JPH11317228A - Negative electrode material for lithium ion secondary battery and its manufacture - Google Patents

Negative electrode material for lithium ion secondary battery and its manufacture

Info

Publication number
JPH11317228A
JPH11317228A JP10137698A JP13769898A JPH11317228A JP H11317228 A JPH11317228 A JP H11317228A JP 10137698 A JP10137698 A JP 10137698A JP 13769898 A JP13769898 A JP 13769898A JP H11317228 A JPH11317228 A JP H11317228A
Authority
JP
Japan
Prior art keywords
negative electrode
resin
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10137698A
Other languages
Japanese (ja)
Inventor
Takeshi Hirohata
健 広畑
Daiki Miyamoto
宮本大樹
Shoji Hasegawa
長谷川省治
Sadataka Tamura
田村貞隆
Ryotaro Miki
三木亮太郎
Hatsuo Nose
野瀬初穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIIKON KK
SHINETSU KASEI KK
Osaka Prefecture
Original Assignee
JIIKON KK
SHINETSU KASEI KK
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIIKON KK, SHINETSU KASEI KK, Osaka Prefecture filed Critical JIIKON KK
Priority to JP10137698A priority Critical patent/JPH11317228A/en
Publication of JPH11317228A publication Critical patent/JPH11317228A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance capacity and cycle characteristics by uniformly covering the surface of carbon particles used as the constituting element of a negative electrode with at least one thin layer of carbon having the crystal structure different from the carbon particles constituting the negative electrode. SOLUTION: In forming an amorphous carbon film on a crystalline carbon particle, graphite particles which are crystalline carbon particles are covered with a resin (phenol resin or the like) capable of being converted into amorphous carbon particles, then the resin is carbonized to obtain hybrid carbon particles. As the covering method, the graphite particles are immersed in a liquid-state resin, the surface of the graphite particles are covered with the resin, then are carbonized. Or, resin powder capable of being converted into an amorphous resin is uniformly mixed with the graphite particles, thermally decomposed by baking, thermally decomposed gas is deposited on the graphite particle surface, and an amorphous carbon film is formed on the surface. Or, hydrocarbon gas such as methane heated to thermal decomposition temperature or higher is passed through the graphite particles, and thermally decomposed carbon is formed on the graphite particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は高容量、サイクル特性
に優れたリチウムイオン二次電池用負極材およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode material for a lithium ion secondary battery having high capacity and excellent cycle characteristics, and a method for producing the same.

【0002】[0002]

【従来技術】 リチウムイオン二次電池は高エネルギー
密度、貯蔵特性および信頼性に優れた二次電池の一種で
あり、近年注目されている。しかしながら金属リチウム
を二次電池の負極活物質に用いた場合、充電時に負極表
面にデントライトと称される針状結晶の金属リチウムが
析出し、この針状結晶がセパレーターを突き破り正極と
負極の間で内部短絡を起こすことがあった。このためリ
チウムを炭素材料に挿入させた負極材が用いられてい
る。この場合用いる炭素材料として非晶質系のものと黒
鉛のように高度に結晶化したものがある。非晶質系の炭
素材料をリチウムイオン二次電池用負極材に用いた場
合、容量が大きくなるが、サイクル劣化も大きくなる。
これに対して黒鉛を用いると容量は小さくなるが、サイ
クル特性が安定するため、現在リチウムイオン二次電池
用負極材では黒鉛系が主流となりつつある。すなわち黒
鉛にリチウムを担持させたリチウムイオン二次電池用負
極材は黒鉛層間にリチウムをインターカレートさせた組
成としてLiC6であり、その理論容量は372Ah/kgであり、
実際の容量もこの値前後である。一方ポリアセン構造を
持つ非晶質炭素材料からのリチウムイオン二次電池用負
極材では600〜800Ah/kgの高容量になるが、サイクル劣
化は著しく、サイクル数が多くなると黒鉛以下の容量に
なることが知られている。
2. Description of the Related Art A lithium ion secondary battery is a type of secondary battery having high energy density, excellent storage characteristics, and high reliability, and has attracted attention in recent years. However, when metallic lithium is used as a negative electrode active material of a secondary battery, needle-like crystals of metallic lithium called dentite precipitate on the surface of the negative electrode during charging, and the needle-like crystals break through the separator and form a gap between the positive electrode and the negative electrode. Sometimes caused an internal short circuit. Therefore, a negative electrode material in which lithium is inserted into a carbon material is used. In this case, there are an amorphous carbon material and a highly crystallized carbon material such as graphite. When an amorphous carbon material is used for a negative electrode material for a lithium ion secondary battery, the capacity increases, but the cycle deterioration also increases.
On the other hand, when graphite is used, the capacity is reduced, but the cycle characteristics are stabilized. Therefore, the graphite material is currently becoming the mainstream negative electrode material for lithium ion secondary batteries. In other words, the negative electrode material for a lithium ion secondary battery in which graphite is supported on graphite is LiC6 as a composition in which lithium is intercalated between graphite layers, and its theoretical capacity is 372 Ah / kg,
The actual capacity is also around this value. On the other hand, the negative electrode material for lithium ion secondary batteries made of amorphous carbon material with a polyacene structure has a high capacity of 600 to 800 Ah / kg, but the cycle deterioration is remarkable, and when the number of cycles increases, the capacity becomes less than graphite. It has been known.

