JP7330556B1 - TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE - Google Patents

TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE Download PDF

Info

Publication number
JP7330556B1
JP7330556B1 JP2022107967A JP2022107967A JP7330556B1 JP 7330556 B1 JP7330556 B1 JP 7330556B1 JP 2022107967 A JP2022107967 A JP 2022107967A JP 2022107967 A JP2022107967 A JP 2022107967A JP 7330556 B1 JP7330556 B1 JP 7330556B1
Authority
JP
Japan
Prior art keywords
conductor
transmission line
substrate
coverlay
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022107967A
Other languages
Japanese (ja)
Other versions
JP2024006773A (en
Inventor
勇一 竹村
賢一 小野
卓宏 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TENRYUSEIKI CO., LTD.
Original Assignee
TENRYUSEIKI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TENRYUSEIKI CO., LTD. filed Critical TENRYUSEIKI CO., LTD.
Priority to JP2022107967A priority Critical patent/JP7330556B1/en
Priority to PCT/JP2023/023883 priority patent/WO2024009856A1/en
Priority to TW112124712A priority patent/TW202410578A/en
Application granted granted Critical
Publication of JP7330556B1 publication Critical patent/JP7330556B1/en
Publication of JP2024006773A publication Critical patent/JP2024006773A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Waveguides (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】シールド性能を有し、省スペースに対応した薄型であるとともに、高速伝送に対応できる伝送ロスの少ない構造の伝送線路を提供することを目的とする。【解決手段】伝送線路20は、伝送線路導体32とグランド導体33とからなる第1導体31と、第1導体31が形成された第1基材34と、伝送線路導体32を覆うカバーレイ35と、第2導体41が第2基材42に形成された第1シールド40と、第3導体46が第3基材47に形成された第2シールド45を備え、カバーレイ35は第1基材に熱圧着されており、前記第1基材は前記第2基材に熱圧着されており、前記第3基材はカバーレイ34に熱圧着されており、第2導体41と第3導体46は伝送線路導体32を囲むように配されて互いに超音波接合されており、第2導体41は折り返された端部がグランド導体33に重なって超音波接合されている構成である。【選択図】図1An object of the present invention is to provide a transmission line that has a shielding performance, is thin enough to save space, and has a structure capable of supporting high-speed transmission with little transmission loss. A transmission line (20) includes a first conductor (31) composed of a transmission line conductor (32) and a ground conductor (33), a first base (34) on which the first conductor (31) is formed, and a coverlay (35) covering the transmission line conductor (32). a second conductor 41 formed on a second substrate 42, a first shield 40 formed on a second substrate 42, a third conductor 46 formed on a third substrate 47, a second shield 45; the first substrate is thermocompression bonded to the second substrate; the third substrate is thermocompression bonded to the coverlay 34; the second conductor 41 and the third conductor 46 is arranged so as to surround the transmission line conductor 32 and is ultrasonically bonded to each other, and the second conductor 41 is configured such that the folded end overlaps the ground conductor 33 and is ultrasonically bonded. [Selection drawing] Fig. 1

Description

本発明は、電子機器に用いられる伝送線路に関する。 The present invention relates to transmission lines used in electronic equipment.

従来、可撓性を有する誘電体素体(液晶ポリマー)と、前記誘電体素体に設けられている線状の信号線と、前記誘電体素体に設けられ、かつ、前記信号線と対向しているグランド導体と、前記誘電体素体の主面の法線方向において、前記信号線に関して前記グランド導体の反対側に設けられている補助グランド導体であって、該法線方向から平面視したときに、前記信号線を挟んでいると共に、該信号線に沿って延在している2つの主要部と、該2つの主要部を接続していると共に、該信号線と交差するブリッジ部とを含んでいる補助グランド導体と、前記補助グランド導体と前記グランド導体とを電気的に接続しているビアホール導体を備えており、前記法線方向において、前記信号線と前記補助グランド導体との間隔が前記信号線と前記グランド導体との間隔よりも小さい構成の高周波信号線路が提案されている(特許文献1:実用新案登録第3173143号公報)。また、伝送線路導体を囲むように2導体と第3導体を配設し超音波接合した構造の伝送線路が提案されている(特許文献2:特許第6507302号公報、特許文献3:特許第6611293号公報、特許文献4:特許第6850501号公報)。 Conventionally, a flexible dielectric body (liquid crystal polymer), a linear signal line provided in the dielectric body, and a signal line provided in the dielectric body and facing the signal line and an auxiliary ground conductor provided on the opposite side of the ground conductor with respect to the signal line in the normal direction of the main surface of the dielectric element, in a plan view from the normal direction and two main portions sandwiching the signal line and extending along the signal line, and a bridge portion connecting the two main portions and crossing the signal line. and a via-hole conductor electrically connecting the auxiliary ground conductor and the ground conductor, wherein the signal line and the auxiliary ground conductor are connected in the normal direction. A high-frequency signal line has been proposed in which the interval is smaller than the interval between the signal line and the ground conductor (Patent Document 1: Utility Model Registration No. 3173143). In addition, a transmission line having a structure in which two conductors and a third conductor are arranged so as to surround the transmission line conductor and are ultrasonically bonded has been proposed (Patent Document 2: Japanese Patent No. 6507302; Patent Document 3: Japanese Patent No. 6611293). Publication, Patent Document 4: Japanese Patent No. 6850501).

