JP7364375B2 - carbon composite parts - Google Patents

carbon composite parts Download PDF

Info

Publication number
JP7364375B2
JP7364375B2 JP2019130301A JP2019130301A JP7364375B2 JP 7364375 B2 JP7364375 B2 JP 7364375B2 JP 2019130301 A JP2019130301 A JP 2019130301A JP 2019130301 A JP2019130301 A JP 2019130301A JP 7364375 B2 JP7364375 B2 JP 7364375B2
Authority
JP
Japan
Prior art keywords
pyrolytic carbon
carbon layer
clusters
composite member
pyrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019130301A
Other languages
Japanese (ja)
Other versions
JP2021014383A (en
Inventor
智也 小林
比呂 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2019130301A priority Critical patent/JP7364375B2/en
Priority to CN202010650322.6A priority patent/CN112209716B/en
Priority to KR1020200085239A priority patent/KR102406281B1/en
Publication of JP2021014383A publication Critical patent/JP2021014383A/en
Application granted granted Critical
Publication of JP7364375B2 publication Critical patent/JP7364375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、炭素複合部材に関する。 The present invention relates to a carbon composite member.

黒鉛等の炭素材料は、化学的安定性、耐熱性、機械特性に優れていることから、半導体製造、化学工業、機械、原子力等、多くの分野にわたって使用されている。また、黒鉛自体は多孔体であるため、細孔の内部にガス、水分、不純物等を吸着しやすいため、細孔内部が汚染されやすい。そのため、これら汚染物質が細孔から再放出しないように熱分解炭素のコーティングを施すことで、黒鉛の悪影響を軽減する技術が知られている。 Carbon materials such as graphite have excellent chemical stability, heat resistance, and mechanical properties, and are therefore used in many fields such as semiconductor manufacturing, chemical industry, machinery, and nuclear power. Further, since graphite itself is a porous material, gas, moisture, impurities, etc. are easily adsorbed inside the pores, so that the insides of the pores are easily contaminated. Therefore, a known technique is to reduce the negative effects of graphite by applying a coating of pyrolytic carbon to prevent these pollutants from being re-released from the pores.

熱分解炭素は、硬く、気体不浸透で緻密な膜を形成するため、特に高純度の環境下での使用に適している。また、近年、半導体製造装置が大型化し、装置用部品も大型化している。ここで特許文献1には、熱分解炭素を被覆した大型の黒鉛材料が取扱い時に落下しやすいことを課題とし、その対策として、炭素基材上に熱分解炭素層を形成し、更にその表面に、炭素系粉末を核としてその周りに熱分解炭素を結晶成長させた突起を複数形成することにより、滑り止め加工を施して落下を防止し、作業性を改善した炭素複合部材が提案されている。 Pyrolytic carbon forms a hard, gas-impermeable, and dense film, making it particularly suitable for use in high-purity environments. Furthermore, in recent years, semiconductor manufacturing equipment has become larger and the parts for the equipment have also become larger. Here, Patent Document 1 addresses the problem that a large graphite material coated with pyrolytic carbon tends to fall when handled, and as a countermeasure, a pyrolytic carbon layer is formed on the carbon base material, and the surface is further coated with , a carbon composite member has been proposed in which a carbon-based powder is used as a core and a plurality of protrusions are formed around which pyrolytic carbon crystals are grown to provide an anti-slip finish to prevent falls and improve workability. .

特開2008-222456号公報Japanese Patent Application Publication No. 2008-222456

しかしながら、特許文献1に記載された炭素複合部材は、炭素系粉末を核として熱分解炭素を結晶成長させた突起を形成しているので、炭素複合部材に衝撃が加わり突起が破損した場合、核となった炭素系粉末にまでクラックが到達しやすくなる。また、炭素系粉末は基材の上に載っているため、該クラックは熱分解炭素層を貫通し、リークの原因となる。 However, since the carbon composite member described in Patent Document 1 has protrusions formed by growing crystals of pyrolytic carbon using carbon-based powder as the core, if an impact is applied to the carbon composite member and the protrusion is damaged, the core Cracks can easily reach the carbon-based powder. Furthermore, since the carbon-based powder is placed on the base material, the cracks penetrate through the pyrolytic carbon layer and cause leakage.

本発明では、上記課題を鑑み、黒鉛基材上に熱分解炭素層が形成された炭素複合部材であって、滑り止め機能を備えるとともに、衝撃が加わってもクラックが熱分解炭素層を貫通しにくい炭素複合部材を提供することを目的とする。 In view of the above problems, the present invention provides a carbon composite member in which a pyrolytic carbon layer is formed on a graphite base material, which has an anti-slip function and prevents cracks from penetrating the pyrolytic carbon layer even when an impact is applied. The purpose of the present invention is to provide a carbon composite member that is difficult to use.

上記課題を解決するための本発明に係る炭素複合部材は、以下の通りである。 The carbon composite member according to the present invention for solving the above problems is as follows.

(1)黒鉛基材上に熱分解炭素層が形成された炭素複合部材であって、
前記熱分解炭素層における少なくとも一部の表面に、熱分解炭素のクラスターが複数形成されていることを特徴とする炭素複合部材。
(1) A carbon composite member in which a pyrolytic carbon layer is formed on a graphite base material,
A carbon composite member characterized in that a plurality of clusters of pyrolytic carbon are formed on at least a portion of the surface of the pyrolytic carbon layer.