【0003】黒鉛化構造を有する炭素粒子表面に非晶質
炭素被膜を形成し、これをリチウムイオン二次電池用負
極材に用いた公知のものとしては、特開平4−3687
78およびUSP5344726がある。しかしながら
この方法では黒鉛粒子表面にプロパンガス等の炭化水素
ガスを流しながら焼成することにより黒鉛粒子表面に非
晶質炭素被膜を形成している。この方法では炭化水素ガ
スに直接接触する部分には非晶質炭素被膜が形成し易い
が、黒鉛粒子は凝集するため黒鉛粒子同士が密着してい
る部分にはCVD法をもってしても非晶質炭素被膜を形
成しない。
[0003] A well-known material in which an amorphous carbon film is formed on the surface of a carbon particle having a graphitized structure and used as a negative electrode material for a lithium ion secondary battery is disclosed in Japanese Patent Application Laid-Open No. Hei 4-3687.
78 and USP 5,344,726. However, in this method, an amorphous carbon film is formed on the surface of the graphite particles by firing while flowing a hydrocarbon gas such as propane gas on the surface of the graphite particles. According to this method, an amorphous carbon film is easily formed on a portion directly in contact with the hydrocarbon gas, but the graphite particles are agglomerated because the graphite particles are agglomerated. Does not form a carbon coating.

【0004】[0004]

【発明が解決しようとする課題】 従って、本発明は従
来のCVD法では得られなかった炭素粒子表面に均質化
してかつ結晶構造の異なる薄膜層を少なくとも一層以上
付着させることにより高容量、サイクル特性に優れたリ
チウムイオン二次電池用負極活物質を提供することを主
な目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a high capacity and cycle characteristic by homogenizing and depositing at least one thin film layer having a different crystal structure on the surface of carbon particles which cannot be obtained by the conventional CVD method. It is a main object of the present invention to provide a negative electrode active material for a lithium ion secondary battery which is excellent.

【0005】[0005]

【課題を解決するための手段】 本発明者はリチウムイ
オン二次電池用負極材として、高容量ではあるがサイク
ル特性の劣る非晶質炭素材料の特徴とサイクル特性に優
れているが低容量である黒鉛質炭素材料とをハイブリッ
ド化することによりその目的を達成し得ることを見出し
た。
MEANS TO SOLVE THE PROBLEMS The present inventor has proposed, as a negative electrode material for a lithium ion secondary battery, the characteristics of an amorphous carbon material having a high capacity but inferior cycle characteristics and excellent in cycle characteristics but a low capacity. It has been found that the purpose can be achieved by hybridizing with a certain graphitic carbon material.

【0006】従来のCVD法では黒鉛粒子表面に有機ガ
スを流し、このガスの熱分解によって黒鉛粒子表面に非
晶質炭素被膜を形成するのであるが、黒鉛粉末粒子塊の
表面層と内部層では非晶質炭素被膜の形成の程度が異な
る。すなわち、表面層は非晶質炭素被膜が厚く、内部
層、とりわけ中心部ではほとんどの場合非晶質炭素被膜
の被覆層が形成しない。
In the conventional CVD method, an organic gas is flowed on the surface of graphite particles, and an amorphous carbon film is formed on the surface of the graphite particles by the thermal decomposition of the gas. The degree of formation of the amorphous carbon film is different. That is, the surface layer is thick in the amorphous carbon film, and the inner layer, especially in the center, is almost not formed with the amorphous carbon film.

【0007】本発明者は炭素粉末粒子中に樹脂、ヒ゜ッ
チなどの有機系の粉末粒子を均一に混合したものを非酸
化雰囲気下で焼成することにより熱分解ガスにより炭素
粉末粒子表面に新たな炭素被膜の形成が可能なことを見
出した。あるいは炭素粉末粒子を液状樹脂中に浸すこと
により炭素粉末粒子表面を樹脂コートし、これを焼成す
ることにより炭素被膜を形成させた。この場合、黒鉛粒
子表面に非晶質炭素被膜を形成するばかりでなく、非晶
質炭素粒子表面に黒鉛被膜層の形成も可能である。
The inventor of the present invention has proposed a method in which organic powder particles such as a resin and a switch are uniformly mixed in a carbon powder particle and fired in a non-oxidizing atmosphere. It has been found that a film can be formed. Alternatively, the carbon powder particles were immersed in a liquid resin to coat the surface of the carbon powder particles with a resin, and then fired to form a carbon coating. In this case, it is possible not only to form an amorphous carbon coating on the surface of the graphite particles, but also to form a graphite coating layer on the surface of the amorphous carbon particles.

【0008】即ち、本発明は、下記のリチウムイオン二
次電池用負極材料を提供するものである;1. 負極の
構成要素として用いられる炭素粉末粒子表面にこれと結
晶構造の違う炭素の薄膜を均一に、少なくとも一層被覆
してなるリチウムイオン二次電池用負極材およびその製
造方法。
That is, the present invention provides the following negative electrode material for a lithium ion secondary battery: A negative electrode material for a lithium ion secondary battery comprising a carbon powder particle used as a constituent element of a negative electrode and a carbon thin film having a different crystal structure from the surface of the carbon powder particle uniformly and at least one layer, and a method for producing the same.