実用新案登録第3173143号公報Utility Model Registration No. 3173143 特許第6507302号公報Japanese Patent No. 6507302 特許第6611293号公報Japanese Patent No. 6611293 特許第6850501号公報Japanese Patent No. 6850501

電子機器に用いられる伝送線路には、シールド性能を有し、省スペースに対応した薄型構造であるとともに、高速伝送に対応できる伝送ロスの少ない構造が要求されている。 BACKGROUND ART Transmission lines used in electronic devices are required to have a shielding performance, a thin structure for space saving, and a structure with little transmission loss for high-speed transmission.

本発明は、上記事情に鑑みてなされ、シールド性能を有し、省スペースに対応した薄型であるとともに、高速伝送に対応できる伝送ロスの少ない構造の伝送線路を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a transmission line that has shielding performance, is thin enough to save space, and has a structure with little transmission loss that is compatible with high-speed transmission.

一実施形態として、以下に開示するような解決手段により、前記課題を解決する。 As one embodiment, the above problem is solved by means of solution as disclosed below.

本発明に係る伝送線路は、伝送線路導体と前記伝送線路導体の入力端と出力端とにそれぞれ近接する一対のグランド導体とからなる第1導体と前記第1導体が形成された第1基材と、前記伝送線路導体を覆うカバーレイと、第2導体が第2基材に形成された第1シールドと、第3導体が第3基材に形成された第2シールドを備え、前記カバーレイは前記第1基材に熱圧着されており、前記第1基材は前記第2基材に熱圧着されており、前記第3基材は前記カバーレイに熱圧着されており、前記第2導体と前記第3導体は前記伝送線路導体を囲むように配されて互いに超音波接合されており、前記第2導体は折り返された端部が前記グランド導体に重なって超音波接合されていることを特徴とする。 A transmission line according to the present invention includes a first conductor composed of a transmission line conductor and a pair of ground conductors respectively adjacent to an input end and an output end of the transmission line conductor, and a first base on which the first conductor is formed. a coverlay covering the transmission line conductor; a first shield having a second conductor formed on a second substrate; and a second shield having a third conductor formed on a third substrate; is thermocompression bonded to the first substrate, the first substrate is thermocompression bonded to the second substrate, the third substrate is thermocompression bonded to the coverlay, and the second The conductor and the third conductor are arranged so as to surround the transmission line conductor and are ultrasonically bonded to each other, and the folded end of the second conductor is ultrasonically bonded so as to overlap the ground conductor. characterized by

この構成によれば、伝送線路導体が、第2導体と前記第3導体とで囲まれていることで必要なシールド性能を有することができる。そして、折り返された端部が、熱圧着と超音波接合を組み合わせていることで省スペースに対応した薄型構造にできる。一例として、前記伝送線路導体は第1間隔で形成されており、前記第2導体は、底面視で前記グランド導体に重なる位置に、第2間隔で貫通孔が形成されている。 According to this configuration, since the transmission line conductor is surrounded by the second conductor and the third conductor, necessary shielding performance can be obtained. Then, the folded end portion can be formed into a thin structure corresponding to space saving by combining thermocompression bonding and ultrasonic bonding. As an example, the transmission line conductors are formed at first intervals, and the second conductors are formed with through holes at second intervals at positions overlapping the ground conductors in bottom view.

本発明に係る伝送線路の製造方法は、伝送線路導体と前記伝送線路導体の入力端と出力端とにそれぞれ近接する一対のグランド導体とからなる第1導体と前記第1導体が形成された第1基材と、前記伝送線路導体を覆うカバーレイと、第2導体が第2基材に形成された第1シールドと、第3導体が第3基材に形成された第2シールドを備え、前記カバーレイは前記第1基材に熱圧着されており、前記第1基材は前記第2基材に熱圧着されており、前記第3基材は前記カバーレイに熱圧着されており、前記第2導体と前記第3導体は前記伝送線路導体を囲むように配されて互いに超音波接合されており、前記伝送線路導体が第1間隔で形成されている構成の伝送線路を製造する製造方法であって、前記第2導体の端部を折り返して前記グランド導体に重ねて、アンビルを前記端部に当接させ、かつ、錐台が第2間隔で配されているホーンを前記アンビルに対向する方向から突いて前記グランド導体に当接させて、前記アンビルと前記ホーンとによって、前記端部と前記グランド導体を超音波接合することを特徴とする。 A method of manufacturing a transmission line according to the present invention includes a first conductor formed of a transmission line conductor and a pair of ground conductors respectively adjacent to an input end and an output end of the transmission line conductor, and a second conductor formed with the first conductor. 1 substrate, a coverlay covering the transmission line conductor, a first shield having a second conductor formed on the second substrate, and a second shield having a third conductor formed on the third substrate, The coverlay is thermocompression bonded to the first substrate, the first substrate is thermocompression bonded to the second substrate, and the third substrate is thermocompression bonded to the coverlay, The second conductor and the third conductor are disposed so as to surround the transmission line conductor and are ultrasonically bonded to each other, and the transmission line conductor is formed at a first spacing. The method includes folding an end of the second conductor over the ground conductor, an anvil abutting the end, and a horn having a frustum disposed at a second spacing on the anvil. The end portion and the ground conductor are ultrasonically welded by the anvil and the horn by protruding from opposite directions and contacting the ground conductor.

