JP5854512B2 - Method for producing pyrolytic boron nitride-coated carbonaceous substrate - Google Patents

Method for producing pyrolytic boron nitride-coated carbonaceous substrate Download PDF

Info

Publication number
JP5854512B2
JP5854512B2 JP2012274300A JP2012274300A JP5854512B2 JP 5854512 B2 JP5854512 B2 JP 5854512B2 JP 2012274300 A JP2012274300 A JP 2012274300A JP 2012274300 A JP2012274300 A JP 2012274300A JP 5854512 B2 JP5854512 B2 JP 5854512B2
Authority
JP
Japan
Prior art keywords
boron nitride
carbonaceous substrate
pyrolytic boron
thermal expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274300A
Other languages
Japanese (ja)
Other versions
JP2014118600A (en
Inventor
加藤 公二
公二 加藤
山村 和市
和市 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012274300A priority Critical patent/JP5854512B2/en
Priority to KR1020130118327A priority patent/KR20140078533A/en
Priority to TW102146452A priority patent/TWI510666B/en
Publication of JP2014118600A publication Critical patent/JP2014118600A/en
Application granted granted Critical
Publication of JP5854512B2 publication Critical patent/JP5854512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、例えば半導体及び太陽電池製造装置等で使用されるヒーターや治具などに用る熱分解窒化ホウ素で被覆された炭素質基材の製造方法に関する。   The present invention relates to a method for producing a carbonaceous substrate coated with pyrolytic boron nitride used in, for example, heaters and jigs used in semiconductor and solar cell production apparatuses.

熱分解窒化ホウ素は、CVD法によって作製され、高絶縁性、高耐熱性、フレキシビリティ性を備えた材料である。その構造は、グラファイトに似た六方晶系であり、成長面に平行なa方向と、成長面に垂直なc方向とで物性値が大きく異なる。特に、熱膨張率については、a方向で約3.0×10-6〔1/℃〕、c方向で約30×10-6〔1/℃〕であり、約10倍の差がある。 Pyrolytic boron nitride is a material that is produced by a CVD method and has high insulation, high heat resistance, and flexibility. Its structure is a hexagonal system similar to graphite, and the physical property values differ greatly between the a direction parallel to the growth surface and the c direction perpendicular to the growth surface. In particular, the coefficient of thermal expansion is about 3.0 × 10 −6 [1 / ° C.] in the a direction and about 30 × 10 −6 [1 / ° C.] in the c direction, and there is a difference of about 10 times.

このような物性値を有する熱分解窒化ホウ素を炭素質基材に被覆する場合、炭素質基材と被覆膜との熱膨張率に差がない方が炭素質基材と被覆膜との剥離を抑制することができるから、炭素質基材としては、その熱膨張率が熱分解窒化ホウ素の熱膨張率に近いものが選択されている。   When coating pyrolytic boron nitride having such physical properties on a carbonaceous substrate, it is better that there is no difference in the coefficient of thermal expansion between the carbonaceous substrate and the coating film. Since peeling can be suppressed, a carbonaceous substrate having a thermal expansion coefficient close to that of pyrolytic boron nitride is selected.

また、炭素質基材としては、モールド材、押出し材、CIP材などが一般に使用されているが、モールド材やCIP材等のブロックを作製する上で、混合、成型、焼成等の作製工程における不確定因子の影響を回避することができないために、ブロックの製造LOT毎に物性値のバラツキがどうしても生じてしまうのが実情であり、このことは熱膨張率についても例外ではない。このように、炭素質基材がLOT毎にその熱膨張率が異なっていると、熱分解窒化ホウ素膜の膜質をバラツキなく作製したとしても、作製後の炭素質基材と被覆膜の熱膨張率に差が生じてしまうために、変形や剥離を起してしまう事態となる。   Moreover, as a carbonaceous base material, a mold material, an extruded material, a CIP material and the like are generally used. However, in producing blocks such as a mold material and a CIP material, in a production process such as mixing, molding, and firing. Since it is impossible to avoid the influence of uncertain factors, it is a fact that the physical property values are inevitably varied for each block manufacturing LOT, and this is no exception for the coefficient of thermal expansion. Thus, if the carbonaceous substrate has a different coefficient of thermal expansion for each LOT, even if the film quality of the pyrolytic boron nitride film is produced without variation, Since a difference occurs in the expansion coefficient, a situation in which deformation or peeling occurs.

特許文献1には、このような剥離の対策として、炭素質基材の表面粗さを大きくしてアンカー効果により剥離を回避する被覆方法が記載されている。しかし、この被覆方法では、炭素質基材の熱膨張率にバラツキがあるため、熱分解窒化ホウ素膜との膨張率差が大きい基材を使用した場合剥離を抑制できないという問題がある。   In Patent Document 1, as a countermeasure against such peeling, a coating method is described in which the surface roughness of the carbonaceous substrate is increased to avoid peeling due to the anchor effect. However, in this coating method, there is a variation in the thermal expansion coefficient of the carbonaceous substrate, and therefore there is a problem that peeling cannot be suppressed when a substrate having a large expansion coefficient difference from the pyrolytic boron nitride film is used.

