であると判定した場合、上記条件1が成立している判定する。この場合、CPUは、ステップ620にて「Yes」と判定し、ステップ630及びステップ635をこの順に実行する。
ステップ630:CPUは、通行予測領域PAを設定する。
ステップ635:CPUは、通行予測領域PAに通行阻害物POが存在するか否かを判定する。
CPUは、通行阻害物POが存在すると判定した場合、条件1が成立するものの条件2が成立していないと判定する。この場合、CPUは、ステップ635にて「Yes」と判定し、ステップ625に進んで回避領域SPが存在しないと判定し、その後ステップ695に進んで本ルーチンを一旦終了する。
これに対し、CPUは、通行阻害物POが存在しないと判定した場合、条件1及び条件2の両方が成立していると判定する。この場合、CPUは、ステップ635にて「No」と判定し、ステップ640に進んで回避領域SPが存在すると判定し、その後ステップ695に進んで本ルーチンを一旦終了する。
一方、CPUは、ステップ605に進んだ時点にて障害物が車両VAの右側で車両VAと重なっていると判定した場合、そのステップ605にて「No」と判定し、ステップ645及びステップ650をこの順に実行してステップ620に進む。
ステップ645:CPUは、障害物の左端点LPを取得する。
ステップ650:CPUは、左端点LPと左白線LWLとの間の距離を判定距離Wspとして取得する。
<特殊条件判定ルーチン>
CPUは、図4に示したステップ485に進むと、図7にフローチャートにより示した特殊条件判定ルーチンの処理をステップ700から開始してステップ705に進む。
ステップ705:CPUは、仮想ラップ率VLpが閾値ラップ率Lpth以上であるか否かを判定する。
CPUは、仮想ラップ率VLpが閾値ラップ率Lpth以上であると判定した場合、ステップ705にて「Yes」と判定し、ステップ710及びステップ715をこの順に実行する。
ステップ710:CPUは、仮想ラップ率VLpを閾値時間マップMapTth(Lp)に適用することによって、閾値時間Tthを取得する。
ステップ715:CPUは、障害物のTTCが閾値時間Tth以下であるか否かを判定する。
CPUは、障害物のTTCが閾値時間Tth以下である場合、上記特殊条件が成立したと判定する。この場合、CPUは、ステップ715にて「Yes」と判定し、ステップ720を実行し、その後ステップ795に進んで本ルーチンを一旦終了する。
ステップ720:CPUは、上記自動制動制御を実行する。
これに対し、CPUは、障害物のTTCが閾値時間Tthよりも大きい場合、上記特殊条件が成立していないと判定する。この場合、CPUは、ステップ715にて「No」と判定し、ステップ795に進んで本ルーチンを一旦終了する。
一方、CPUは、ステップ705に進んだ時点にて仮想ラップ率VLpが閾値ラップ率Lpth未満であると判定した場合、上記特殊条件が成立していないと判定する。この場合、CPUは、そのステップ705にて「No」と判定し、ステップ795に進んで本ルーチンを一旦終了する。
以上から理解されるように、本制御装置10は、通行阻害物POが存在することにより回避領域SPが存在しない場合において、特殊条件が成立したとき自動制動制御を実行するので、運転者に違和感を与えず且つ車両VAが障害物OBとの衝突を回避するための制御を適切に行うことができる。
(変形例)
本変形例では、通行阻害物POが存在することにより回避領域SPが存在しない場合、閾値ラップ率Lpthよりも大きな所定値Vdが仮想ラップ率VLpとして取得される。従って、通行阻害物POが存在することにより回避領域SPが存在しない場合、障害物のTTCが閾値時間Tth以下であるとの特殊条件が成立すれば、自動制動制御が実行される。
本変形例のCAECU20のCPUは、図4に示した衝突回避制御ルーチンに代えて図8に示した衝突回避制御ルーチンを所定時間が経過する毎に実行する。なお、図8では、図4に示したステップと同じ処理を行うステップには、図4にて使用した符号と同じ符号を付与して説明を省略する。
CPUは、所定のタイミングになると、図8に示したステップ800から処理を開始する。CPUは、図8に示したステップ430及びステップ455にてそれぞれ「No」と判定し、図8に示したステップ475にて「Yes」と判定すると、ステップ805に進む。
ステップ805にて、CPUは、上記所定値Vdを仮想ラップ率VLpに設定し、図8に示したステップ495を実行し、その後ステップ895に進んで本ルーチンを一旦終了する。
従って、通行阻害物POが存在することにより回避領域SPが存在しない場合(図8に示したステップ475にて「Yes」)、常に仮想ラップ率VLpは閾値ラップ率Lpt以上となる。このため、通行阻害物POが存在することにより回避領域SPが存在しない場合、CPUは、障害物のTTCが閾値時間Tth以下であれば特殊条件が成立したと判定し、自動制動制御を実行する。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用できる。
CAECU20は、車両VAの前端中央部と各物体との間の距離LをTTCの代わりに用いてもよい。これらの距離L及びTTCは、各物体と車両VAとの衝突の可能性を表す値であり、「衝突指標値」と称呼される。
CAECU20は、以下の式4を用いてラップ率Lpを取得してもよい。