【0009】2 黒鉛粉末粒子表面を液状樹脂により均
一に付着させ、これを焼成することにより非晶質炭素薄
膜を形成してなる上記項1に記載のリチウムイオン二次
電池用負極材およびその製造方法。
Item 2. The negative electrode material for a lithium ion secondary battery according to the above item 1, wherein the surface of the graphite powder particles is uniformly adhered to a liquid resin, and the resultant is fired to form an amorphous carbon thin film, and the production thereof. Method.

【0010】3.黒鉛粉末粒子表面を表面処理すること
により液状樹脂の付着性を改善してなる上記項2に記載
のリチウムイオン二次電池用負極材およびその製造方
法。
[0010] 3. Item 3. The negative electrode material for a lithium ion secondary battery according to Item 2, wherein the surface of the graphite powder particles is surface-treated to improve the adhesion of the liquid resin, and the method for producing the same.

【0011】4.難黒鉛化性樹脂粉末粒子表面に易黒鉛
化性樹脂を被覆し、これを黒鉛化温度まで焼成して得ら
れる上記項1に記載のリチウムイオン二次電池用負極材
およびその製造方法。
4. Item 2. The negative electrode material for a lithium ion secondary battery according to the above item 1, which is obtained by coating the surface of the non-graphitizable resin powder particles with a graphitizable resin and calcining the resin to a graphitization temperature.

【0012】5.黒鉛粉末粒子および非晶質炭素粉末粒
子を均一に混合してなるリチウムイオン二次電池用負極
材およびその製造方法。
5. A negative electrode material for a lithium ion secondary battery obtained by uniformly mixing graphite powder particles and amorphous carbon powder particles, and a method for producing the same.

【0013】6.黒鉛粉末粒子および難黒鉛化性樹脂粉
末粒子を均一に混合し、これを焼成して樹脂分を炭素化
してなるリチウムイオン二次電池用負極材およびその製
造方法。
6. A negative electrode material for a lithium ion secondary battery, which is obtained by uniformly mixing graphite powder particles and non-graphitizable resin powder particles, baking the mixture, and carbonizing the resin component, and a method for producing the same.

【0014】7.黒鉛粉末粒子表面を化学的気相含浸法
により表面処理することにより非晶質炭素薄膜を形成し
てなる請求項1に記載のリチウムイオン二次電池用負極
材およびその製造方法。
7. 2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein an amorphous carbon thin film is formed by subjecting the surface of the graphite powder particles to a surface treatment by a chemical vapor impregnation method.

【0015】[0015]

【発明の実施の形態】本発明に用いる結晶性炭素粒子は
黒鉛に相当し、特に限定するわけでは無いが、平均粒径
5〜50μm、より望ましくは10〜30μm程度であ
り、天然黒鉛、人造黒鉛、キッシュ黒鉛等、黒鉛の種類
は限定しないが、結晶構造が発達したものが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The crystalline carbon particles used in the present invention correspond to graphite and are not particularly limited, but have an average particle size of 5 to 50 μm, more preferably about 10 to 30 μm, and include natural graphite and artificial graphite. The type of graphite such as graphite and quiche graphite is not limited, but those having a developed crystal structure are desirable.

【0016】本発明に用いる非晶性炭素粒子とは250
0℃以上の温度で黒鉛化処理して、X線回折、ラマン分
光分析等の測定をしたときに難黒鉛性を示す炭素粒子を
いう。例えば、ここに掲げるものに限定するわけではな
いが、合成樹脂類(フェノール樹脂、フラン樹脂、ポリ
イミド樹脂、ポリパラフェニレン樹脂、コプナ樹脂、あ
るいはこれらの共重合樹脂)、天然物類(松ヤニ、各種
木材、石炭、石油からの重質油など)等、炭素化したと
きに残炭率の高いものが望ましい。
The amorphous carbon particles used in the present invention are 250
Carbon particles exhibiting non-graphitic properties when subjected to graphitization at a temperature of 0 ° C. or higher and measured by X-ray diffraction, Raman spectroscopy, or the like. For example, although not limited to those listed here, synthetic resins (phenolic resin, furan resin, polyimide resin, polyparaphenylene resin, copna resin, or copolymer resins thereof), natural products (pine tar, It is desirable to use a material having a high residual carbon ratio when carbonized, such as various types of wood, coal, and heavy oil from petroleum.