本発明に係る炭素複合部材によれば、熱分解炭素層における少なくとも一部の表面に、熱分解炭素のクラスターが複数形成されており、該クラスターの存在により熱分解炭素層の表面に突起が形成され、粗面となるため、高い滑り止め効果がある。また、熱分解炭素のクラスターは、熱分解炭素層の表面に付着しているだけであるため、クラスターが剥がれても熱分解炭素層を貫通するクラックが生じにくい。
また、本発明に係る炭素複合部材は、その使用時に他の部材と固着しても、固着するのは、熱分解炭素層表面における熱分解炭素のクラスターのみであるため、他の部材から容易に分離可能であり、熱分解炭素層へのダメージが小さくなる。
According to the carbon composite member according to the present invention, a plurality of clusters of pyrolytic carbon are formed on at least a portion of the surface of the pyrolytic carbon layer, and projections are formed on the surface of the pyrolytic carbon layer due to the presence of the clusters. Because it has a rough surface, it has a high anti-slip effect. Further, since the pyrolytic carbon clusters are only attached to the surface of the pyrolytic carbon layer, even if the clusters are peeled off, cracks that penetrate the pyrolytic carbon layer are unlikely to occur.
In addition, even if the carbon composite member according to the present invention sticks to other members during use, it is only the clusters of pyrolytic carbon on the surface of the pyrolytic carbon layer that are stuck, so that it is easily separated from other members. Separation is possible, and damage to the pyrolytic carbon layer is reduced.

また、本発明に係る炭素複合部材は、下記(2)~(5)の態様であることが好ましい。 Further, the carbon composite member according to the present invention preferably has the following embodiments (2) to (5).

(2)前記クラスターは、CVD法により得られた沈積物である。 (2) The cluster is a deposit obtained by a CVD method.

熱分解炭素のクラスターがCVD法により得られた沈積物であることにより、熱分解炭素層と同質材料であるので内部応力が生じにくくクラックの発生源になりにくい。 Since the pyrolytic carbon clusters are deposits obtained by the CVD method, they are made of the same material as the pyrolytic carbon layer, so internal stress is less likely to occur and they are less likely to become a source of cracks.

(3)前記クラスターは、最大径が10~50μmである。 (3) The cluster has a maximum diameter of 10 to 50 μm.

熱分解炭素のクラスターの最大径が上記範囲であることにより、炭素複合部材の寸法精度が高く、固着防止や滑り止め効果が良好に発揮される。 When the maximum diameter of the pyrolytic carbon cluster is within the above range, the carbon composite member has high dimensional accuracy and exhibits excellent adhesion prevention and anti-slip effects.

(4)前記熱分解炭素層の表面における算術平均粗さRaが1~3μmである。 (4) The arithmetic mean roughness Ra of the surface of the pyrolytic carbon layer is 1 to 3 μm.

熱分解炭素層の表面における算術表面粗さRaが上記範囲であることにより、クラスターが熱分解炭素層の中に埋没しにくく、固着の防止や滑り止め効果が発揮されやすい。また、炭素複合部材の寸法に与える影響が小さく、寸法精度の高い炭素複合部材として使用することができる。 When the arithmetic surface roughness Ra on the surface of the pyrolytic carbon layer is within the above range, the clusters are less likely to be buried in the pyrolytic carbon layer, and the prevention of sticking and anti-slip effects are likely to be exhibited. Moreover, the influence on the dimensions of the carbon composite member is small, and the carbon composite member can be used as a carbon composite member with high dimensional accuracy.

(5)前記熱分解炭素層の厚さが5~200μmである。 (5) The thickness of the pyrolytic carbon layer is 5 to 200 μm.

熱分解炭素層の厚さが5μm以上であることにより、多孔体である黒鉛基材の凹凸を十分に覆うことができ、気体の不浸透性を確保することができる。また、熱分解炭素層の厚さが200μm以下であることにより、黒鉛基材と熱分解炭素層の熱歪みによる反りや剥がれを防止することができる。 When the thickness of the pyrolytic carbon layer is 5 μm or more, the unevenness of the porous graphite base material can be sufficiently covered, and gas impermeability can be ensured. Further, by setting the thickness of the pyrolytic carbon layer to 200 μm or less, it is possible to prevent warpage and peeling of the graphite base material and the pyrolytic carbon layer due to thermal distortion.

本発明に係る炭素複合部材によれば、熱分解炭素層における少なくとも一部の表面に、熱分解炭素のクラスターが複数形成されており、該クラスターの存在により熱分解炭素層の表面に突起が形成され、粗面となるため、高い滑り止め効果がある。また、熱分解炭素のクラスターは、熱分解炭素層の表面に付着しているだけであるため、クラスターが剥がれても熱分解炭素層を貫通するクラックが生じにくい。
また、本発明に係る炭素複合部材は、その使用時に他の部材と固着しても、固着するのは、熱分解炭素層表面における熱分解炭素のクラスターのみであるため、他の部材から容易に分離可能であり、熱分解炭素層へのダメージが小さくなる。
According to the carbon composite member according to the present invention, a plurality of clusters of pyrolytic carbon are formed on at least a portion of the surface of the pyrolytic carbon layer, and projections are formed on the surface of the pyrolytic carbon layer due to the presence of the clusters. Because it has a rough surface, it has a high anti-slip effect. Further, since the pyrolytic carbon clusters are only attached to the surface of the pyrolytic carbon layer, even if the clusters are peeled off, cracks that penetrate the pyrolytic carbon layer are unlikely to occur.
In addition, even if the carbon composite member according to the present invention sticks to other members during use, it is only the clusters of pyrolytic carbon on the surface of the pyrolytic carbon layer that are stuck, so that it is easily separated from other members. Separation is possible, and damage to the pyrolytic carbon layer is reduced.