この構成によれば、第2導体の端部とグランド導体とを正確な位置で確実に超音波接合することができる。また、第2導体の端部とグランド導体とが重なった部分はアンビルで抑えることで超音波接合時に導体が引っ張られることが防止できる。そして、超音波接合時に熱可塑性樹脂が必要以上に押し出されることが防止できるとともに、超音波接合後に熱可塑性樹脂が熱収縮したときに、熱歪みが緩和できる。よって、シールド性能を有し、省スペースに対応した薄型構造であるとともに、高速伝送に対応できる伝送ロスの少ない構造の伝送線路を製造することができる。 According to this configuration, the end of the second conductor and the ground conductor can be reliably ultrasonically bonded at an accurate position. Also, by holding down the overlapping portion of the second conductor and the ground conductor with an anvil, it is possible to prevent the conductor from being pulled during ultrasonic bonding. Further, it is possible to prevent the thermoplastic resin from being extruded more than necessary during ultrasonic bonding, and to alleviate thermal strain when the thermoplastic resin thermally shrinks after ultrasonic bonding. Therefore, it is possible to manufacture a transmission line having shielding performance, a thin structure corresponding to space saving, and a structure with little transmission loss corresponding to high-speed transmission.

本発明の伝送線路によれば、電子機器に用いられる場合に必要なシールド性能を有し、省スペースに対応した薄型であるとともに、高速伝送に対応できる伝送ロスの少ない構造の伝送線路が実現できる。 INDUSTRIAL APPLICABILITY According to the transmission line of the present invention, it is possible to realize a transmission line that has shielding performance necessary for use in electronic equipment, is thin enough to save space, and has a structure with little transmission loss that is compatible with high-speed transmission. .

図1は本実施形態の伝送線路の例を示す概略の斜視図である。FIG. 1 is a schematic perspective view showing an example of a transmission line according to this embodiment. 図2は図1に示す伝送線路の平面図である。2 is a plan view of the transmission line shown in FIG. 1. FIG. 図3は図2に示す伝送線路のIII-III線断面図である。FIG. 3 is a cross-sectional view of the transmission line shown in FIG. 2 taken along line III-III. 図4は図2に示す伝送線路のIV-IV線断面図である。FIG. 4 is a cross-sectional view of the transmission line shown in FIG. 2 taken along line IV-IV. 図5Aは本実施形態の伝送線路の製造方法における超音波接合構造を示す概略の断面図であり、図5Bは図5Aにおける第1先端部の例を示す概略の斜視図であり、図5Cは図5Aにおける第2先端部の例を示す概略の斜視図である。5A is a schematic cross-sectional view showing an ultrasonic bonding structure in the transmission line manufacturing method of the present embodiment, FIG. 5B is a schematic perspective view showing an example of the first tip portion in FIG. 5A, and FIG. FIG. 5B is a schematic perspective view showing an example of the second tip in FIG. 5A; 図6は図1に示す伝送線路の底面図である。6 is a bottom view of the transmission line shown in FIG. 1. FIG. 図7は本実施形態の伝送線路の製造手順を示すフローチャート図である。FIG. 7 is a flow chart showing the manufacturing procedure of the transmission line of this embodiment.

以下、図面を参照して、本発明の実施形態について詳しく説明する。本実施形態の伝送線路20は、一例として、2つの伝送線路導体32が第1間隔P1で形成されており、一方側の端部と他方側の端部とは対称形状になっている。図1は伝送線路20の例を示す概略の斜視図であり、破線で囲んだエリアP4は伝送線路20の端部の拡大図を示している。図2は伝送線路20の例を示す概略の平面図であり、破線で囲んだエリアP5は伝送線路20の端部の拡大図を示している。図3は図2のIII-III線断面図である。図4は図2のIV-IV線断面図である。図6は伝送線路20の例を示す概略の底面図であり、破線で囲んだエリアP6は伝送線路20の端部の拡大図を示している。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As an example, the transmission line 20 of the present embodiment has two transmission line conductors 32 formed with a first spacing P1, and one end and the other end are symmetrical. FIG. 1 is a schematic perspective view showing an example of the transmission line 20, and an area P4 surrounded by a broken line shows an enlarged view of the end of the transmission line 20. As shown in FIG. FIG. 2 is a schematic plan view showing an example of the transmission line 20, and an area P5 surrounded by a broken line shows an enlarged view of the end of the transmission line 20. As shown in FIG. FIG. 3 is a sectional view taken along line III-III of FIG. FIG. 4 is a sectional view taken along line IV-IV of FIG. FIG. 6 is a schematic bottom view showing an example of the transmission line 20, and an area P6 surrounded by a broken line shows an enlarged view of the end of the transmission line 20. As shown in FIG. In addition, in all drawings for describing the embodiments, members having the same functions are denoted by the same reference numerals, and repeated description thereof may be omitted.