【0017】次にこれら炭素粒子に結晶構造の違う炭素
被膜を形成する方法として、結晶性炭素粒子上に非晶性
炭素被膜を形成させる場合と非晶性炭素粒子上に結晶性
炭素被膜を形成させる場合がある。結晶性炭素粒子上に
非晶性炭素被膜を形成させる場合としては、黒鉛粒子に
上記した非晶性炭素になり得る樹脂類を被覆させて炭素
化することによりハイブリッド炭素粒子を得る。被覆す
る方法としては、液状樹脂類に黒鉛粒子を浸し、黒鉛粒
子表面に樹脂類を被覆させた後炭素化する方法がある。
この場合、被覆厚みは樹脂濃度に依存する。また黒鉛粒
子と上記した非晶性炭素になり得る樹脂類粉末を均一に
混合し、特に限定するわけではないが、400〜100
0℃、より望ましくは500〜800℃に熱分解焼成し
て、熱分解ガスの蒸着により黒鉛粒子表面に非晶性炭素
被膜を形成したものがある。この場合では非晶性炭素被
膜を形成した黒鉛粒子と非晶性炭素が混在する。この
他、熱分解して炭素を生成するようなガス、例えばメタ
ン、エタン、プロパン、ブタン、エチレン、アセチレン
等の炭化水素ガスを熱分解温度以上に加熱した黒鉛粉末
上に流し、熱分解炭素を黒鉛粒子表面に形成させる方法
もある。このような手法を化学的蒸着法(CVD)とい
うが、さらに黒鉛粉末塊内部まで均一に処理できる化学
的気相含浸法(CVI)によりハイブリッド炭素粒子を
得る方法も取ることができる。
Next, as a method of forming a carbon film having a different crystal structure on these carbon particles, there are a method of forming an amorphous carbon film on crystalline carbon particles and a method of forming a crystalline carbon film on amorphous carbon particles. May be caused. When the amorphous carbon film is formed on the crystalline carbon particles, hybrid carbon particles are obtained by coating the graphite particles with the above-mentioned resins that can be amorphous carbon and carbonizing the same. As a coating method, there is a method in which graphite particles are immersed in a liquid resin, the surface of the graphite particles is coated with the resin, and then carbonized.
In this case, the coating thickness depends on the resin concentration. In addition, the graphite particles and the above-mentioned resin powder that can be amorphous carbon are uniformly mixed, and are not particularly limited.
There is a material in which an amorphous carbon film is formed on the surface of graphite particles by pyrolytic baking at 0 ° C., more preferably 500 to 800 ° C., and vapor deposition of a pyrolytic gas. In this case, the graphite particles having the amorphous carbon film and the amorphous carbon are mixed. In addition, a gas that generates carbon by pyrolysis, such as methane, ethane, propane, butane, ethylene, or a hydrocarbon gas such as acetylene, is flown over the graphite powder heated to a temperature higher than the pyrolysis temperature, and the pyrolytic carbon There is also a method of forming on the surface of graphite particles. Such a method is called a chemical vapor deposition method (CVD), but a method of obtaining hybrid carbon particles by a chemical vapor impregnation method (CVI) that can further uniformly treat the inside of the graphite powder mass can be adopted.

【0018】非晶性炭素粒子上に結晶性炭素被膜を形成
させる場合としては、上記した非晶性炭素になり得る樹
脂類粉末に易黒鉛化樹脂で被覆し、これを黒鉛化温度ま
で焼成すれば良い。
In order to form a crystalline carbon film on the amorphous carbon particles, the above-mentioned resin powder capable of forming amorphous carbon is coated with an easily graphitizable resin, which is fired to a graphitization temperature. Good.

【0019】[0019]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころを一層明らかにする。
EXAMPLES Examples are shown below to further clarify the features of the present invention.

【0020】実施例1 平均粒径15μmの黒鉛粒子(結晶層間距離:0.67
10nm,結晶子の大きさ:100nm以下)をアンモ
ニアを触媒にして合成したレゾールタイプのフェノール
樹脂溶液(樹脂固形分25wt%、メタノール75wt
%溶液)に浸し、軽く真空脱泡してからロ過して過剰の
フェノール樹脂溶液を取り除いた。次いで24時間室温
にて放置して風乾した後40℃の熱風循環式恒温乾燥機
内で24時間予備硬化した。さらに150℃まで100
時間かけて温度を上昇させて硬化した。
Example 1 Graphite particles having an average particle diameter of 15 μm (distance between crystal layers: 0.67)
A resol-type phenol resin solution (resin solid content 25 wt%, methanol 75 wt%) synthesized using ammonia as a catalyst for 10 nm, crystallite size: 100 nm or less.
% Solution), gently vacuum degassed, and filtered to remove excess phenol resin solution. Then, it was left at room temperature for 24 hours and air-dried, and then pre-cured in a hot-air circulation type constant temperature dryer at 40 ° C. for 24 hours. 100 to 150 ° C
The temperature was raised over time to cure.

【0021】このようにフェノール樹脂で被覆した黒鉛
粒子をアルゴンガス雰囲気下で、室温から700℃まで
8時間かけて焼成してハイブリッド化した炭素粒子粉末
を得た。これをリチウム電池負極材用充放電測定装置
((株)ナガノ製BTSー2004型。)を用い、電解
液はエチレンカーボネート系で充放電流密度0.1mA
/cm2の条件下で充放電特性を調べた。
The graphite particles coated with the phenolic resin were fired in an argon gas atmosphere from room temperature to 700 ° C. for 8 hours to obtain hybridized carbon particle powder. This was measured using a charge / discharge measuring device for lithium battery negative electrode material (BTS-2004, manufactured by Nagano Corporation). The electrolyte was an ethylene carbonate system and the charge / discharge current density was 0.1 mA.
The charge / discharge characteristics were examined under the conditions of / cm2.