また、特許文献2には、炭素質基材上に炭素質基材の熱膨張率と近い低熱膨張率の熱分解窒化ホウ素膜を被覆して亀裂のない被覆膜を形成する方法が記載されている。しかし、この被覆方法でも、炭素質基材の熱膨張率のバラツキによって、熱分解窒化ホウ素膜との熱膨張率に差が生じた場合に剥離が発生してしまうという問題があるが、特許文献2には、この膨張率差を調整する方法について何ら記載されていない。
このように、先行技術文献に記載の被覆方法では、いずれも炭素質基材の熱膨張率がLOT毎に違うにもかかわらず、熱分解窒化ホウ素膜の熱膨張率をそれに合わせるように調整していないため、膨張率差が大きい場合に剥離が発生してしまうという問題がある。
Patent Document 2 describes a method of forming a crack-free coating film by coating a pyrolytic boron nitride film having a low thermal expansion coefficient close to that of the carbonaceous base material on the carbonaceous base material. ing. However, even with this coating method, there is a problem that peeling occurs when there is a difference in the thermal expansion coefficient with the pyrolytic boron nitride film due to variations in the thermal expansion coefficient of the carbonaceous substrate. No. 2 does not describe any method for adjusting the difference in expansion coefficient.
As described above, in all of the coating methods described in the prior art documents, the thermal expansion coefficient of the pyrolytic boron nitride film is adjusted to match the thermal expansion coefficient of the carbonaceous substrate for each LOT. Therefore, there is a problem that peeling occurs when the difference in expansion coefficient is large.

特開平3―10076号公報Japanese Patent Laid-Open No. 3-10076 特許第2729289号Japanese Patent No. 2729289

そこで、本発明者等は、LOT毎に熱膨張率のバラツキがある炭素質基材のブロックを使用した場合でも、炭素質基材と被覆膜との剥離等を比較的簡易な方法によって抑制することができないか鋭意検討したところ、被覆する材質がa方向とc方向とによって熱膨張率の異なる異方性の熱分解窒化ホウ素である場合、その配向性が乱れていわゆる乱層の構造になると、c軸方向の膨張率の寄与が大きくなり、成長面に平行なa方向での膨張率が変化する傾向があることを見出した。   Therefore, the present inventors have suppressed the separation of the carbonaceous substrate and the coating film by a relatively simple method even when using a block of a carbonaceous substrate having a variation in thermal expansion coefficient for each LOT. As a result of diligent investigation on whether or not the material to be coated is anisotropic pyrolytic boron nitride having different thermal expansion coefficients depending on the a direction and the c direction, the orientation is disturbed, resulting in a so-called disordered layer structure. Then, the contribution of the expansion coefficient in the c-axis direction was increased, and it was found that the expansion coefficient in the a direction parallel to the growth surface tends to change.

さらに、本発明者等は、この熱分解窒化ホウ素のa軸、c軸の配向性の乱れが炭素質基材の表面粗さの変化によっても影響されることから、この基材の表面粗さを変化させれば、熱分解窒化ホウ素被覆膜のa軸、c軸の配向性に乱れが生じ、その結果、この配向性の乱れによって被覆膜の熱膨張率を変化させることができるとの知見を得て、本発明に至ったものである。   Furthermore, the present inventors have found that the disorder of the orientation of the a-axis and c-axis of this pyrolytic boron nitride is also affected by the change in the surface roughness of the carbonaceous substrate. Is changed, the orientation of the a-axis and c-axis of the pyrolytic boron nitride coating film is disturbed, and as a result, the thermal expansion coefficient of the coating film can be changed by this disorder of orientation. Thus, the present invention has been obtained.

すなわち、本発明の目的は、炭素質基材の表面粗さを調整するという簡易な方法によって、被覆膜の熱膨張率を炭素質基材の熱膨張率に近づけて剥離等を抑制することができる熱分解窒化ホウ素被覆炭素質基材の製造方法を提供することである。   That is, the object of the present invention is to suppress peeling and the like by bringing the thermal expansion coefficient of the coating film closer to the thermal expansion coefficient of the carbonaceous substrate by a simple method of adjusting the surface roughness of the carbonaceous substrate. It is an object of the present invention to provide a method for producing a pyrolytic boron nitride-coated carbonaceous substrate.