図1~図6に示すように、伝送線路20は、フレキシブル多層配線基板からなり、伝送線路20は、伝送線路導体32とグランド導体33とからなる第1導体31と、第1導体31が形成された第1基材34とを有するベース30と、伝送線路導体32を覆うカバーレイ35と、第2導体41が第2基材42に形成された第1シールド40と、第3導体46が第3基材47に形成された第2シールド45を備え、カバーレイ35は第1基材34に熱圧着されており、第1基材34は第2基材42に熱圧着されており、第3基材47はカバーレイ35に熱圧着されており、第2導体41と第3導体46は伝送線路導体32を囲むように配されて互いに超音波接合されており、第2導体41は折り返された端部41aがグランド導体33に重なって超音波接合されている構成である。一例として、伝送線路導体32の入力端にコネクタが実装されて制御回路に接続され、伝送線路導体32の出力端にコネクタが実装されてアンテナ構造体に接続され、前記制御回路と前記アンテナ構造体とが信号接続される。 As shown in FIGS. 1 to 6, the transmission line 20 is made of a flexible multilayer wiring board, and the transmission line 20 has a first conductor 31 made up of a transmission line conductor 32 and a ground conductor 33, and a first conductor 31. a coverlay 35 covering the transmission line conductor 32; a first shield 40 having a second conductor 41 formed on the second substrate 42; a second shield 45 formed on a third substrate 47, the coverlay 35 being thermocompression bonded to the first substrate 34, the first substrate 34 being thermocompression bonded to the second substrate 42; The third base material 47 is thermocompression bonded to the coverlay 35, the second conductor 41 and the third conductor 46 are arranged so as to surround the transmission line conductor 32 and are ultrasonically bonded to each other, and the second conductor 41 is The folded end portion 41a overlaps the ground conductor 33 and is ultrasonically bonded. As an example, a connector is mounted on the input end of the transmission line conductor 32 and connected to the control circuit, a connector is mounted on the output end of the transmission line conductor 32 and connected to the antenna structure, and the control circuit and the antenna structure are connected. and are signal connected.

一例として、第1基材34とカバーレイ35は熱可塑性のフッ素樹脂からなる。第2導体41は、底面視でグランド導体33に重なる位置に、貫通孔41bが第2間隔P2で形成されている。一例として、第2基材42と第3基材47は熱可塑性のポリイミド樹脂からなる。 As an example, the first base material 34 and the coverlay 35 are made of thermoplastic fluororesin. The second conductor 41 has a through hole 41b formed at a second interval P2 at a position overlapping the ground conductor 33 in bottom view. As an example, the second base material 42 and the third base material 47 are made of thermoplastic polyimide resin.

一例として、伝送線路20の製造装置は、上流側から順に、第1導体形成機、不要領域除去機、第1接合機、熱圧着機、第2接合機、検査機、分割取出し機、が配設されており、そして、これらを制御するコントローラを備える。この製造装置は、上述の特許文献2~3の技術を適用してもよい。 As an example, the apparatus for manufacturing the transmission line 20 includes, in order from the upstream side, a first conductor forming machine, an unnecessary area removing machine, a first joining machine, a thermocompression bonding machine, a second joining machine, an inspection machine, and a split extraction machine. and has a controller to control them. This manufacturing apparatus may apply the techniques of Patent Documents 2 and 3 described above.

続いて、本発明に係る伝送線路20の製造方法について、以下に説明する。 Next, a method for manufacturing the transmission line 20 according to the present invention will be described below.

図7は本実施形態の伝送線路20の製造手順を示すフローチャート図である。伝送線路20は一例として、第1導体形成ステップS1、不要領域除去ステップS2、第1接合ステップS3、熱圧着ステップS4、第2接合ステップS5、検査ステップS6、分割ステップS7の順に製造される。 FIG. 7 is a flow chart showing the manufacturing procedure of the transmission line 20 of this embodiment. As an example, the transmission line 20 is manufactured in the order of a first conductor forming step S1, an unnecessary region removing step S2, a first bonding step S3, a thermocompression bonding step S4, a second bonding step S5, an inspection step S6, and a division step S7.

一例として、第1導体31と第2導体41と第3導体46は、銅または銅合金からなる。第1導体形成ステップS1は、サブトラクティブ法によって、両面銅張基板にエッチング処理を施して、第1基材34の第1主面に伝送線路導体32とグランド導体33を形成し、第1基材34の第2主面から導体を除去してベース30にする。これにより、反りを防止して平坦なベース30にできる。上記以外の方法として、アディティブ法によって、第1基材34の第1主面にパターンめっき処理を施して、伝送線路導体32とグランド導体33を形成し、ベース30にすることもできる。 As an example, the first conductor 31, the second conductor 41 and the third conductor 46 are made of copper or a copper alloy. In the first conductor forming step S1, the double-sided copper-clad substrate is etched by a subtractive method to form the transmission line conductor 32 and the ground conductor 33 on the first main surface of the first substrate 34, thereby forming the first substrate. The conductor is removed from the second major surface of material 34 to form base 30 . As a result, warpage can be prevented and the flat base 30 can be obtained. As a method other than the above, the transmission line conductor 32 and the ground conductor 33 can be formed to form the base 30 by pattern plating the first main surface of the first substrate 34 by an additive method.