図1は、本発明の実施の形態に係る炭素複合部材の断面模式図である。FIG. 1 is a schematic cross-sectional view of a carbon composite member according to an embodiment of the present invention. 図2は、実施例1で得られた炭素複合部材の表面を撮影した走査電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of the surface of the carbon composite member obtained in Example 1. 図3は、比較例1で得られた炭素複合部材の表面を撮影した走査電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the surface of the carbon composite member obtained in Comparative Example 1.

(発明の詳細な説明)
図1は、本発明の実施の形態に係る炭素複合部材の断面模式図である。本実施形態に係る炭素複合部材1は、黒鉛基材2上に熱分解炭素層3が形成され、更に、熱分解炭素層3における少なくとも一部の表面に、熱分解炭素のクラスター4、すなわち、熱分解炭素を原料とするパーティクルの沈積物が複数形成されている。
(Detailed description of the invention)
FIG. 1 is a schematic cross-sectional view of a carbon composite member according to an embodiment of the present invention. In the carbon composite member 1 according to the present embodiment, a pyrolytic carbon layer 3 is formed on a graphite base material 2, and clusters 4 of pyrolytic carbon are formed on at least a part of the surface of the pyrolytic carbon layer 3, that is, Multiple deposits of particles made from pyrolytic carbon are formed.

そのため、本実施形態に係る炭素複合部材1の最表面は、熱分解炭素のクラスター4の存在により熱分解炭素層3の表面に突起が形成され、粗面となるため、高い滑り止め効果がある。また、熱分解炭素のクラスター4は、熱分解炭素層3の表面に付着しているだけであるため、クラスター4が剥がれても熱分解炭素層3を貫通するクラックが生じにくい。
更には、本実施形態に係る炭素複合部材1は、その使用時に他の部材と固着しても、固着するのは、熱分解炭素層3の表面における熱分解炭素のクラスター4のみであるため、他の部材から容易に分離可能であり、熱分解炭素層3へのダメージが小さくなる。
Therefore, the outermost surface of the carbon composite member 1 according to the present embodiment has a high anti-slip effect because projections are formed on the surface of the pyrolytic carbon layer 3 due to the presence of the pyrolytic carbon clusters 4 and the surface becomes rough. . Furthermore, since the pyrolytic carbon clusters 4 are only attached to the surface of the pyrolytic carbon layer 3, cracks that penetrate the pyrolytic carbon layer 3 are unlikely to occur even if the clusters 4 are peeled off.
Furthermore, even if the carbon composite member 1 according to the present embodiment is fixed to other members during use, only the clusters 4 of pyrolytic carbon on the surface of the pyrolytic carbon layer 3 are fixed. It can be easily separated from other members, and damage to the pyrolytic carbon layer 3 is reduced.

熱分解炭素のクラスター4は、CVD法により得られた沈積物であることが好ましい。熱分解炭素のクラスター4がCVD法により得られた沈積物であることにより、熱分解炭素層3と同質材料であるので内部応力が生じにくくクラックの発生源になりにくい。 The pyrolytic carbon cluster 4 is preferably a deposit obtained by a CVD method. Since the pyrolytic carbon clusters 4 are deposits obtained by the CVD method, they are made of the same material as the pyrolytic carbon layer 3, so internal stress is less likely to occur and they are less likely to become a source of cracks.

熱分解炭素のクラスター4は、その最大径が10~50μmであることが好ましい。熱分解炭素のクラスター4の最大径が10μm以上であると、該クラスター4が熱分解炭素層3の中に埋没しにくくなり、固着の防止や滑り止め効果が発揮されやすい。一方、熱分解炭素のクラスター4の最大径が50μm以下であると、炭素複合部材1の寸法に与える影響が小さく、寸法精度の高い部材として使用することができる。 The maximum diameter of the pyrolytic carbon clusters 4 is preferably 10 to 50 μm. When the maximum diameter of the pyrolytic carbon clusters 4 is 10 μm or more, the clusters 4 are less likely to be buried in the pyrolytic carbon layer 3, and the effect of preventing sticking and slipping is easily exhibited. On the other hand, when the maximum diameter of the pyrolytic carbon clusters 4 is 50 μm or less, the influence on the dimensions of the carbon composite member 1 is small, and it can be used as a member with high dimensional accuracy.

このため、熱分解炭素のクラスター4の最大径が10~50μmであることにより、寸法精度が高く、固着防止や滑り止め効果を良好に発揮する炭素複合部材1を提供することができる。なお、これらの効果をより良好に発揮させるためには、熱分解炭素のクラスター4の最大径は20~40μmであることがより好ましい。 Therefore, by setting the maximum diameter of the pyrolytic carbon clusters 4 to 10 to 50 μm, it is possible to provide a carbon composite member 1 with high dimensional accuracy and excellent anti-sticking and anti-slip effects. In order to better exhibit these effects, it is more preferable that the maximum diameter of the pyrolytic carbon clusters 4 is 20 to 40 μm.

なお、熱分解炭素のクラスター4の大きさ(サイズ)は、次のようにして測定することができる。
熱分解炭素のクラスター4の大きさは、熱分解炭素層3の表面に付着したクラスター4をそのまま測定してもよく、数が多く個々のクラスター4の判別がつかない場合には、クラスター4を剥ぎ取って確認する。クラスター4を剥ぎ取って確認する場合には、粘着テープの表面に固定して電子顕微鏡で拡大し、サイズを測定することができる。
Note that the size of the pyrolytic carbon cluster 4 can be measured as follows.
The size of the clusters 4 of pyrolytic carbon may be determined by directly measuring the clusters 4 attached to the surface of the pyrolytic carbon layer 3. If there are many clusters 4 and it is difficult to distinguish between them, the size of the clusters 4 may be determined by measuring the clusters 4 directly. Peel it off and check. When the cluster 4 is to be peeled off and confirmed, the size can be measured by fixing it to the surface of an adhesive tape and enlarging it with an electron microscope.