Lp=La/Wa×100…式4

La:車幅方向Dyにおいて障害物が「車両VAの右端部から右方向に所定距離αだけ離れた右位置と車両VAの左端部から左方向に所定距離αだけ離れた左位置との間の領域」と重なっている長さ
Wa:上記右位置と上記左位置との間の距離(即ちWa=W+2α)
更に、図4に示したルーチンにおいて、CPUは、ステップ480にて仮想ラップ率VLpを取得した後にステップ485を実行せずにステップ430に戻るように構成されてもよい。この場合、ステップ430にて、CPUは、仮想ラップ率VLpが閾値ラップ率Lpth以上であるか否かを判定する。
この場合、仮想ラップ率VLpが閾値ラップ率Lpth未満であるためにCPUがステップ430にて「No」と判定し、ステップ450に進んだ場合に実行される回避領域判定ルーチンでは、CPUは、仮想障害物を障害物と見做して処理を進める。より詳細には、ステップ605にて、CPUは、仮想障害物が車両VAの左側で車両VAと重なっているか否かを判定する。ステップ610にて、CPUは、仮想障害物の右端点RPを取得する。ステップ635にて、CPUは、仮想障害物の左端点LPを取得する。
同様に、図8に示したルーチンにおいて、CPUは、ステップ805にて仮想ラップ率VLpを取得した後に図8に示したステップ485を実行せずに図8に示したステップ430に戻るように構成されてもよい。
更に、図5に示した閾値時間マップMapTth(Lp)においては、閾値ラップ率Lpth以上であるラップ率Lpに対応する閾値時間Tthは、ラップ率Lpにかかわらず一定値であってもよい(図5に示した点線を参照。)。
図6に示したステップ630にて設定される通行予測領域PAは、「車両VAが障害物に衝突せず且つ車両VAが自車線SLからはみ出さない目標走行経路Rtgtを走行したときに車両VAが通過する領域」であってもよい。
カメラ装置24は、ステレオカメラ装置であってもよいし単眼カメラ装置であってもよい。ミリ波レーダ装置26は、ミリ波以外の無線媒体を送信し、反射された無線媒体を受信することによって物体を検出できるリモートセンシング装置であってもよい。更に、本制御装置10は、カメラ物体情報に基いて物体の車両VAに対する位置を正確に特定できれば、ミリ波レーダ装置26を備えなくてもよい。本制御装置10は、レーダ物体情報に基いて物体の車両VAに対する位置を正確に特定できれば、カメラ装置24を備えなくてもよい。
更に、車両制御装置10は、電気自動車及びハイブリッド自動車にも適用可能である。
10…車両制御装置、20…衝突回避ECU(CAECU)、22…車輪速センサ、24…カメラ装置、26…ミリ波レーダ装置、28…加速度センサ、40…エンジンECU、42…アクセルペダル操作量センサ、44…エンジンセンサ、46…エンジンアクチュエータ、50…ブレーキECU、52…ブレーキペダル操作量センサ、54…ブレーキアクチュエータ、60…ステアリングECU、62…操舵角センサ、66…操舵用モータ

Claims (3)