【0022】実施例2 樹脂固形分50wt%(メタノール50wt%)を使う
以外は実施例1と同様に行った。
Example 2 The same procedure as in Example 1 was carried out except that a resin solid content of 50 wt% (methanol 50 wt%) was used.

【0023】実施例3 実施例1で用いたものと同様の黒鉛粉末を400℃の空
気雰囲気下で24時間酸化処理する以外は実施例1と同
様にして行った。
Example 3 The same procedure as in Example 1 was carried out except that the same graphite powder as used in Example 1 was oxidized in an air atmosphere at 400 ° C. for 24 hours.

【0024】実施例4 硬化ずみフェノール樹脂粉末をアルゴンガス雰囲気下
で、室温から700℃まで8時間かけて焼成した非晶性
炭素粉末50wt%と実施例2と同様の黒鉛粉末50w
t%を均一に混合して実施例1と同様に充放電を調べ
た。
Example 4 A hardened phenol resin powder was fired from room temperature to 700 ° C. for 8 hours in an argon gas atmosphere for 8 hours, and 50% by weight of amorphous carbon powder and 50 w% of the same graphite powder as in Example 2 were used.
The charge and discharge were examined in the same manner as in Example 1 by uniformly mixing t%.

【0025】実施例5 実施例4における非晶性炭素粉末を25wt%、黒鉛粉
末75wt%とする以外は実施例4と同様にして行っ
た。
Example 5 The procedure of Example 4 was repeated except that the amorphous carbon powder was 25 wt% and the graphite powder was 75 wt%.

【0026】実施例6 実施例4における非晶性炭素粉末を75wt%、黒鉛粉
末25wt%とする以外は実施例4と同様にして行っ
た。
Example 6 The procedure of Example 4 was repeated except that the amorphous carbon powder was 75 wt% and the graphite powder was 25 wt%.

【0027】実施例7 硬化ずみフェノール樹脂粉末50wt%および実施例2
の黒鉛粉末50wt%を均一に混合し、アルゴンガス雰
囲気下で、室温から700℃まで8時間かけて焼成して
実施例1と同様に充放電を測定した。
Example 7 50% by weight of cured phenol resin powder and Example 2
Of graphite powder was uniformly mixed and fired in an argon gas atmosphere from room temperature to 700 ° C. for 8 hours, and charge and discharge were measured in the same manner as in Example 1.

【0028】実施例8 硬化ずみフェノール樹脂粉末75wt%および実施例2
の黒鉛粉末25wt%とする以外は実施例7と同様にし
て行った。
Example 8 75% by weight of cured phenol resin powder and Example 2
Except that the graphite powder was 25 wt%.

【0029】実施例9 硬化ずみフェノール樹脂粉末25wt%および実施例2
の黒鉛粉末75wt%とする以外は実施例7と同様にし
て行った。
Example 9 25% by weight of cured phenol resin powder and Example 2
Except that the graphite powder was 75 wt%.

【0030】実施例10 実施例2と同様の黒鉛粉末にプロパンガス50vol%
およびアルゴンガス50vol%になるように混合ガス
を流し、パルスCVI装置(フルテック(株)製FT−
CVI 1200型)を用いて800℃の温度で100
0パルスになるまでパルス処理を行ってハイブリッド化
した炭素粉末を得て実施例1と同様に充放電を測定し
た。
Example 10 The same graphite powder as in Example 2 was mixed with 50% by volume of propane gas.
And a mixed gas of 50 vol% of argon gas, and a pulse CVI device (FT-FFT, manufactured by Flutec Co., Ltd.).
CVI 1200) at 800 ° C.
Pulse processing was performed until the number of pulses became 0, and a hybridized carbon powder was obtained. The charge and discharge were measured in the same manner as in Example 1.