剥ぎ取ったクラスター4を粘着テープの表面に固定して測定する場合、導電性の両面テープを用いたり、金蒸着をするなどして試料の導電性を確保することにより、鮮明な画像を得ることができる。 When measuring by fixing the peeled cluster 4 on the surface of an adhesive tape, it is possible to obtain a clear image by ensuring the conductivity of the sample by using conductive double-sided tape or gold vapor deposition. I can do it.

また、熱分解炭素のクラスター4は、平板状に成長するため、熱分解炭素層3の表面に面状に付着する。そのため、剥ぎ取った熱分解炭素のクラスター4は、導電テープの表面に面状に付着する。そして、熱分解炭素のクラスター4のサイズを測定する場合には、最も長い方向のサイズ、例えば楕円であれば長径を最大径とする。 Furthermore, since the clusters 4 of pyrolytic carbon grow in a flat plate shape, they adhere to the surface of the pyrolytic carbon layer 3 in a planar manner. Therefore, the stripped clusters 4 of pyrolytic carbon adhere to the surface of the conductive tape in a planar manner. When measuring the size of the pyrolytic carbon cluster 4, the size in the longest direction, for example, in the case of an ellipse, the major axis is taken as the maximum diameter.

続いて、熱分解炭素のクラスター4が複数形成されている状態、すなわち該クラスター4が点在している状態を示す指標として、熱分解炭素層3の表面における算術平均粗さRaで表すことができる。本実施形態に係る炭素複合部材1においては、算術平均粗さRa=1~3μmであることが好ましい。
算術表面粗さRaが1μm以上であると、クラスター4が熱分解炭素層3の中に埋没しにくくなり、固着の防止や滑り止め効果が発揮されやすい。一方、算術平均粗さRaが3μm以下であると、炭素複合部材1の寸法に与える影響が小さく、寸法精度の高い部材として使用することができる。
Next, as an index indicating the state in which a plurality of pyrolytic carbon clusters 4 are formed, that is, the state in which the clusters 4 are scattered, it can be expressed by the arithmetic mean roughness Ra on the surface of the pyrolytic carbon layer 3. can. In the carbon composite member 1 according to the present embodiment, it is preferable that the arithmetic mean roughness Ra is 1 to 3 μm.
When the arithmetic surface roughness Ra is 1 μm or more, the clusters 4 are less likely to be buried in the pyrolytic carbon layer 3, and the prevention of sticking and anti-slip effects are likely to be exhibited. On the other hand, when the arithmetic mean roughness Ra is 3 μm or less, the influence on the dimensions of the carbon composite member 1 is small, and it can be used as a member with high dimensional accuracy.

なお、算術平均粗さRaは、JIS B 0031に準拠して測定することができる。
また、本実施形態において、上記算術平均粗さRaを求めるにあたっては、基準長さを0.5mmとし、熱分解炭素層3の表面における任意の3箇所で測定した算術平均粗さRaの平均値でもって判断するものとする。
Note that the arithmetic mean roughness Ra can be measured in accordance with JIS B 0031.
In addition, in this embodiment, when calculating the arithmetic mean roughness Ra, the reference length is 0.5 mm, and the average value of the arithmetic mean roughness Ra measured at three arbitrary points on the surface of the pyrolytic carbon layer 3. I will judge accordingly.

熱分解炭素層3の厚さは、5~200μmであることが好ましい。熱分解炭素層3の厚さが5μm以上であると、多孔体である黒鉛基材2の凹凸を十分に覆うことができ、ガス、水分、不純物等を細孔内部に吸着しにくくなり、これら気体や不純物の不浸透性を確保することができる。一方、熱分解炭素層3の厚さが200μm以下であると、熱分解炭素層3の熱歪みよる反り、剥がれを防止することができる。
これらの効果をより良好に発揮させるためには、熱分解炭素層3の厚さは10~100μmがより好ましく、20~50μmが更に好ましい。
The thickness of the pyrolytic carbon layer 3 is preferably 5 to 200 μm. When the thickness of the pyrolytic carbon layer 3 is 5 μm or more, it can sufficiently cover the irregularities of the graphite base material 2, which is a porous body, and it becomes difficult for gas, moisture, impurities, etc. to be adsorbed inside the pores, and these Impermeability to gases and impurities can be ensured. On the other hand, when the thickness of the pyrolytic carbon layer 3 is 200 μm or less, warping and peeling of the pyrolytic carbon layer 3 due to thermal distortion can be prevented.
In order to better exhibit these effects, the thickness of the pyrolytic carbon layer 3 is more preferably 10 to 100 μm, and even more preferably 20 to 50 μm.

なお、熱分解炭素層3の厚さは、偏光顕微鏡、走査電子顕微鏡等を用いて、標準スケールとの比較から測定することができる。走査電子顕微鏡などで既に標準スケールが表示されている場合、それを用いて厚さを算出することができる。 Note that the thickness of the pyrolytic carbon layer 3 can be measured by comparison with a standard scale using a polarizing microscope, a scanning electron microscope, or the like. If a standard scale is already displayed on a scanning electron microscope or the like, the thickness can be calculated using it.

なお、本実施形態に係る炭素複合部材1における黒鉛基材2としては、等方性黒鉛材であることが好ましい。等方性黒鉛は、特性の異方性が小さいため、熱分解炭素層3との熱膨張係数差が場所、方向による差異が小さくはがれにくくすることができる。 Note that the graphite base material 2 in the carbon composite member 1 according to the present embodiment is preferably an isotropic graphite material. Since isotropic graphite has a small anisotropy of properties, the difference in coefficient of thermal expansion between the pyrolytic carbon layer 3 and the pyrolytic carbon layer 3 is small depending on location and direction, making it difficult to peel off.