  1. 車両の周辺に位置する物体及び前記車両が現在走行している自車線に関する情報を含む周辺情報を取得する情報取得装置と、
    前記車両に制動力を付与可能に構成された制動アクチュエータと、
    前記車両の舵角を変更可能に構成された操舵アクチュエータと、
    前記制動アクチュエータ及び前記操舵アクチュエータを制御する制御ユニットと、
    を備え、
    前記制御ユニットは、
    前記車両の進行領域内に位置する物体と前記車両とが衝突する可能性を表す衝突指標値を前記周辺情報に基いて取得するとともに、前記衝突指標値が表す前記車両と衝突する可能性が最も高い物体である障害物と前記車両との前記車両の車幅方向における重なり度合を表すラップ率を前記周辺情報に基いて取得し、
    前記ラップ率が所定の閾値ラップ率以上である場合、前記障害物についての衝突指標値と衝突回避閾値とが所定の条件を満たしたときに成立する実行条件が成立したときに前記制動アクチュエータを駆動して前記車両に前記制動力を付与する自動制動制御を実行し、
    前記ラップ率が前記閾値ラップ率未満であって更に前記車両が前記自車線からはみ出すことなく前記障害物との衝突を回避し且つ前記障害物以外の物体である通行阻害物によって前記車両の通行が阻害されない回避領域が存在する場合、前記実行条件が成立したときに前記車両を前記回避領域に向けて走行させるように前記操舵アクチュエータに前記舵角を変更させる自動操舵制御を実行し、
    前記ラップ率が前記閾値ラップ率未満であって更に前記回避領域が存在しない場合、前記通行阻害物が存在していれば、前記実行条件が成立したとの条件を少なくとも含む特殊条件が成立したときに前記自動制動制御を実行する、
    ように構成された、
    車両制御装置。
  2. 請求項1に記載の車両制御装置において、
    前記制御ユニットは、
    前記ラップ率が前記閾値ラップ率未満であって更に前記回避領域が存在しない場合、前記通行阻害物が存在していれば、前記障害物及び前記通行阻害物を一つの仮想的な物体と見做した仮想障害物と前記車両との前記車両の車幅方向における重なり度合を表す仮想ラップ率を取得し、
    前記仮想ラップ率が前記閾値ラップ率以上であって且つ前記実行条件が成立した場合、前記特殊条件が成立したと判定する、
    ように構成された、
    車両制御装置。
  3. 請求項2に記載の車両制御装置において、
    前記制御ユニットは、
    前記ラップ率が前記閾値ラップ率以上である場合、及び、前記ラップ率が前記閾値ラップ率未満であって更に前記回避領域が存在する場合の何れかの場合における前記実行条件が成立するか否かの判定では、前記衝突回避閾値を前記ラップ率が小さくなるほど前記実行条件が成立し難くなるような値に設定し、
    前記ラップ率が前記閾値ラップ率未満であって更に前記回避領域が存在しない場合であって且つ前記通行阻害物が存在している場合における前記実行条件が成立するか否かの判定では、前記衝突回避閾値を前記仮想ラップ率が小さくなるほど前記実行条件が成立し難くなるような値に設定する、
    ように構成された、
    車両制御装置。
JP2020023707A 2020-02-14 2020-02-14 車両制御装置 Active JP7393097B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020023707A JP7393097B2 (ja) 2020-02-14 2020-02-14 車両制御装置
CN202110170931.6A CN113264040B (zh) 2020-02-14 2021-02-08 车辆控制装置
US17/169,830 US11760343B2 (en) 2020-02-14 2021-02-08 Vehicle control apparatus
DE102021103358.6A DE102021103358A1 (de) 2020-02-14 2021-02-12 Fahrzeugsteuervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023707A JP7393097B2 (ja) 2020-02-14 2020-02-14 車両制御装置

Publications (2)

Publication Number Publication Date
JP2021128619A JP2021128619A (ja) 2021-09-02
JP7393097B2 true JP7393097B2 (ja) 2023-12-06

Family

ID=77061014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023707A Active JP7393097B2 (ja) 2020-02-14 2020-02-14 車両制御装置

Country Status (4)

Country Link
US (1) US11760343B2 (ja)
JP (1) JP7393097B2 (ja)
CN (1) CN113264040B (ja)
DE (1) DE102021103358A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468409B2 (ja) * 2021-03-01 2024-04-16 トヨタ自動車株式会社 車両衝突回避支援装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330949A (ja) 2003-05-09 2004-11-25 Honda Motor Co Ltd 車両の走行安全装置
JP2008117082A (ja) 2006-11-01 2008-05-22 Toyota Motor Corp 走行制御計画評価装置
WO2016159297A1 (ja) 2015-03-31 2016-10-06 株式会社デンソー 安全装置作動タイミング制御方法および装置
JP2016192165A (ja) 2015-03-31 2016-11-10 株式会社デンソー 運転支援装置、及び運転支援方法
JP2017043262A (ja) 2015-08-28 2017-03-02 トヨタ自動車株式会社 衝突回避支援装置
JP2017056795A (ja) 2015-09-15 2017-03-23 マツダ株式会社 車両の制御装置
WO2018079069A1 (ja) 2016-10-25 2018-05-03 本田技研工業株式会社 車両制御装置
JP2018116637A (ja) 2017-01-20 2018-07-26 株式会社デンソー 車両制御装置
JP2018144688A (ja) 2017-03-07 2018-09-20 トヨタ自動車株式会社 衝突回避支援装置
JP2019093934A (ja) 2017-11-24 2019-06-20 株式会社デンソー 車両の制動支援装置、制御装置及び制動支援方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849040B2 (ja) * 2012-11-28 2016-01-27 富士重工業株式会社 車両の運転支援制御装置
JP6115579B2 (ja) * 2015-02-16 2017-04-19 トヨタ自動車株式会社 衝突回避装置
JP6610585B2 (ja) * 2017-03-13 2019-11-27 トヨタ自動車株式会社 衝突回避制御装置
JP6972744B2 (ja) * 2017-08-01 2021-11-24 トヨタ自動車株式会社 運転支援装置
DE102018221241A1 (de) * 2018-12-07 2020-06-10 Volkswagen Aktiengesellschaft Fahrassistenzsystem für einen Kraftwagen, Kraftwagen und Verfahren zum Betreiben eines Kraftwagens
JP7424760B2 (ja) * 2019-06-12 2024-01-30 株式会社Subaru 車両制御装置
CN110758392A (zh) * 2019-10-17 2020-02-07 中通客车控股股份有限公司 一种客车用自主变道控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330949A (ja) 2003-05-09 2004-11-25 Honda Motor Co Ltd 車両の走行安全装置
JP2008117082A (ja) 2006-11-01 2008-05-22 Toyota Motor Corp 走行制御計画評価装置
WO2016159297A1 (ja) 2015-03-31 2016-10-06 株式会社デンソー 安全装置作動タイミング制御方法および装置
JP2016192165A (ja) 2015-03-31 2016-11-10 株式会社デンソー 運転支援装置、及び運転支援方法
JP2017043262A (ja) 2015-08-28 2017-03-02 トヨタ自動車株式会社 衝突回避支援装置
JP2017056795A (ja) 2015-09-15 2017-03-23 マツダ株式会社 車両の制御装置
WO2018079069A1 (ja) 2016-10-25 2018-05-03 本田技研工業株式会社 車両制御装置
JP2018116637A (ja) 2017-01-20 2018-07-26 株式会社デンソー 車両制御装置
JP2018144688A (ja) 2017-03-07 2018-09-20 トヨタ自動車株式会社 衝突回避支援装置
JP2019093934A (ja) 2017-11-24 2019-06-20 株式会社デンソー 車両の制動支援装置、制御装置及び制動支援方法

Also Published As

Publication number Publication date
US11760343B2 (en) 2023-09-19
CN113264040B (zh) 2024-01-16
JP2021128619A (ja) 2021-09-02
DE102021103358A1 (de) 2021-08-19
US20210253092A1 (en) 2021-08-19
CN113264040A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
JP7132713B2 (ja) 車両走行制御装置、車両走行制御システムおよび車両走行制御方法
JP6859902B2 (ja) 車両制御装置
CN113942499B (zh) 碰撞躲避辅助装置
JP7230795B2 (ja) 車両制御装置
JP7147524B2 (ja) 車両制御装置
JP7371756B2 (ja) 車線変更支援装置
JP7272255B2 (ja) 運転支援装置
CN113942498A (zh) 碰撞躲避辅助装置
US20230382455A1 (en) Collision avoidance support apparatus
JP7205444B2 (ja) 運転支援装置
CN113942501A (zh) 车辆控制装置
JP7393097B2 (ja) 車両制御装置
JP2009018621A (ja) 走行制御装置及びこれを用いた輸送システム
JP2023073839A (ja) 車両制御装置
CN114852065A (zh) 车辆控制装置
JP2022125597A (ja) 車両衝突回避支援装置
JP2020069953A (ja) 車両用運転支援装置
JP2020132028A (ja) 車両運転支援装置
JP7343840B2 (ja) 車両制御装置
JP2023141765A (ja) 運転支援装置、運転支援方法及び運転支援プログラム
JP2022161212A (ja) 車両の自動運転装置
JP2024060279A (ja) 運転支援装置、運転支援方法及びプログラム
JP2022113287A (ja) 車両衝突回避支援装置
JP2023082817A (ja) 運転支援装置
JP2024066052A (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231123

R151 Written notification of patent or utility model registration

Ref document number: 7393097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151