【0031】実施例11 3、5ジメチルフェノール1モルに対し、ホルマリン
1.5モルおよびアンモニア0.002wt%から合成
したレゾールタイプの3、5ジメチルフェノール樹脂の
メタノール溶液(樹脂固形分25wt%、メタノール7
5wt%)中に200メッシュパス硬化ずみフェノール
樹脂粉末を入れ、よくかき混ぜた後、軽く真空脱泡して
硬化ずみフェノール樹脂粉末表面上に3、5ジメチルフ
ェノール樹脂を被覆した。次にこれをロ過し、過剰の
3、5ジメチルフェノール樹脂溶液を取り除いた後3、
5ジメチルフェノール樹脂を被覆した硬化ずみフェノー
ル樹脂粉末を室温にて24時間風乾した。さらに40℃
の熱風循環式恒温乾燥機内で24時間予備硬化した後1
50℃まで10時間かけて温度を上昇させて硬化ずみフ
ェノール樹脂粉末表面の3、5ジメチルフェノール樹脂
硬化させた。これをアルゴンガス雰囲気下で12時間か
けて1200℃まで温度を上昇させて炭素化した。さら
に超高温炉にてアルゴンガス雰囲気下で室温から250
0℃まで10時間で上昇させ、この温度で1時間保持し
た。このような黒鉛化処理を行って難黒鉛化炭素粉末表
面に易黒鉛化炭素被膜を形成させたハイブリッド化した
炭素粉末を得て実施例1と同様に充放電を測定した。
Example 11 A methanol solution of resole type 3,5 dimethylphenol resin synthesized from 1.5 mol of formalin and 0.002 wt% of ammonia per 1 mol of 3,5 dimethylphenol (resin solid content 25 wt%, methanol 7
(5 wt%), a 200-mesh pass cured phenol resin powder was added, mixed well, and then gently vacuum degassed to coat 3,5 dimethylphenol resin on the surface of the cured phenol resin powder. Next, this was filtered, and after removing the excess 3,5 dimethylphenol resin solution,
The cured phenol resin powder coated with 5-dimethylphenol resin was air-dried at room temperature for 24 hours. 40 ° C
After pre-curing for 24 hours in a hot air circulation type constant temperature dryer
The temperature was raised to 50 ° C. over 10 hours to cure 3,5 dimethylphenol resin on the surface of the cured phenol resin powder. This was carbonized by raising the temperature to 1200 ° C. over 12 hours in an argon gas atmosphere. Further, the temperature is increased from room temperature to 250
The temperature was raised to 0 ° C. in 10 hours and maintained at this temperature for 1 hour. By performing such a graphitization treatment, a hybridized carbon powder having a non-graphitizable carbon powder formed on the surface of the non-graphitizable carbon powder was obtained, and charge and discharge were measured in the same manner as in Example 1.

【0032】比較例1 実施例1で用いたと同様の黒鉛粉末を何も処理せずに実
施例1と同様に充放電を測定した。
Comparative Example 1 The same graphite powder as that used in Example 1 was subjected to the same measurement as in Example 1 without any treatment.

【0033】比較例2 硬化ずみフェノール樹脂粉末をアルゴンガス雰囲気下
で、室温から700℃まで8時間かけて焼成した非晶性
炭素粉末を実施例1と同様に充放電を測定した。
Comparative Example 2 Amorphous carbon powder obtained by calcining a cured phenol resin powder from room temperature to 700 ° C. for 8 hours in an argon gas atmosphere was measured for charge and discharge in the same manner as in Example 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明によるリチウムイオン二次電池用
負極材は、サイクル特性に優れているが、放電容量に劣
る黒鉛粒子および放電容量は大きいがサイクル特性に劣
る非晶製炭素粒子の欠点を補完するものである。
The negative electrode material for a lithium ion secondary battery according to the present invention has the disadvantages of graphite particles having excellent cycle characteristics but poor discharge capacity and amorphous carbon particles having large discharge capacity but poor cycle characteristics. It complements.

【0036】本発明による結晶性炭素と非晶性炭素のハ
イブリッド炭素材料は、黒鉛粒子上に非晶性炭素薄膜の
形成、および/または非晶性炭素粒子上に黒鉛層を少な
くとも一層形成させること、および/または黒鉛粒子と
非晶性炭素粒子を均一混合する3法から成る。これら3
法の何れも、結晶性炭素である黒鉛粒子のみからなるリ
チウムイオン二次電池用負極材よりも放電容量を大きく
することが可能となった。同時にポリアセンのような非
晶質系炭素のみからなるリチウムイオン二次電池用負極
材よりもサイクル特性に優れ、充放電効率を高めること
が可能となった。
The hybrid carbon material of crystalline carbon and amorphous carbon according to the present invention comprises forming an amorphous carbon thin film on graphite particles and / or forming at least one graphite layer on amorphous carbon particles. And / or three methods of uniformly mixing graphite particles and amorphous carbon particles. These three
In any of the methods, the discharge capacity can be made larger than that of a negative electrode material for a lithium ion secondary battery comprising only graphite particles as crystalline carbon. At the same time, it has more excellent cycle characteristics than a negative electrode material for a lithium ion secondary battery made of only amorphous carbon such as polyacene, and it has become possible to increase the charge / discharge efficiency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本大樹 奈良県奈良市西千代ケ丘1丁目23ー17 (72)発明者 長谷川省治 大阪府枚方市香里ケ丘12丁目28ー37 (72)発明者 田村貞隆 大阪府豊中市南桜塚3ー6ー13ー305 (72)発明者 三木亮太郎 大阪府大阪市住之江区平林北2丁目8ー59 (72)発明者 野瀬初穂 大阪府大阪市住吉区杉本2丁目9ー27 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Daiki Miyamoto 1-23-17 Nishichiyogaoka, Nara City, Nara Prefecture (72) Inventor Shoji Hasegawa 12-28-37, Karikagaoka, Hirakata City, Osaka Prefecture (72) Inventor Sadataka Tamura Osaka Minami-Sakurazuka, Toyonaka, 3-3-13-305 (72) Inventor, Ryotaro Miki 2-59, Hirabayashikita, Suminoe-ku, Osaka, Osaka (72) Inventor, Hatsune Nose 2--9, Sugimoto, Sumiyoshi-ku, Osaka, Osakaー 27