続いて、本実施形態に係る炭素複合部材1は、例えば次のようにして得ることができる。 Subsequently, the carbon composite member 1 according to this embodiment can be obtained, for example, as follows.

まず、目的の形状の黒鉛基材2を準備する。黒鉛基材2に熱分解炭素層3を形成すると、厚さ分だけ大きくなるので、炭素複合部材1としての最終厚さや、形成する熱分解炭素層3の厚さに応じて薄めに加工することが好ましい。また、熱分解炭素層3との密着性を高めるために、黒鉛基材2の表面を粗面に加工してもよい。 First, a graphite base material 2 having a desired shape is prepared. When the pyrolytic carbon layer 3 is formed on the graphite base material 2, it becomes larger by the thickness, so it should be processed to be thinner depending on the final thickness of the carbon composite member 1 and the thickness of the pyrolytic carbon layer 3 to be formed. is preferred. Further, in order to improve the adhesion with the pyrolytic carbon layer 3, the surface of the graphite base material 2 may be roughened.

そして、黒鉛基材2をCVD炉の中に置き、成膜温度まで上昇させたのち、原料ガスを導入する。成膜温度は特に限定されないが、例えば800~2000℃とすることができる。熱分解炭素層3を得るための原料ガスは、炭化水素であれば特に限定されない。例えばメタン、エタン、プロパン、ブタン等のアルカン、エチレン、プロピレンなどのアルケン、アセチレン等のアルキンの他、ベンゼン、トルエン等の芳香族系の原料ガスを用いてもよい。
そして、成膜温度を保持し、一定時間原料ガスを導入することで、熱分解炭素層3を黒鉛基材2の表面に成膜する。なお、キャリアガスとしては、Ar等の不活性ガスを用いることができる。
Then, the graphite base material 2 is placed in a CVD furnace, and after the temperature is raised to a film forming temperature, a raw material gas is introduced. The film forming temperature is not particularly limited, but may be, for example, 800 to 2000°C. The raw material gas for obtaining the pyrolytic carbon layer 3 is not particularly limited as long as it is a hydrocarbon. For example, in addition to alkanes such as methane, ethane, propane, and butane, alkenes such as ethylene and propylene, and alkynes such as acetylene, aromatic raw material gases such as benzene and toluene may be used.
Then, the pyrolytic carbon layer 3 is formed on the surface of the graphite base material 2 by maintaining the film forming temperature and introducing the raw material gas for a certain period of time. Note that an inert gas such as Ar can be used as the carrier gas.

続いて、熱分解炭素層3が所定の厚さになった段階で、該熱分解炭素層3の表面に熱分解炭素のクラスター4を生成させる。熱分解炭素のクラスター4は、空中で生成された熱分解炭素のパーティクル(細塊)が、熱分解炭素層3の表面に沈降して堆積すること(すなわち、沈積)で生成される。 Subsequently, when the pyrolytic carbon layer 3 reaches a predetermined thickness, clusters 4 of pyrolytic carbon are generated on the surface of the pyrolytic carbon layer 3. The pyrolytic carbon clusters 4 are generated by particles (fine lumps) of pyrolytic carbon generated in the air settling and depositing on the surface of the pyrolytic carbon layer 3 (ie, deposition).

このクラスター4を生成させる方法は、特に限定されないが、例えば、CVD炉内の圧力を上昇させたり、温度を上昇させたり、炭化水素の分圧を高めたりすることで、一時的に熱分解反応のバランスを崩し、熱分解を促進させ、空中で熱分解炭素のパーティクルを生成させ、それらを沈積させることにより、熱分解炭素層3の表面に熱分解炭素のクラスター4を複数形成させることができる。 The method of generating this cluster 4 is not particularly limited, but for example, by increasing the pressure in the CVD furnace, increasing the temperature, or increasing the partial pressure of hydrocarbons, a thermal decomposition reaction may be temporarily caused. A plurality of clusters 4 of pyrolytic carbon can be formed on the surface of the pyrolytic carbon layer 3 by disrupting the balance, promoting pyrolysis, generating pyrolytic carbon particles in the air, and depositing them. .

また、熱分解炭素のパーティクルは、熱分解炭素層3の上部空間で生じるだけでなく、熱分解炭素層3の表面に落下した後も成長するため、熱分解炭素のパーティクルは熱分解炭素層3の表面に沈積するとともに熱分解炭素層3と一体化する。すなわち、熱分解炭素層3と、その表面に形成された熱分解炭素のクラスター4とは一体化される。 In addition, the pyrolytic carbon particles are not only generated in the upper space of the pyrolytic carbon layer 3, but also grow after falling onto the surface of the pyrolytic carbon layer 3. It is deposited on the surface of the pyrolytic carbon layer 3 and integrated with the pyrolytic carbon layer 3. That is, the pyrolytic carbon layer 3 and the pyrolytic carbon clusters 4 formed on its surface are integrated.

この熱分解炭素のパーティクルを生成し、沈積させるための条件の一例としては、CVD炉内の圧力を10~10000Pa、温度を800~2000℃とすることが挙げられる。 An example of the conditions for generating and depositing the pyrolytic carbon particles is to set the pressure in the CVD furnace to 10 to 10,000 Pa and the temperature to 800 to 2,000°C.

また、より多くの熱分解炭素のパーティクルを熱分解炭素層3の表面に沈積させるためには、CVD炉において、熱分解炭素層3の上部空間が広くなるようにする。上部空間が広いと、生成する熱分解炭素のパーティクルの量が多くなり、より多くの熱分解炭素のパーティクルを熱分解炭素層3の表面に沈積させ、一体化させることができる。 Furthermore, in order to deposit more particles of pyrolytic carbon on the surface of the pyrolytic carbon layer 3, the space above the pyrolytic carbon layer 3 is made wider in the CVD furnace. When the upper space is wide, the amount of pyrolytic carbon particles generated increases, and more pyrolytic carbon particles can be deposited on the surface of the pyrolytic carbon layer 3 and integrated.

更には、黒鉛基材2に電荷をかけたり、CVD炉内で黒鉛基材2を反転させたりすることにより、熱分解炭素層3の上面だけでなく、黒鉛基材2の側面や下面にも熱分解炭素層3を形成し、クラスター4を点在させることもできる。 Furthermore, by applying an electric charge to the graphite base material 2 or inverting the graphite base material 2 in the CVD furnace, it is possible to coat not only the top surface of the pyrolytic carbon layer 3 but also the side and bottom surfaces of the graphite base material 2. It is also possible to form a pyrolytic carbon layer 3 and scatter clusters 4 thereon.

こうして得られた熱分解炭素層3の表面に付着し一体化したクラスター4は、熱分解炭素層3の成膜の最後に付着したものであるので、熱分解炭素層3の結晶方向の乱れはごく表面に限定され、内部の構造には大きな影響を与えない。そのため、熱分解炭素のクラスター4が剥離するような力が加わっても、熱分解炭素層3が受けるダメージが小さく、熱分解炭素層3による気密性が確保され、黒鉛基材2へのガスや不純物の吸着及び放出を防止することができる。 The clusters 4 that adhered and integrated onto the surface of the pyrolytic carbon layer 3 obtained in this way were deposited at the end of the film formation of the pyrolytic carbon layer 3, so the crystal orientation of the pyrolytic carbon layer 3 is not disturbed. It is limited to the surface and does not have a major effect on the internal structure. Therefore, even if a force that causes the pyrolytic carbon clusters 4 to peel off is applied, the pyrolytic carbon layer 3 suffers little damage, the pyrolytic carbon layer 3 maintains airtightness, and gas and gas to the graphite base material 2 are prevented. Adsorption and release of impurities can be prevented.

(発明を実施するための形態)
以下、本発明に係る炭素複合部材の特徴が明確になるように、実施例及び比較例を挙げて更に説明する。
(Form for carrying out the invention)
Hereinafter, in order to clarify the characteristics of the carbon composite member according to the present invention, further explanation will be given with reference to Examples and Comparative Examples.

(実施例1)
等方性黒鉛材料を、50×50×5mmのサイズとなるように加工し、黒鉛基材とした。得られた黒鉛基材をCVD炉内に置き、真空ポンプで減圧しながら1200℃以上に加熱し、炭化水素からなる原料ガスを、CVD炉内のガス圧が1kPa以下になるように供給して、熱分解炭素層の形成を開始させた。
続いて、熱分解炭素層の厚さが20μmに成長する時間に達した時点で、原料ガスの供給を急激に停止した。
(Example 1)
The isotropic graphite material was processed to have a size of 50 x 50 x 5 mm, and was used as a graphite base material. The obtained graphite base material was placed in a CVD furnace, heated to 1200°C or higher while reducing the pressure with a vacuum pump, and a raw material gas consisting of hydrocarbons was supplied so that the gas pressure in the CVD furnace was 1 kPa or less. , initiated the formation of a pyrolytic carbon layer.
Subsequently, when the time required for the thickness of the pyrolytic carbon layer to grow to 20 μm was reached, the supply of the raw material gas was abruptly stopped.

なお、原料ガスは炉内に供給する時点で、高圧のボンベから減圧の炉内に供給されるので急激に熱を奪って膨張し炉内を冷却する作用がある。このため、原料ガスの供給を急激に停止すると、冷却能力が低下し、減圧下で熱容量の小さい炉内雰囲気は、一時的に加熱され突起を形成するクラスターが発生しやすい環境となる。一時的に生じたクラスターが熱分解炭素層の上に沈積する。
このようにして、空中で形成された熱分解炭素のパーティクルを熱分解炭素層の表面に沈積させた。なお、このような希薄な雰囲気ガスの瞬間的な温度の変動の有無は、熱電対放射温度計で検出しにくく、熱分解炭素のクラスターの生成の有無で確認することができる。
Note that when the raw material gas is supplied into the furnace, it is supplied from a high-pressure cylinder into the furnace under reduced pressure, so it rapidly absorbs heat and expands, thereby cooling the inside of the furnace. Therefore, if the supply of raw material gas is abruptly stopped, the cooling capacity decreases, and the atmosphere in the furnace, which is under reduced pressure and has a small heat capacity, becomes an environment where clusters that are temporarily heated and form protrusions are likely to occur. Temporary clusters are deposited on top of the pyrolytic carbon layer.
In this way, particles of pyrolytic carbon formed in air were deposited on the surface of the pyrolytic carbon layer. Note that the presence or absence of such instantaneous temperature fluctuations in the dilute atmospheric gas is difficult to detect with a thermocouple radiation thermometer, and can be confirmed by the presence or absence of clusters of pyrolytic carbon.