本発明は、炭素質基材の一部又は全体を熱分解窒化ホウ素で被覆する熱分解窒化ホウ素被覆炭素質基材の製造方法であって、前記炭素質基材の表面粗さを調整することによって、前記熱分解窒化ホウ素被覆膜の熱膨張率を前記炭素質基材の熱膨張率に近づけるように制御することを特徴とするものである。 The present invention is a method for producing a pyrolytic boron nitride-coated carbonaceous substrate in which part or all of the carbonaceous substrate is coated with pyrolytic boron nitride, and the surface roughness of the carbonaceous substrate is adjusted. Thus, the thermal expansion coefficient of the pyrolytic boron nitride coating film is controlled to be close to the thermal expansion coefficient of the carbonaceous substrate .

また、本発明の上記炭素質基材の表面粗さは、JIS B 0601-2001に規定する算術平均粗さで0.5μm以上7.0μm未満に調整することが好ましく、上記熱分解窒化ホウ素被覆膜は、結晶面(002)に由来するピーク強度I(002)と結晶面(100)に由来するピーク強度I(100)から計算されるピーク強度比I(002)/I(100)が10以上500未満であることが好ましい。 The surface roughness of the carbonaceous substrate of the present invention is preferably adjusted to an arithmetic average roughness specified in JIS B 0601-2001 to be 0.5 μm or more and less than 7.0 μm, and the pyrolytic boron nitride coating film The peak intensity ratio I (002) / I (100) calculated from the peak intensity I (002) derived from the crystal plane (002) and the peak intensity I (100) derived from the crystal plane (100) is 10 or more Preferably it is less than 500.

本発明によれば、炭素質基材の表面粗さの調整によって、熱分解窒化ホウ素被覆膜の熱膨張率を炭素質基材の熱膨張率に近づけるように制御することができるので、比較的簡易な方法によって、熱膨張率の差によって発生する被覆膜と炭素質基材との間の剥離を抑制することができると共に、熱分解窒化ホウ素被覆炭素質基材の撓み、歪み、反りをも抑制することができる。   According to the present invention, by adjusting the surface roughness of the carbonaceous substrate, the thermal expansion coefficient of the pyrolytic boron nitride coating film can be controlled so as to approach the thermal expansion coefficient of the carbonaceous substrate. By using a simple method, it is possible to suppress the peeling between the coating film and the carbonaceous substrate caused by the difference in the coefficient of thermal expansion, and to bend, strain, or warp the pyrolytic boron nitride-coated carbonaceous substrate. Can also be suppressed.

図1は、炭素質基材の表面粗さと熱分解窒化ホウ素被覆膜の熱膨張率との関係を示した図である。FIG. 1 is a graph showing the relationship between the surface roughness of the carbonaceous substrate and the thermal expansion coefficient of the pyrolytic boron nitride coating film. 図2は、炭素質基材の表面粗さと熱分解窒化ホウ素被覆膜のピーク強度比との関係を示した図である。FIG. 2 is a graph showing the relationship between the surface roughness of the carbonaceous substrate and the peak intensity ratio of the pyrolytic boron nitride coating film. 図3は、熱分解窒化ホウ素被覆膜のピーク強度比と熱膨張率との関係を示した図である。FIG. 3 is a graph showing the relationship between the peak intensity ratio and the thermal expansion coefficient of the pyrolytic boron nitride coating film. 図4は、熱分解窒化ホウ素被覆炭素質基材を用いたヒーターの概要を示した図である。FIG. 4 is a view showing an outline of a heater using a pyrolytic boron nitride-coated carbonaceous substrate.

以下、本発明の一実施の形態について詳細に説明するが、先ず、本発明に至った実験例について説明する。   Hereinafter, an embodiment of the present invention will be described in detail. First, an experimental example leading to the present invention will be described.

<実験例>
実験例では、□50×3mmの炭素質基材(等方性黒鉛材)A−1乃至D−2の8種類のサンプルを用意し、これらサンプルをサンドブラスト処理にて表1に示す表面粗さにそれぞれ調整した。サンドブラスト処理は、不二製作所製ニューマブラスターSG-5Aを用いて、不二製作所製;フジランダムWA(アルミナ)#60の砥粒で、0.4、0.7、1.0、1.5MPaの噴射圧力で表面処理を行い、これらサンプルの表面粗さの測定を小坂研究所表面粗さ測定機サーフコーダSEF580-M50によって行った。
<Experimental example>
In the experimental example, eight types of samples of □ 50 × 3 mm carbonaceous base material (isotropic graphite material) A-1 to D-2 were prepared, and these samples were subjected to sandblasting to surface roughness shown in Table 1. Respectively. Sandblasting uses Fujima's Pneumatic Blaster SG-5A, Fuji Seisakusho; Fuji Random WA (Alumina) # 60 abrasive grains, and surface treatment at 0.4, 0.7, 1.0, 1.5MPa spray pressure The surface roughness of these samples was measured with a Kosaka Laboratory surface roughness measuring machine Surfcoder SEF580-M50.

次に、それぞれ表面処理した炭素質基材の8種類のサンプルを真空炉に入れて、1800℃、50Paの条件で、BClとNH3ガスによって、150μmの熱分解窒化ホウ素膜を炭素質基材にそれぞれコーティングした。その後、このようにコーティングした8種類のサンプルから熱分解窒化ホウ素被覆膜を剥がし、それぞれの被覆膜について、X線回折と熱膨張率α2の測定を行った。このときのX線回折については、リガク社製X線回折RINT-2500VHFによって、管電圧30kV、管電流30mA、スキャンスピード6.0°/min、サンプリング幅0.05°、2θ=20〜60°という条件で行った。また、熱膨張率の測定については、アルバック真空理工DL7000サーモディラトメーターによって50〜800℃の温度条件で行った。 Next, 8 types of samples of each surface-treated carbonaceous substrate were placed in a vacuum furnace, and a 150 μm pyrolytic boron nitride film was formed into a carbonaceous substrate with BCl 3 and NH 3 gas at 1800 ° C. and 50 Pa. Each material was coated. Thereafter, the pyrolytic boron nitride coating film was peeled off from the eight types of samples coated in this manner, and X-ray diffraction and thermal expansion coefficient α 2 were measured for each coating film. X-ray diffraction at this time was performed under the conditions of tube voltage 30kV, tube current 30mA, scan speed 6.0 ° / min, sampling width 0.05 °, 2θ = 20-60 °, using Rigaku X-ray diffraction RINT-2500VHF. It was. Moreover, about the measurement of the coefficient of thermal expansion, it carried out on the temperature conditions of 50-800 degreeC by ULVAC vacuum Riko DL7000 thermodilatometer.

表1には、これら8種類のサンプルについて、表面処理のブラスト圧力、その表面粗さ、実験で得られたX線回折の結晶面(002)に由来するピーク強度I(002)と結晶面(100)に由来するピーク強度I(100)のデータから求めたピーク強度比I(002)/I(100)の値、実験で得られた被覆膜の熱膨張率α2の値を示す。 Table 1 shows the surface treatment blast pressure, surface roughness, peak intensity I (002) derived from the X-ray diffraction crystal plane (002) and crystal plane ( the value of the peak intensity ratio was calculated from the data of the peak intensity derived from the 100) I (100) I ( 002) / I (100), indicating the value of the thermal expansion coefficient alpha 2 of the resulting coated film in the experiment.

Figure 0005854512
Figure 0005854512

また、図2は、表1の数値に基づいて、炭素質基材の表面粗さと被覆膜のピーク強度比との関係を図示したものであり、図3は、被覆膜のピーク強度比と熱膨張率α2との関係を図示したものである。これら図2及び図3によれば、炭素質基材の表面粗さと被覆膜のピーク強度比との間及びピーク強度比と熱膨張率α2との間には、それぞれある一定の規則的な関係があることが分かる。 2 illustrates the relationship between the surface roughness of the carbonaceous substrate and the peak intensity ratio of the coating film based on the numerical values in Table 1, and FIG. 3 illustrates the peak intensity ratio of the coating film. And the coefficient of thermal expansion α 2 are illustrated. According to FIGS. 2 and 3, there is a certain regularity between the surface roughness of the carbonaceous substrate and the peak intensity ratio of the coating film and between the peak intensity ratio and the thermal expansion coefficient α 2. It is understood that there is a relationship.

すなわち、図2によれば、炭素質基材の表面粗さを変化させると、被覆膜のピーク強度比の値がその変化に伴って規則的に小さくなる傾向があり、一方、図3によれば、ピーク強度比の値が小さくなれば、この変化に伴って被覆膜の熱膨張率が規則的に大きくなる傾向がある。そこで、これら測定結果に基づいて、炭素質基材の表面粗さと被覆膜の熱膨張率α2との関係を図示すると、図1のとおりとなる。この図1から明らかなように、表面粗さが大きくなるに伴って、熱膨張率α2の値も規則的に大きくなる傾向があるといえる。 That is, according to FIG. 2, when the surface roughness of the carbonaceous substrate is changed, the value of the peak intensity ratio of the coating film tends to regularly decrease with the change, while FIG. Therefore, if the value of the peak intensity ratio decreases, the thermal expansion coefficient of the coating film tends to increase regularly with this change. Therefore, based on these measurement results, the relationship between the surface roughness of the carbonaceous substrate and the thermal expansion coefficient α 2 of the coating film is illustrated in FIG. As is apparent from FIG. 1, it can be said that the value of the coefficient of thermal expansion α 2 tends to increase regularly as the surface roughness increases.

そこで、本発明者等は、このような規則的な傾向に着目し、炭素質基材の表面粗さを変化させれば、被覆膜のピーク強度比や熱膨張率α2を変化させることができるとの知見を得て、本発明に至ったものである。したがって、本発明では、このような知見から、炭素質基材の表面粗さを被覆処理前に事前に調整して、被覆される熱分解窒化ホウ素膜の熱膨張率α2を制御するものである。 Therefore, the present inventors pay attention to such a regular tendency and change the peak intensity ratio and the thermal expansion coefficient α 2 of the coating film by changing the surface roughness of the carbonaceous substrate. As a result, the present invention has been obtained. Therefore, in the present invention, based on such knowledge, the surface roughness of the carbonaceous substrate is adjusted in advance before the coating treatment to control the thermal expansion coefficient α 2 of the pyrolytic boron nitride film to be coated. is there.

本発明において、炭素質基材の表面粗さを調整する場合、具体的には、JIS B 0601-2001に規定する算術平均粗さで0.5μm以上7.0μm未満に調整することが好ましく、さらに好ましくは、2.0μm以上5.0μm未満である。表面粗さが下限値の0.5μmより小さい場合は、基材と被覆膜との熱膨張率を近づけることはできるが、炭素質基材の表面のアンカー効果が小さくなってしまうために、被覆膜が剥離しやすくなり、好ましくない。また、表面粗さが上限値の7.0μmより大きい場合は、表面粗さを7.0μm以上に大きくするためのブラスト圧力が過大となり、炭素質基材の表面にダメージ層を形成させる可能性が高くなるので、好ましくない。この表面粗さを調整する方法としては、サンドブラスト処理、サンドペーパー研磨処理、エッチング処理などを用いることができる。 In the present invention, when adjusting the surface roughness of the carbonaceous substrate, specifically, it is preferable to adjust the arithmetic average roughness specified in JIS B 0601-2001 to 0.5 μm or more and less than 7.0 μm, more preferably Is 2.0 μm or more and less than 5.0 μm. If the surface roughness is less than the lower limit of 0.5 μm, the coefficient of thermal expansion between the base material and the coating film can be made close, but the anchor effect on the surface of the carbonaceous base material becomes small, so The covering film tends to peel off, which is not preferable. In addition, when the surface roughness is larger than the upper limit of 7.0 μm, the blast pressure for increasing the surface roughness to 7.0 μm or more is excessive, and there is a high possibility that a damaged layer is formed on the surface of the carbonaceous substrate. This is not preferable. As a method for adjusting the surface roughness, sandblasting, sandpaper polishing, etching, or the like can be used.

また、本発明では、図3に示すように、前記ピーク強度比I(002)/I(100)を10以上500未満の範囲内とするように配向性を調整して、熱分解窒化ホウ素膜の熱膨張率α2を調整することもできる。 In the present invention, as shown in FIG. 3, the orientation is adjusted so that the peak intensity ratio I (002) / I (100) is within the range of 10 or more and less than 500, and the pyrolytic boron nitride film it is also possible to adjust the thermal expansion coefficient alpha 2.

本発明の炭素質基材を製造する場合、被覆される熱分解窒化ホウ素膜の厚さを50μm以上300μm以下にするのが好ましい。被覆膜の厚さが50μmより薄いと腐食性ガスなどが被覆膜を拡散して下地の炭素質基材と反応しやすくなるので好ましくない。また、300μmより厚過ぎると、被覆膜と炭素質基材との間の界面の残留応力が大きくなり、剥離しやすくなるので、好ましくない。   When producing the carbonaceous substrate of the present invention, the thickness of the pyrolytic boron nitride film to be coated is preferably 50 μm or more and 300 μm or less. If the thickness of the coating film is less than 50 μm, corrosive gas or the like diffuses through the coating film and easily reacts with the underlying carbonaceous substrate, which is not preferable. On the other hand, if the thickness is more than 300 μm, the residual stress at the interface between the coating film and the carbonaceous substrate is increased, and it is easy to peel off.

また、炭素質基材の製造には、等方性CIP成型で作製された炭素質基材を使用する場合が多いが、この等方性炭素質基材の熱膨張率は、製造方法にも依るが、凡そ3.0×10-6〜8.0×10-6〔1/℃〕の範囲のものである。一方、炭素質基材に被覆される熱分解窒化ホウ素被覆膜の熱膨張率α2は、凡そ2.5×10-6〜4.0×10-6〔1/℃〕の範囲内であるのが一般的であるから、本発明の製造方法を実施するに際し、これら熱膨張率の値を参考にして、両者の熱膨張率をより近づけることができるような炭素質基材を選定する方が好ましい。 In addition, carbonaceous base materials produced by isotropic CIP molding are often used for the production of carbonaceous base materials. However, the coefficient of thermal expansion of this isotropic carbonaceous base material depends on the manufacturing method. However, it is in the range of about 3.0 × 10 −6 to 8.0 × 10 −6 [1 / ° C.]. On the other hand, the thermal expansion coefficient α 2 of the pyrolytic boron nitride coating film coated on the carbonaceous substrate is generally in the range of about 2.5 × 10 −6 to 4.0 × 10 −6 [1 / ° C.] Therefore, when carrying out the production method of the present invention, it is preferable to select a carbonaceous substrate that can make the thermal expansion coefficients closer to each other with reference to these thermal expansion coefficient values.

次に、本発明の実施例について具体的に説明する。実施例1では、熱膨張率が3.5×10-6〔1/℃〕の炭素質基材を用意し、表面粗さを3.9μmに調整して、前記実験例と同様の熱分解窒化ホウ素膜のコーティングを行った。このコーティングされた炭素質基材から熱分解窒化ホウ素被覆膜を剥がして、被覆膜の熱膨張率α2を測定したところ、3.6×10-6〔1/℃〕であった。このα2の値は炭素質基材の3.5×10-6〔1/℃〕の熱膨張率とかなり近い値であったから、この実施例1は、本発明の方法を裏付けるものであった。 Next, specific examples of the present invention will be described. In Example 1, a carbonaceous base material having a thermal expansion coefficient of 3.5 × 10 −6 [1 / ° C.] was prepared, and the surface roughness was adjusted to 3.9 μm. Coating was performed. The pyrolytic boron nitride coating film was peeled off from the coated carbonaceous substrate, and the coefficient of thermal expansion α 2 of the coating film was measured and found to be 3.6 × 10 −6 [1 / ° C.]. Since this α 2 value was very close to the coefficient of thermal expansion of 3.5 × 10 −6 [1 / ° C.] of the carbonaceous substrate, this Example 1 supported the method of the present invention.

次に、本発明の製造方法が剥離等の抑制に有効であるか否かを確認するために、E乃至Jの6種類のサンプルを用意して実施した。この実施例2では、炭素質基材として、図4に概要を示すヒーター1を用いた。6種類のヒーター1は、その両端に電極接続部2を備え、全長600mm、幅20mm、厚さ5mmの形状に作製されたものである。6種類の各サンプルの表面粗さと熱膨張率α1の値を表2に示す。 Next, in order to confirm whether or not the production method of the present invention is effective in suppressing peeling and the like, six types of samples E to J were prepared and carried out. In Example 2, the heater 1 whose outline is shown in FIG. 4 was used as the carbonaceous substrate. Six types of heaters 1 are provided with electrode connection portions 2 at both ends, and are manufactured in a shape having a total length of 600 mm, a width of 20 mm, and a thickness of 5 mm. Table 2 shows the surface roughness and the coefficient of thermal expansion α 1 of each of the six types of samples.

Figure 0005854512
Figure 0005854512

実施例2では、被覆後の被覆膜を剥がして被覆膜の熱膨張率α2を測定するために、これら6種類のサンプルの他に、各サンプルのダミーサンプルを用意した。各ダミーサンプルは、6種類の各サンプルと同じような物性値等になるように調整され、各サンプルと一緒に真空炉に入れた。その後、1800℃、50Paの条件で、BCl3とNH3ガスによって、サンプルのヒーター1とダミーサンプルのヒーター1の基材表面に150μmの熱分解窒化ホウ素膜のコーティングを行った。コーティング後にそれぞれのダミーサンプルの基材から熱分解窒化ホウ素被覆膜を剥がし、この被覆膜について、実施例1と同様のX線回折と熱膨張率α2の測定を行い、その測定結果を上記表2に示す。 In Example 2, in order to peel off the coated film after coating and measure the thermal expansion coefficient α 2 of the coated film, a dummy sample of each sample was prepared in addition to these six types of samples. Each dummy sample was adjusted so as to have the same physical property values and the like as each of the six types of samples, and placed in a vacuum furnace together with each sample. Thereafter, a 150 μm pyrolytic boron nitride film was coated on the substrate surfaces of the sample heater 1 and the dummy sample heater 1 with BCl 3 and NH 3 gas under the conditions of 1800 ° C. and 50 Pa. After coating, the pyrolytic boron nitride coating film was peeled off from the base material of each dummy sample, and the X-ray diffraction and the thermal expansion coefficient α 2 were measured on the coating film in the same manner as in Example 1. Shown in Table 2 above.

一方、各サンプルE乃至Jのヒーター1については、その電極接続部2に付着した被覆膜を除去し、その両端に電源を接続した後、サンプルの各ヒーター1をアンモニアガス中の雰囲気で室温〜1400℃で自己発熱によるヒートサイクル試験を行ったところ、サンプルE及びJで剥離が生じたが、それ以外のサンプルでは剥離が見られず、良好な結果であった。その結果を上記表2に示す。   On the other hand, for the heaters 1 of the samples E to J, after removing the coating film adhering to the electrode connection part 2 and connecting a power source to both ends thereof, the heaters 1 of the samples were kept at room temperature in an atmosphere of ammonia gas. When a heat cycle test by self-heating was performed at ˜1400 ° C., peeling occurred in samples E and J, but peeling was not seen in other samples, and the result was good. The results are shown in Table 2 above.

サンプルE及びJの剥離の原因について考察したところ、サンプルEでは、表面粗さが小さく、アンカー効果が小さくなったために、剥離が発生したのではないかと考えられる。また、サンプルJでは、表面粗さが上限値より大きい7.5μmであるために、過大な負荷力が炭素質基材の表面に作用してダメージ層が形成され、表面粒子が脱粒して剥離が発生したのではないかと考えられる。   When the cause of peeling of Samples E and J was examined, it is considered that peeling occurred because Sample E had a small surface roughness and a small anchor effect. In sample J, since the surface roughness is 7.5 μm, which is larger than the upper limit value, an excessive load force acts on the surface of the carbonaceous substrate to form a damage layer, and the surface particles are shed and peeled off. It may have occurred.

以上のように、本発明によれば、ヒーター及び治具などに用いる熱分解窒化ホウ素被覆炭素質基材を製造する場合に、カーボンメーカー各社から入手した炭素質基材に熱膨張率のバラツキがあったとしても、その入手した炭素質基材の表面粗さを事前に調整することによって、熱分解窒化ホウ素被覆膜の配向性や熱膨張率を制御して、コーティングされた被覆膜と炭素質基材との熱膨張率の差を小さくすることができるから、両者の熱膨張率の差に起因する剥離、変形等を抑制することが可能となる。   As described above, according to the present invention, when producing a pyrolytic boron nitride-coated carbonaceous base material used for heaters, jigs, etc., the carbonaceous base material obtained from carbon manufacturers has a variation in thermal expansion coefficient. Even if there is, by adjusting the surface roughness of the obtained carbonaceous substrate in advance, the orientation and thermal expansion coefficient of the pyrolytic boron nitride coating film are controlled, and the coated coating film and Since the difference in coefficient of thermal expansion with the carbonaceous substrate can be reduced, it is possible to suppress peeling, deformation, and the like due to the difference in coefficient of thermal expansion between the two.

1 炭素質基材から構成されたヒーター
2 ヒーターの電気的接続部
1 Heater composed of carbonaceous substrate 2 Heater electrical connection

Claims (3)

炭素質基材の一部又は全体を熱分解窒化ホウ素で被覆する熱分解窒化ホウ素被覆炭素質基材の製造方法であって、前記炭素質基材の表面粗さを調整することによって、前記熱分解窒化ホウ素被覆膜の熱膨張率を前記炭素質基材の熱膨張率に近づけるように制御することを特徴とする熱分解窒化ホウ素被覆炭素質基材の製造方法。 A method for producing a pyrolytic boron nitride-coated carbonaceous substrate in which a part or the whole of a carbonaceous substrate is coated with pyrolytic boron nitride, wherein the heat is obtained by adjusting the surface roughness of the carbonaceous substrate. A method for producing a pyrolytic boron nitride-coated carbonaceous substrate, wherein the thermal expansion coefficient of the decomposed boron nitride coating film is controlled to approach the thermal expansion coefficient of the carbonaceous substrate. 前記炭素質基材の表面粗さは、JIS B 0601-2001に規定する算術平均粗さで0.5μm以上7.0μm未満に調整することを特徴とする請求項1に記載の熱分解窒化ホウ素被覆炭素質基材の製造方法。 2. The pyrolytic boron nitride-coated carbon according to claim 1, wherein the surface roughness of the carbonaceous substrate is adjusted to an arithmetic average roughness specified in JIS B 0601-2001 to be 0.5 μm or more and less than 7.0 μm. A method for producing a porous substrate. 前記熱分解窒化ホウ素被覆膜は、結晶面(002)に由来するピーク強度I(002)と結晶面(100)に由来するピーク強度I(100)から計算されるピーク強度比I(002)/I(100)が10以上500未満であることを特徴とする請求項1又は2に記載の熱分解窒化ホウ素被覆炭素質基材の製造方法。   The pyrolytic boron nitride coating film has a peak intensity ratio I (002) calculated from a peak intensity I (002) derived from the crystal plane (002) and a peak intensity I (100) derived from the crystal plane (100). The method for producing a pyrolytic boron nitride-coated carbonaceous substrate according to claim 1 or 2, wherein / I (100) is 10 or more and less than 500.
JP2012274300A 2012-12-17 2012-12-17 Method for producing pyrolytic boron nitride-coated carbonaceous substrate Active JP5854512B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012274300A JP5854512B2 (en) 2012-12-17 2012-12-17 Method for producing pyrolytic boron nitride-coated carbonaceous substrate
KR1020130118327A KR20140078533A (en) 2012-12-17 2013-10-04 Manufacturing method of carbonaceous substrate coated thermal decomposition boron nitride
TW102146452A TWI510666B (en) 2012-12-17 2013-12-16 Method for producing pyrolytic boron nitride coated carbon base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274300A JP5854512B2 (en) 2012-12-17 2012-12-17 Method for producing pyrolytic boron nitride-coated carbonaceous substrate

Publications (2)

Publication Number Publication Date
JP2014118600A JP2014118600A (en) 2014-06-30
JP5854512B2 true JP5854512B2 (en) 2016-02-09

Family

ID=51130126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274300A Active JP5854512B2 (en) 2012-12-17 2012-12-17 Method for producing pyrolytic boron nitride-coated carbonaceous substrate

Country Status (3)

Country Link
JP (1) JP5854512B2 (en)
KR (1) KR20140078533A (en)
TW (1) TWI510666B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102232A (en) * 2014-11-27 2016-06-02 信越化学工業株式会社 Pyrolytic boron nitride coated substrate and production method thereof
JP7294021B2 (en) * 2019-09-18 2023-06-20 住友金属鉱山株式会社 Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784357B2 (en) * 1985-12-24 1995-09-13 京セラ株式会社 Boron nitride coated crucible
JPS62207786A (en) * 1986-03-06 1987-09-12 信越化学工業株式会社 Coating method for graphite material
JPH0310076A (en) * 1989-06-05 1991-01-17 Toshiba Ceramics Co Ltd Method for forming pyrolytic boron nitride film
WO1992002662A1 (en) * 1990-08-08 1992-02-20 Union Carbide Coatings Service Process for forming crack-free pyrolytic boron nitride on a carbon structure and article
JP2934120B2 (en) * 1992-07-02 1999-08-16 信越化学工業株式会社 Pyrolytic boron nitride container
JP2763239B2 (en) * 1992-10-28 1998-06-11 信越化学工業株式会社 Multi-layer ceramic crucible
JP3057670B2 (en) * 1992-10-28 2000-07-04 信越化学工業株式会社 Multilayer ceramic heater
KR101168422B1 (en) * 2002-11-20 2012-07-25 신에쓰 가가꾸 고교 가부시끼가이샤 Making Method of Heat Resistant Coated Member
JP2007317820A (en) * 2006-05-25 2007-12-06 Shin Etsu Chem Co Ltd Electrostatic chucking device

Also Published As

Publication number Publication date
JP2014118600A (en) 2014-06-30
TWI510666B (en) 2015-12-01
KR20140078533A (en) 2014-06-25
TW201430162A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
US9764992B2 (en) Silicon carbide-tantalum carbide composite and susceptor
JP4985625B2 (en) Method for producing silicon carbide single crystal
WO2018151294A1 (en) Silicon carbide member and member for semiconductor manufacturing device
WO2016121642A1 (en) Sic-coated carbon composite material
JP5854512B2 (en) Method for producing pyrolytic boron nitride-coated carbonaceous substrate
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
Hara et al. Mechanism of strain relaxation in BaSi2 epitaxial films on Si (111) substrates during post‐growth annealing and application for film exfoliation
CN103484833B (en) A kind of low-stress silicon compound super thick film material, Preparation method and use
JP6066644B2 (en) Manufacturing method of ceramic joined body
JP2005303045A (en) Silicon component and manufacturing method thereof
JP2008159900A (en) Ceramic heater with electrostatic chuck
TWI538885B (en) Thermal decomposition of boron nitride coated with carbon and carbon heaters using it
JP6436896B2 (en) Carbon heater and method of manufacturing carbon heater
KR102420277B1 (en) Carbon composite material
JP2007299867A (en) Electrostatic chuck and its manufacturing method
Chandran et al. Adhesive microcrystalline diamond coating on surface modified non-carbide forming substrate using hot filament CVD
WO2015186546A1 (en) SiC COATED MATERIAL AND JIG FOR CVD SYSTEM
CN112209716B (en) Carbon composite member
JP2020026373A (en) PROCESSING METHOD OF SiC SINGLE CRYSTAL, MANUFACTURING METHOD OF SiC INGOT, AND SiC SINGLE CRYSTAL
WO2011046191A1 (en) Jig for semiconductor production and method for producing same
WO2022080220A1 (en) Sputtering target, method of manufacturing same and film formation method
TWI827917B (en) Electrostatic chuck
JP7308973B2 (en) Method for producing silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby
JP7112509B2 (en) ceramic tube
KR101536744B1 (en) Method for attaching silicon-carbide seed on holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5854512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150