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 負極の構成要素として用いられる炭素粉
末粒子表面にこれと結晶構造の違う炭素の薄膜を均一
に、少なくとも一層被覆してなるリチウムイオン二次電
池用負極材。
1. A negative electrode material for a lithium ion secondary battery comprising a carbon powder particle used as a component of a negative electrode, and a carbon thin film having a different crystal structure from the surface of the carbon powder particle uniformly coated at least one layer.
【請求項2】 黒鉛粉末粒子表面を液状樹脂により均一
に付着させ、これを焼成することにより非晶質炭素薄膜
を形成してなる請求項1に記載のリチウムイオン二次電
池用負極材。
2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the surface of the graphite powder particles is uniformly adhered to a liquid resin, and the resultant is fired to form an amorphous carbon thin film.
【請求項3】 黒鉛粉末粒子表面を表面処理することに
より液状樹脂の付着性を改善してなる請求項2に記載の
リチウムイオン二次電池用負極材。
3. The negative electrode material for a lithium ion secondary battery according to claim 2, wherein the surface of the graphite powder particles is surface-treated to improve the adhesion of the liquid resin.
【請求項4】 難黒鉛化性樹脂粉末粒子表面に易黒鉛化
性樹脂を被覆し、これを黒鉛化温度まで焼成して得られ
る請求項1に記載のリチウムイオン二次電池用負極材。
4. The negative electrode material for a lithium ion secondary battery according to claim 1, obtained by coating the surface of the non-graphitizable resin powder particles with a graphitizable resin and firing the resin to a graphitization temperature.
【請求項5】 黒鉛粉末粒子および非晶質炭素粉末粒子
を均一に混合してなるリチウムイオン二次電池用負極
材。
5. A negative electrode material for a lithium ion secondary battery obtained by uniformly mixing graphite powder particles and amorphous carbon powder particles.
【請求項6】 黒鉛粉末粒子および難黒鉛化性樹脂粉末
粒子を均一に混合し、これを焼成して樹脂分を炭素化し
てなるリチウムイオン二次電池用負極材。
6. A negative electrode material for a lithium ion secondary battery obtained by uniformly mixing graphite powder particles and non-graphitizable resin powder particles, and baking the mixture to carbonize the resin component.
【請求項7】 黒鉛粉末粒子表面を化学的気相含浸法に
より表面処理することにより非晶質炭素薄膜を形成して
なる請求項1に記載のリチウムイオン二次電池用負極
材。
7. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the surface of the graphite powder particles is subjected to a surface treatment by a chemical vapor impregnation method to form an amorphous carbon thin film.
【請求項8】 負極の構成要素として用いられる炭素粉
末粒子表面にこれと結晶構造の違う炭素の薄膜を均一
に、少なくとも一層被覆してなるリチウムイオン二次電
池用負極材の製造方法。
8. A method for producing a negative electrode material for a lithium ion secondary battery, comprising uniformly and at least one layer of a carbon thin film having a different crystal structure from the surface of carbon powder particles used as a component of a negative electrode.
【請求項9】 黒鉛粉末粒子表面を液状樹脂により均一
に付着させ、これを焼成することにより非晶質炭素薄膜
を形成してなる請求項1に記載のリチウムイオン二次電
池用負極材の製造方法。
9. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the surface of the graphite powder particles is uniformly adhered to a liquid resin, and the resultant is baked to form an amorphous carbon thin film. Method.
【請求項10】 黒鉛粉末粒子表面を表面処理すること
により液状樹脂の付着性を改善してなる請求項2に記載
のリチウムイオン二次電池用負極材の製造方法。
10. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 2, wherein the adhesion of the liquid resin is improved by treating the surface of the graphite powder particles.
【請求項11】 難黒鉛化性樹脂粉末粒子表面に易黒鉛
化性樹脂を被覆し、これを黒鉛化温度まで焼成して得ら
れる請求項1に記載のリチウムイオン二次電池用負極材
の製造方法。
11. The production of a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the surface of the non-graphitizable resin powder particles is coated with a graphitizable resin, and the resultant is fired to a graphitization temperature. Method.
【請求項12】 黒鉛粉末粒子および非晶質炭素粉末粒
子を均一に混合してなるリチウムイオン二次電池用負極
材の製造方法。
12. A method for producing a negative electrode material for a lithium ion secondary battery, comprising uniformly mixing graphite powder particles and amorphous carbon powder particles.
【請求項13】 黒鉛粉末粒子および難黒鉛化性樹脂粉
末粒子を均一に混合し、これを焼成して樹脂分を炭素化
してなるリチウムイオン二次電池用負極材の製造方法。
13. A method for producing a negative electrode material for a lithium ion secondary battery, wherein graphite powder particles and non-graphitizable resin powder particles are uniformly mixed and fired to carbonize the resin component.
【請求項14】 黒鉛粉末粒子表面を化学的気相含浸法
により表面処理することにより非晶質炭素薄膜を形成し
てなる請求項1に記載のリチウムイオン二次電池用負極
材の製造方法。
14. The method for producing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the surface of the graphite powder particles is subjected to a surface treatment by a chemical vapor impregnation method to form an amorphous carbon thin film.
JP10137698A 1998-04-30 1998-04-30 Negative electrode material for lithium ion secondary battery and its manufacture Pending JPH11317228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10137698A JPH11317228A (en) 1998-04-30 1998-04-30 Negative electrode material for lithium ion secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10137698A JPH11317228A (en) 1998-04-30 1998-04-30 Negative electrode material for lithium ion secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH11317228A true JPH11317228A (en) 1999-11-16