こうして得られた炭素複合部材の表面を、走査電子顕微鏡(SEM)により確認した。撮影した走査電子顕微鏡写真(倍率:500倍)を図2に示す。図2において、図中の細塊が熱分解炭素のクラスターであり、図中に大径の半球状に見える熱分解炭素層の表面に熱分解炭素のクラスターが点在して複数形成されていることがわかる。なお、この熱分解炭素のパーティクルは、前記の洗浄では除去されておらず、熱分解炭素層と一体化していることがわかる。また、同写真(左下のスケールを参照)より、該クラスターの最大径は10~50μmの範囲に入っていることが読み取れる。 The surface of the carbon composite member thus obtained was confirmed using a scanning electron microscope (SEM). A scanning electron micrograph taken (magnification: 500 times) is shown in FIG. 2. In Figure 2, the fine lumps in the figure are clusters of pyrolytic carbon, and a plurality of clusters of pyrolytic carbon are scattered on the surface of the pyrolytic carbon layer that appears in the shape of a large diameter hemisphere in the figure. I understand that. It can be seen that these pyrolytic carbon particles were not removed by the cleaning described above and were integrated with the pyrolytic carbon layer. Furthermore, from the same photograph (see the scale on the lower left), it can be seen that the maximum diameter of the cluster is in the range of 10 to 50 μm.

更に、JIS B 0031に準拠する表面粗さ計を用い、熱分解炭素層の表面における任意の3箇所で算術平均粗さRaを測定したところ、それぞれ1.438μm、1.642μm、1.770μmであり、その平均で1.62μmであった。
この炭素複合部材をラテックスからなる防塵手袋を着用し、表面の摩擦を確認したが、強い力が加わっても十分保持できることが確認できた。
Furthermore, when the arithmetic mean roughness Ra was measured at three arbitrary locations on the surface of the pyrolytic carbon layer using a surface roughness meter based on JIS B 0031, it was found to be 1.438 μm, 1.642 μm, and 1.770 μm, respectively. The average diameter was 1.62 μm.
Wearing dust-proof gloves made of latex, we checked the surface friction of this carbon composite member, and it was confirmed that it could be held sufficiently even when strong force was applied.

(比較例1)
実施例1と同様に炭素複合部材を形成した。ただし、熱分解炭素層の形成後、原料ガスの供給を10分間かけて徐々に絞った。このため、原料ガスの供給ストップによる急激な温度上昇は平準化され、クラスターの生成は起きなかったと考えられる。
(Comparative example 1)
A carbon composite member was formed in the same manner as in Example 1. However, after the formation of the pyrolytic carbon layer, the supply of raw material gas was gradually reduced over 10 minutes. For this reason, it is thought that the rapid temperature rise caused by the stoppage of the supply of raw material gas was leveled out, and no clusters were generated.

こうして得られた炭素複合部材の表面を、走査電子顕微鏡(SEM)により確認した。撮影した走査電子顕微鏡写真(倍率:500倍)を図3に示す。図3において、炭素複合部材の表面は基材側の核から扇状に成長した平滑な成長面が見られ、熱分解炭素のクラスターは観察されなかった、 The surface of the carbon composite member thus obtained was confirmed using a scanning electron microscope (SEM). A scanning electron micrograph (magnification: 500 times) taken is shown in FIG. In Figure 3, the surface of the carbon composite member showed a smooth growth surface that grew in a fan shape from the core on the base material side, and no clusters of pyrolytic carbon were observed.

更に、JIS B 0031に準拠する表面粗さ計を用い、熱分解炭素層の表面における任意の3箇所で算術平均粗さRaを測定したところ、それぞれ0.795μm、1.049μm、0.753μmであり、その平均で0.87μmであった。
この炭素複合部材をラテックスからなる防塵手袋を着用し、熱分解炭素層が形成された面を掴んで持ち上げたが、表面の摩擦力だけでは滑りやすく強い力が加わると十分保持できないことが確認された。
Furthermore, when the arithmetic mean roughness Ra was measured at three arbitrary locations on the surface of the pyrolytic carbon layer using a surface roughness meter based on JIS B 0031, it was found to be 0.795 μm, 1.049 μm, and 0.753 μm, respectively. The average diameter was 0.87 μm.
Wearing dust-proof gloves made of latex, this carbon composite member was lifted by grasping the surface on which the pyrolytic carbon layer was formed, but it was confirmed that the surface was slippery and could not be held sufficiently if strong force was applied. Ta.

なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所等は、本発明を達成できるものであれば任意であり、限定されない。 Note that the present invention is not limited to the embodiments described above, and can be modified, improved, etc. as appropriate. In addition, the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiments are arbitrary as long as the present invention can be achieved, and are not limited.

本発明に係る炭素複合部材は、滑り止め機能を備えるため、大型の装置用部品にしても落下しにくく、取扱性が良好でなり、更には衝撃が加わってもクラックが熱分解炭素被膜を貫通しにくいため、半導体製造、化学工業、機械、原子力等、多くの分野にわたって有効である。 Since the carbon composite member according to the present invention has an anti-slip function, it is difficult to fall even when used as a large device component, and is easy to handle.Furthermore, even if an impact is applied, cracks will not penetrate through the pyrolytic carbon coating. Because it is difficult to produce, it is effective in many fields such as semiconductor manufacturing, chemical industry, machinery, and nuclear power.

1 炭素複合部材
2 黒鉛基材
3 熱分解炭素層
4 クラスター
1 Carbon composite member 2 Graphite base material 3 Pyrolytic carbon layer 4 Cluster

Claims (2)

黒鉛基材上に熱分解炭素層が形成された炭素複合部材であって、
前記熱分解炭素層における少なくとも一部の表面に、CVD法により得られた沈積物である熱分解炭素のクラスターが複数付着して一体化していることを特徴とする炭素複合部材。
A carbon composite member in which a pyrolytic carbon layer is formed on a graphite base material,
A carbon composite member, characterized in that a plurality of clusters of pyrolytic carbon , which are deposits obtained by a CVD method, are attached and integrated on at least a part of the surface of the pyrolytic carbon layer.
前記熱分解炭素層の厚さが5~200μmであることを特徴とする請求項1に記載の炭素複合部材。 The carbon composite member according to claim 1, wherein the pyrolytic carbon layer has a thickness of 5 to 200 μm.
JP2019130301A 2019-07-12 2019-07-12 carbon composite parts Active JP7364375B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019130301A JP7364375B2 (en) 2019-07-12 2019-07-12 carbon composite parts
CN202010650322.6A CN112209716B (en) 2019-07-12 2020-07-08 Carbon composite member
KR1020200085239A KR102406281B1 (en) 2019-07-12 2020-07-10 Carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019130301A JP7364375B2 (en) 2019-07-12 2019-07-12 carbon composite parts

Publications (2)

Publication Number Publication Date
JP2021014383A JP2021014383A (en) 2021-02-12
JP7364375B2 true JP7364375B2 (en) 2023-10-18

Family

ID=74059462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130301A Active JP7364375B2 (en) 2019-07-12 2019-07-12 carbon composite parts

Country Status (3)

Country Link
JP (1) JP7364375B2 (en)
KR (1) KR102406281B1 (en)
CN (1) CN112209716B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309668A (en) 2006-05-16 2007-11-29 Biologica:Kk Sample plate for laser desorption ionization mass spectrometry
JP2008222456A (en) 2007-03-08 2008-09-25 Ibiden Co Ltd Carbon composite member
JP2009155203A (en) 1998-06-04 2009-07-16 Toyo Tanso Kk Carbon fiber-reinforced carbon composite and component for pulling single crystal apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166568A (en) * 1987-05-22 1994-06-14 Ibiden Co Ltd Graphite jig
JPH1045473A (en) * 1996-08-01 1998-02-17 Toyo Tanso Kk Graphite material coated with thermally decomposed carbon excellent in oxidation resistance
JPH11317228A (en) * 1998-04-30 1999-11-16 Jiikon:Kk Negative electrode material for lithium ion secondary battery and its manufacture
JP2003183076A (en) 2001-12-17 2003-07-03 Nippon Carbon Co Ltd Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JP4619036B2 (en) * 2004-05-10 2011-01-26 イビデン株式会社 Carbon composite material
US8329136B2 (en) 2005-12-14 2012-12-11 Nippon Coke & Engineering Company, Limited Graphite particle, carbon-graphite composite particle and their production processes
HUE036038T2 (en) 2012-04-05 2018-06-28 Imerys Graphite & Carbon Switzerland Ltd Surface-oxidized low surface area graphite, processes for making it, and applications of the same
CN104478461B (en) * 2014-12-24 2016-05-11 中南大学 A kind of preparation method of whisker modified carbon/carbon compound material
CN109987948B (en) * 2019-04-15 2022-03-08 中国科学院宁波材料技术与工程研究所 Preparation method of pyrolytic carbon interface layer of carbon fiber reinforced ceramic matrix composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155203A (en) 1998-06-04 2009-07-16 Toyo Tanso Kk Carbon fiber-reinforced carbon composite and component for pulling single crystal apparatus
JP2007309668A (en) 2006-05-16 2007-11-29 Biologica:Kk Sample plate for laser desorption ionization mass spectrometry
JP2008222456A (en) 2007-03-08 2008-09-25 Ibiden Co Ltd Carbon composite member

Also Published As

Publication number Publication date
CN112209716A (en) 2021-01-12
KR20210007905A (en) 2021-01-20
JP2021014383A (en) 2021-02-12
KR102406281B1 (en) 2022-06-10
CN112209716B (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US9764992B2 (en) Silicon carbide-tantalum carbide composite and susceptor
TWI388686B (en) Acceptor
CN101048531A (en) Protective coating on a substrate and method of making thereof
JP6714616B2 (en) Carbon nanotube bonding sheet and method for manufacturing carbon nanotube bonding sheet
US10710880B2 (en) Method for uplifting carbon nanotube structure, method for producing carbon nanotube structure, and carbon nanotube structure
US20170271193A1 (en) Semiconductor transport member and semiconductor mounting member
TW201815673A (en) High hardness TaC coated carbon material and manufacturing method for same
JP5787558B2 (en) Ceramic substrate support and method for manufacturing ceramic member
US20130302616A1 (en) Method for coating a graphite material with pyrolytic boron nitride and a coated article obtained by that method
JP7364375B2 (en) carbon composite parts
Cui et al. Mimicking a gecko’s foot with strong adhesive strength based on a spinnable vertically aligned carbon nanotube array
TW201823152A (en) Adhesive structure
KR102420277B1 (en) Carbon composite material
Zou et al. Mechanical properties and thermal stability of nitrogen incorporated diamond-like carbon films
TW201823153A (en) Carbon nanotube aggregate
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
TW201840459A (en) Conveying and fixing jig
TWI551717B (en) Method for manufacturing diamond-like carbon film
JP5854512B2 (en) Method for producing pyrolytic boron nitride-coated carbonaceous substrate
JP5105909B2 (en) Carbon composite material
KR101101368B1 (en) Method for fabricating graphite coated with silicon carbide
US10777446B2 (en) Mounting member
JP4998307B2 (en) Vapor phase growth method of SiC substrate
KR20140127954A (en) SiC THIN FILM DEPOSITION METHOD AND SUSCEPTOR OF THE SAME
TW201819667A (en) Tantalum carbide multi-coating material and manufacturing method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150