ベース30は、伝送線路導体32が第1間隔P1で形成されている。第1導体31は、直線状に形成された伝送線路導体32と、伝送線路導体32の入力端と出力端とにそれぞれ近接するグランド導体33とからなる。ベース30は、伝送線路導体32と伝送線路導体32との間に不要領域がある。 The base 30 has transmission line conductors 32 formed at a first spacing P1. The first conductor 31 is composed of a transmission line conductor 32 formed in a straight line and a ground conductor 33 adjacent to an input end and an output end of the transmission line conductor 32, respectively. Base 30 has a waste area between transmission line conductors 32 .

一例として、第1基材34とカバーレイ35は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、クロロトリフルオロエチレン-エチレン共重合体(ECTFE)、ポリビニリデンフルオライド(PVDF)、その他既知の熱可塑性のフッ素樹脂から選択される。一例として、第2基材42と第3基材47は熱可塑性のポリイミド樹脂からなる。 As an example, the first substrate 34 and the coverlay 35 may be made of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene (FEP), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene (FEP), It is selected from fluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF) and other known thermoplastic fluororesins. As an example, the second base material 42 and the third base material 47 are made of thermoplastic polyimide resin.

不要領域除去ステップS2は、ベース30とカバーレイ35とを重ね合わせた状態で、不要領域除去機を用いて、伝送線路導体32と伝送線路導体32との間の不要領域を打ち抜いて長方形状の貫通穴を形成する。第1接合ステップS3は、第1接合機を用いて、ワークにおける前記不要領域が除去された箇所にて、第2導体41を第3導体46に超音波接合する。 In the unnecessary area removing step S2, in a state where the base 30 and the coverlay 35 are superimposed, an unnecessary area removing machine is used to punch out unnecessary areas between the transmission line conductors 32 to form a rectangular shape. Form a through hole. The first joining step S3 uses the first joining machine to ultrasonically join the second conductor 41 to the third conductor 46 at the portion of the work from which the unnecessary region has been removed.

熱圧着ステップS4は、熱圧着機を用いたロールプレスにて、ワークを一括で熱圧着する。これにより、カバーレイ35は第1基材34に熱圧着されて、第1基材34は第2基材42に熱圧着されて、第3基材47はカバーレイ35に熱圧着される。 In the thermocompression bonding step S4, the workpieces are thermocompression bonded together by a roll press using a thermocompression bonding machine. Thereby, the coverlay 35 is thermocompression bonded to the first base material 34 , the first base material 34 is thermocompression bonded to the second base material 42 , and the third base material 47 is thermocompression bonded to the coverlay 35 .

第2接合ステップS5は、ワークの底面に配された第1シールド40の突出部をワークの上面に折り返し、第2導体41における折り返された端部41aをグランド導体33に重ね合わせて、第2接合機を用いて、第2導体41の端部41aをグランド導体33に超音波接合する。図5A~図5Cに示すように、第2導体41の端部41aをグランド導体33に超音波接合するに際し、端部41aに上から当接するアンビル61と、アンビル61に対向してグランド導体33に下から当接する錐台が第2間隔P2で配されているホーン62とを用いて、ホーン62をアンビル61に対向する方向から突いてグランド導体33に当接させて、アンビル61とホーン62とによって、端部41aとグランド導体33を超音波接合する。 In the second bonding step S5, the projecting portion of the first shield 40 arranged on the bottom surface of the work is folded back to the top surface of the work, the folded end portion 41a of the second conductor 41 is overlapped with the ground conductor 33, and the second The end 41a of the second conductor 41 is ultrasonically bonded to the ground conductor 33 using a bonding machine. As shown in FIGS. 5A to 5C, when ultrasonically bonding the end portion 41a of the second conductor 41 to the ground conductor 33, the anvil 61 abuts the end portion 41a from above, and the ground conductor 33 faces the anvil 61. Using a horn 62 having frustums arranged at a second interval P2, the horn 62 is pushed from the direction facing the anvil 61 and brought into contact with the ground conductor 33, and the anvil 61 and the horn 62 are brought into contact with each other. , the end portion 41a and the ground conductor 33 are ultrasonically bonded.

一例として、アンビル61における端部41aに当接する面は、先端が0.1mm×0.1mm、突起角度斜め45度の四角錐台がピッチ0.28mmでマトリクス状に配設されている。一例として、ホーン62は、先端が直径0.1mmの円錐台であり、第2間隔P2を1.12mmとして一列に配設されている。 As an example, on the surface of the anvil 61 that contacts the end portion 41a, truncated square pyramids with tips of 0.1 mm×0.1 mm and oblique projection angles of 45 degrees are arranged in a matrix at a pitch of 0.28 mm. As an example, the horn 62 has a truncated cone with a diameter of 0.1 mm at its tip, and is arranged in a line with the second interval P2 of 1.12 mm.

検査ステップS6は、検査機の接触ピンを伝送線路導体32に接触させて通電することで伝送線路導体32が断線していないこと、及び導通レベルが正常範囲内であることを検査する。分割ステップS7は、分割取出し機の打ち抜き刃によって、ワークを所定のカットラインに沿って打ち抜く。 The inspection step S6 inspects that the transmission line conductor 32 is not disconnected and that the continuity level is within the normal range by contacting the contact pin of the inspection machine to the transmission line conductor 32 and energizing it. In the dividing step S7, the work is punched out along a predetermined cut line by the punching blade of the split take-out machine.

続いて、実施例1と実施例2について、以下に説明する。 Next, Example 1 and Example 2 will be described below.

[実施例1]
実施例1の伝送線路20は、第1基材34とカバーレイ35は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)からなる。伝送線路20の全長は192mm、幅は8.8mm、厚さは0.35mm、第1間隔P1は4mmである。第1導体31と第2導体41と第3導体46は銅からなり、厚さは12μmである。貫通孔41bは、厚み方向に錐状に形成されており、第1基材34とカバーレイ35を貫通している。
[Example 1]
In the transmission line 20 of Example 1, the first base material 34 and the coverlay 35 are made of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). The transmission line 20 has a total length of 192 mm, a width of 8.8 mm, a thickness of 0.35 mm, and a first interval P1 of 4 mm. The first conductor 31, the second conductor 41 and the third conductor 46 are made of copper and have a thickness of 12 μm. The through hole 41b is formed in a conical shape in the thickness direction and penetrates the first base material 34 and the coverlay 35 .

[実施例2]
実施例2の伝送線路20は、第1基材34とカバーレイ35は、液晶ポリマー(LCP)からなる。それ以外は上述の実施例1と同様の構成である。
[Example 2]
In the transmission line 20 of Example 2, the first base material 34 and the coverlay 35 are made of liquid crystal polymer (LCP). Other than that, the configuration is the same as that of the first embodiment described above.

各試料について、ネットワークアナライザ(キーサイトテクノロジー製N5247A)を用いて、周波数が3GHzにおける伝送ロスと、周波数が6GHzにおける伝送ロスを測定した。評価結果を次の表1に示す。 For each sample, a network analyzer (N5247A manufactured by Keysight Technologies) was used to measure the transmission loss at a frequency of 3 GHz and the transmission loss at a frequency of 6 GHz. The evaluation results are shown in Table 1 below.

Figure 0007330556000002
Figure 0007330556000002

表1に示すように、実施例1は、実施例2に比べて、伝送ロスが大幅に改善されていることが確認できた。これは、第1基材34とカバーレイ35を構成する熱可塑性樹脂は、高周波帯域における比誘電率がより低い材質を用いることで伝送ロスが改善できることを示している。また、高周波帯域における誘電正接がより低い材質を用いることで伝送ロスが改善できることを示している。なお、参考例として、同種材料を組み合わせた同軸ケーブルと対比したところ、伝送ロスが15%改善されていることが確認できた。 As shown in Table 1, it was confirmed that Example 1 was greatly improved in transmission loss compared to Example 2. This indicates that the transmission loss can be improved by using a material having a lower relative permittivity in a high frequency band as the thermoplastic resin forming the first base material 34 and the coverlay 35 . It also shows that transmission loss can be improved by using a material with a lower dielectric loss tangent in a high frequency band. As a reference example, it was confirmed that the transmission loss was improved by 15% when compared with a coaxial cable combining the same materials.

上述の実施例は、第1基材34とカバーレイ35として、PFAまたはLCPを用いたが、この例に限定されず、既知の熱可塑性樹脂が適用できる。また、上述の実施例は、フレキシブル基板を4層構造としたが、この例に限定されない。用途に応じて5層以上の多層構造にすることもできる。上述の実施例は、伝送線路導体32を2つにした構成で説明したが、この例に限定されない。伝送線路導体32を3つ以上にした構成にする場合がある。また、伝送線路導体32を1つにした構成にすることもできる。本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。 Although PFA or LCP was used as the first base material 34 and the coverlay 35 in the above-described embodiment, the present invention is not limited to this example, and known thermoplastic resins can be applied. Also, in the above-described embodiment, the flexible substrate has a four-layer structure, but the present invention is not limited to this example. A multi-layer structure of five or more layers can also be used depending on the application. Although the above embodiment has been described with a configuration in which there are two transmission line conductors 32, the present invention is not limited to this example. In some cases, the transmission line conductors 32 are configured to have three or more. Alternatively, a single transmission line conductor 32 may be used. The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present invention.

20 伝送線路
30 ベース
31 第1導体
32 伝送線路導体
33 グランド導体
34 第1基材
35 カバーレイ
40 第1シールド
41 第2導体、41a 端部、41b 貫通孔
42 第2基材
45 第2シールド
46 第3導体
47 第3基材
61 アンビル
62 ホーン
P1 第1間隔
P2 第2間隔
20 transmission line 30 base 31 first conductor 32 transmission line conductor 33 ground conductor 34 first substrate 35 coverlay 40 first shield 41 second conductor 41a end 41b through hole 42 second substrate 45 second shield 46 Third conductor 47 Third substrate 61 Anvil 62 Horn P1 First spacing P2 Second spacing

Claims (5)

伝送線路導体と前記伝送線路導体の入力端と出力端とにそれぞれ近接する一対のグランド導体とからなる第1導体と前記第1導体が形成された第1基材と、前記伝送線路導体を覆うカバーレイと、第2導体が第2基材に形成された第1シールドと、第3導体が第3基材に形成された第2シールドを備え、前記カバーレイは前記第1基材に熱圧着されており、前記第1基材は前記第2基材に熱圧着されており、前記第3基材は前記カバーレイに熱圧着されており、前記第2導体と前記第3導体は前記伝送線路導体を囲むように配されて互いに超音波接合されており、前記第2導体は折り返された端部が前記グランド導体に重なって超音波接合されていること
を特徴とする伝送線路。
A first conductor consisting of a transmission line conductor and a pair of ground conductors respectively adjacent to an input end and an output end of the transmission line conductor; a first substrate on which the first conductor is formed; and covering the transmission line conductor. a coverlay, a first shield having a second conductor formed on a second substrate, and a second shield having a third conductor formed on a third substrate, the coverlay applying heat to the first substrate; wherein the first substrate is thermocompression bonded to the second substrate, the third substrate is thermocompression bonded to the coverlay, and the second conductor and the third conductor are bonded to the A transmission line, wherein a transmission line conductor is disposed so as to surround the transmission line conductor and ultrasonically bonded to each other, and a folded end of the second conductor overlaps the ground conductor and is ultrasonically bonded.
前記伝送線路導体は第1間隔で形成されており、前記第2導体は、底面視で前記グランド導体に重なる位置に、第2間隔で貫通孔が形成されていること
を特徴とする請求項1に記載の伝送線路。
2. The transmission line conductor is formed at a first interval, and the second conductor is formed with through holes at a second interval at a position overlapping the ground conductor in a bottom view. The transmission line described in .
前記第1基材と前記カバーレイはフッ素樹脂からなること
を特徴とする請求項1または2に記載の伝送線路。
3. The transmission line according to claim 1, wherein the first base material and the coverlay are made of fluororesin.
伝送線路導体と前記伝送線路導体の入力端と出力端とにそれぞれ近接する一対のグランド導体とからなる第1導体と前記第1導体が形成された第1基材と、前記伝送線路導体を覆うカバーレイと、第2導体が第2基材に形成された第1シールドと、第3導体が第3基材に形成された第2シールドを備え、前記カバーレイは前記第1基材に熱圧着されており、前記第1基材は前記第2基材に熱圧着されており、前記第3基材は前記カバーレイに熱圧着されており、前記第2導体と前記第3導体は前記伝送線路導体を囲むように配されて互いに超音波接合されており、前記伝送線路導体が第1間隔で形成されている構成の伝送線路を製造する製造方法であって、前記第2導体の端部を折り返して前記グランド導体に重ねて、アンビルを前記端部に当接させ、かつ、錐台が第2間隔で配されているホーンを前記アンビルに対向する方向から突いて前記グランド導体に当接させて、前記アンビルと前記ホーンとによって、前記端部と前記グランド導体を超音波接合すること
を特徴とする伝送線路の製造方法。
A first conductor consisting of a transmission line conductor and a pair of ground conductors respectively adjacent to an input end and an output end of the transmission line conductor; a first substrate on which the first conductor is formed; and covering the transmission line conductor. a coverlay, a first shield having a second conductor formed on a second substrate, and a second shield having a third conductor formed on a third substrate, the coverlay applying heat to the first substrate; wherein the first substrate is thermocompression bonded to the second substrate, the third substrate is thermocompression bonded to the coverlay, and the second conductor and the third conductor are bonded to the A manufacturing method for manufacturing a transmission line arranged to surround a transmission line conductor and ultrasonically bonded to each other, the transmission line conductor being formed at a first spacing, the end of the second conductor part is folded back and overlapped with the ground conductor, an anvil is brought into contact with the end, and a horn having frustums arranged at a second interval is pushed from a direction facing the anvil to come into contact with the ground conductor. and ultrasonically bonding the end portion and the ground conductor by the anvil and the horn.
前記第1基材と前記カバーレイはフッ素樹脂からなること
を特徴とする請求項4に記載の伝送線路の製造方法。
5. The method of manufacturing a transmission line according to claim 4, wherein the first base material and the coverlay are made of fluororesin.
JP2022107967A 2022-07-04 2022-07-04 TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE Active JP7330556B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022107967A JP7330556B1 (en) 2022-07-04 2022-07-04 TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE
PCT/JP2023/023883 WO2024009856A1 (en) 2022-07-04 2023-06-28 Transmission line, and method for manufacturing transmission line
TW112124712A TW202410578A (en) 2022-07-04 2023-07-03 Transmission line, and method for manufacturing transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022107967A JP7330556B1 (en) 2022-07-04 2022-07-04 TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE

Publications (2)

Publication Number Publication Date
JP7330556B1 true JP7330556B1 (en) 2023-08-22
JP2024006773A JP2024006773A (en) 2024-01-17

Family

ID=87577187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022107967A Active JP7330556B1 (en) 2022-07-04 2022-07-04 TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE

Country Status (3)

Country Link
JP (1) JP7330556B1 (en)
TW (1) TW202410578A (en)
WO (1) WO2024009856A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043746A (en) 1999-07-29 2001-02-16 Yamaichi Electronics Co Ltd Flat-type shielded cable
JP2001274586A (en) 2000-03-27 2001-10-05 Kuraray Co Ltd Electromagnetic wave shield transmission circuit and manufacturing method thereof
JP2005019330A (en) 2003-06-27 2005-01-20 Fuchigami Micro:Kk Flexible parallel multi-core cable with shield
JP3173143U (en) 2010-12-03 2012-01-26 株式会社村田製作所 High frequency signal line
JP2014078835A (en) 2012-10-10 2014-05-01 Murata Mfg Co Ltd High-frequency signal line and method of manufacturing the same
WO2014125988A1 (en) 2013-02-13 2014-08-21 株式会社村田製作所 High frequency signal transmission line, electronic apparatus, and method for manufacturing high frequency signal transmission line
JP6507302B1 (en) 2018-07-06 2019-04-24 天竜精機株式会社 Transmission line, method of manufacturing transmission line, and apparatus for manufacturing transmission line
JP6611293B1 (en) 2019-02-21 2019-11-27 天竜精機株式会社 Transmission line, transmission line manufacturing method, and transmission line manufacturing apparatus
JP6850501B1 (en) 2019-11-22 2021-03-31 天竜精機株式会社 Transmission line

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384513U (en) * 1989-12-18 1991-08-27
JPH04101316U (en) * 1991-02-20 1992-09-01 古河電気工業株式会社 Screened flat cable
SE468573B (en) * 1991-06-14 1993-02-08 Ericsson Telefon Ab L M DEVICES WITH FLEXIBLE, ORIENTATED STRIPLINE PIPES AND PROCEDURES FOR PREPARING SUCH A DEVICE
JPH07111114A (en) * 1993-10-14 1995-04-25 Yazaki Corp Manufacture of shielded tape cable
JPH11176253A (en) * 1997-12-16 1999-07-02 Yamaichi Electron Co Ltd Flat cable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043746A (en) 1999-07-29 2001-02-16 Yamaichi Electronics Co Ltd Flat-type shielded cable
JP2001274586A (en) 2000-03-27 2001-10-05 Kuraray Co Ltd Electromagnetic wave shield transmission circuit and manufacturing method thereof
JP2005019330A (en) 2003-06-27 2005-01-20 Fuchigami Micro:Kk Flexible parallel multi-core cable with shield
JP3173143U (en) 2010-12-03 2012-01-26 株式会社村田製作所 High frequency signal line
JP2014078835A (en) 2012-10-10 2014-05-01 Murata Mfg Co Ltd High-frequency signal line and method of manufacturing the same
WO2014125988A1 (en) 2013-02-13 2014-08-21 株式会社村田製作所 High frequency signal transmission line, electronic apparatus, and method for manufacturing high frequency signal transmission line
JP6507302B1 (en) 2018-07-06 2019-04-24 天竜精機株式会社 Transmission line, method of manufacturing transmission line, and apparatus for manufacturing transmission line
JP6611293B1 (en) 2019-02-21 2019-11-27 天竜精機株式会社 Transmission line, transmission line manufacturing method, and transmission line manufacturing apparatus
JP6850501B1 (en) 2019-11-22 2021-03-31 天竜精機株式会社 Transmission line

Also Published As

Publication number Publication date
WO2024009856A1 (en) 2024-01-11
TW202410578A (en) 2024-03-01
JP2024006773A (en) 2024-01-17

Similar Documents

Publication Publication Date Title
EP2076106A2 (en) Multilayer wiring board and method of manufacturing the same
US7842886B2 (en) Transmission cable
CN110402615B (en) Printed circuit board for high-frequency transmission
JP2016054313A (en) Rigid flexible substrate and method for manufacturing the same
US10219367B2 (en) Multilayer resin substrate, and method of manufacturing multilayer resin substrate
TW201410097A (en) Multilayer flexible printed circuit board and method for manufacturing same
JP7330556B1 (en) TRANSMISSION LINE AND METHOD FOR MANUFACTURING TRANSMISSION LINE
JP6673304B2 (en) Multilayer board
US20120112604A1 (en) Ultrasonic probe and manufacturing method thereof
JP2011009271A (en) Printed wiring board and method for manufacturing the same
JP7332216B1 (en) ANTENNA WITH TRANSMISSION LINE AND METHOD FOR MANUFACTURING ANTENNA WITH TRANSMISSION LINE
WO2015118951A1 (en) Resin multilayer substrate and component module
JPH11149951A (en) Joined body of flexible wire distribution body
TWI388262B (en) Fabrication method of rigid-flex circuit board
US20230239996A1 (en) Circuit board and method of manufacturing circuit board
JP2012209318A (en) Flexible printed wiring board
JP2013093608A (en) Printed wiring board
JP2013098296A (en) Method for manufacturing long flexible wiring board
WO2023218719A1 (en) Composite printed wiring board and method for manufacturing composite printed wiring board
JP2005277023A (en) Printed circuit board, and method of connecting the printed wiring board with connector
WO2019240000A1 (en) Method for manufacturing electric element, electric element, and electric element mounting structure
JP2005217030A (en) Rigid flexible substrate and manufacturing method and correcting method therefor
TWI620481B (en) Method for manufacturing flexible printed circuit board and intermediate product for manufacturing flexible printed circuit board
CN114509725A (en) Radar plate, preparation method thereof and millimeter wave radar
TWI332379B (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230802

R150 Certificate of patent or registration of utility model

Ref document number: 7330556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150