Family

ID=15204731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10137698A Pending JPH11317228A (en) 1998-04-30 1998-04-30 Negative electrode material for lithium ion secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH11317228A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764791B2 (en) 2000-07-19 2004-07-20 Sanyo Electric Co., Ltd. Rechargeable lithium battery
JP2006338977A (en) * 2005-06-01 2006-12-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
US7192675B2 (en) * 2000-09-29 2007-03-20 Sharp Kabushiki Kaisha Lithium polymer secondary battery
JP2007103382A (en) * 2006-12-08 2007-04-19 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured of this
US7270914B2 (en) * 2000-09-29 2007-09-18 Sharp Corporation Lithium secondary cell
US7273503B2 (en) * 2000-09-29 2007-09-25 Sharp Corporation Lithium polymer secondary battery and method for manufacturing the same
WO2012014259A1 (en) * 2010-07-30 2012-02-02 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery
WO2012039477A1 (en) * 2010-09-24 2012-03-29 日立化成工業株式会社 Lithium ion battery, and battery module utilizing same
JP2012109175A (en) * 2010-11-19 2012-06-07 Honda Motor Co Ltd Anode material for lithium-ion secondary battery and method for producing the same
KR20210007905A (en) * 2019-07-12 2021-01-20 이비덴 가부시키가이샤 Carbon composite material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764791B2 (en) 2000-07-19 2004-07-20 Sanyo Electric Co., Ltd. Rechargeable lithium battery
US7273503B2 (en) * 2000-09-29 2007-09-25 Sharp Corporation Lithium polymer secondary battery and method for manufacturing the same
US7192675B2 (en) * 2000-09-29 2007-03-20 Sharp Kabushiki Kaisha Lithium polymer secondary battery
US7270914B2 (en) * 2000-09-29 2007-09-18 Sharp Corporation Lithium secondary cell
JP2006338977A (en) * 2005-06-01 2006-12-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP4595931B2 (en) * 2006-12-08 2010-12-08 三菱化学株式会社 Negative electrode material for lithium secondary battery and negative electrode sheet produced therefrom
JP2007103382A (en) * 2006-12-08 2007-04-19 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured of this
WO2012014259A1 (en) * 2010-07-30 2012-02-02 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery
JP5481560B2 (en) * 2010-07-30 2014-04-23 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery
WO2012039477A1 (en) * 2010-09-24 2012-03-29 日立化成工業株式会社 Lithium ion battery, and battery module utilizing same
CN103190018A (en) * 2010-09-24 2013-07-03 日立化成株式会社 Lithium ion battery, and battery module utilizing same
JPWO2012039477A1 (en) * 2010-09-24 2014-02-03 日立化成株式会社 Lithium ion battery and battery module using the same
JP6003648B2 (en) * 2010-09-24 2016-10-05 日立化成株式会社 Negative electrode active material, lithium ion battery, and battery module using the same
JP2012109175A (en) * 2010-11-19 2012-06-07 Honda Motor Co Ltd Anode material for lithium-ion secondary battery and method for producing the same
KR20210007905A (en) * 2019-07-12 2021-01-20 이비덴 가부시키가이샤 Carbon composite material

Similar Documents

Publication Publication Date Title
US10020501B2 (en) Methods of forming carbon coatings
JP3444786B2 (en) Lithium secondary battery
JP3955710B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
US7150840B2 (en) Graphite fine carbon fiber, and production method and use thereof
US20130168610A1 (en) Carbon material for battery electrode and production method and use thereof
US20090311606A1 (en) Negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
EP3113261A1 (en) Negative electrode material for nonaqueous electrolyte secondary cell, method for producing negative electrode material for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JP7062212B2 (en) Amorphous silicon-carbon composite, this manufacturing method and lithium secondary battery containing it
JP2006019127A (en) Silicon composite and its manufacturing method, and negative electrode material for nonaqueous electrolyte secondary battery
JP2007213825A (en) Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
TW201705595A (en) Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
JP2021116191A (en) Composite carbon material and lithium-ion secondary battery
JP4081621B2 (en) Negative electrode carbon material for lithium secondary battery and lithium secondary battery
JP2022518310A (en) Silicon-based negative electrode material and its manufacturing method, lithium-ion battery
KR20140110703A (en) Methods of forming carbon coatings
JPH11317228A (en) Negative electrode material for lithium ion secondary battery and its manufacture
JP3654790B2 (en) Graphite material for electrode and lithium ion secondary battery using the same
JP2023519787A (en) Predominantly amorphous silicon particles and their use as anode active materials in lithium-ion secondary batteries
JP5078047B2 (en) Carbon material, production method thereof and use thereof
JP2008204758A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP6079651B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP2004079344A (en) Negative electrode material for non-aqueous electrolyte secondary battery
KR20210088441A (en) Silicon-based lithium storage material and manufacturing method thereof
JP6413007B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
TWI720805B (en) Soft carbon and its preparation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees