JP7290626B2 - Positive electrode compound and method for producing positive electrode active material - Google Patents

Positive electrode compound and method for producing positive electrode active material Download PDF

Info

Publication number
JP7290626B2
JP7290626B2 JP2020507755A JP2020507755A JP7290626B2 JP 7290626 B2 JP7290626 B2 JP 7290626B2 JP 2020507755 A JP2020507755 A JP 2020507755A JP 2020507755 A JP2020507755 A JP 2020507755A JP 7290626 B2 JP7290626 B2 JP 7290626B2
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
coating layer
compound
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020507755A
Other languages
Japanese (ja)
Other versions
JPWO2019181788A1 (en
Inventor
聡 田中
直也 花村
未来夫 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Publication of JPWO2019181788A1 publication Critical patent/JPWO2019181788A1/en
Application granted granted Critical
Publication of JP7290626B2 publication Critical patent/JP7290626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、蓄電池の正極用化合物に関し、特に、高強度を有し、高温放置後において優れた容量維持率を有する正極用化合物に関するものである。 TECHNICAL FIELD The present invention relates to a positive electrode compound for a storage battery, and more particularly to a positive electrode compound having high strength and excellent capacity retention after being left at high temperatures.

蓄電池の正極用化合物の高性能化のために、核である金属水酸化物の表面に金属元素を有する被覆層を形成することがある。例えば、高い正極利用率と、サイクル特性を向上させたアルカリ蓄電池用正極活物質として、核である水酸化ニッケルの表面をコバルト酸化物で被覆した表面修飾水酸化ニッケルが提案されている(特許文献1)。 In order to improve the performance of a positive electrode compound for a storage battery, a coating layer containing a metal element may be formed on the surface of the metal hydroxide, which is the core. For example, as a positive electrode active material for alkaline storage batteries with a high positive electrode utilization rate and improved cycle characteristics, surface-modified nickel hydroxide in which the surface of the core nickel hydroxide is coated with cobalt oxide has been proposed (Patent Document 1).

しかし、特許文献1の水酸化ニッケルの表面をコバルト酸化物で被覆した正極活物質では、25℃では良好な利用率とサイクル特性が得られるものの、高温放置後における容量維持率に改善の余地があった。 However, in the positive electrode active material of Patent Document 1 in which the surface of nickel hydroxide is coated with cobalt oxide, good utilization rate and cycle characteristics are obtained at 25° C., but there is room for improvement in the capacity retention rate after being left at high temperature. there were.

また、水酸化ニッケル表面に金属被覆層を形成する方法として、水酸化ニッケル微粒子を無電解めっき浴中で撹拌しながら、塩化パラジウムおよび塩酸を主成分とする溶液を投入することにより、水酸化ニッケル微粒子の表面にパラジウム触媒を担持させると同時に無電解めっきを行うことで、無電解めっきの被覆層を形成することが提案されている(特許文献2)。特許文献2では、無電解めっきの被覆層は、ニッケル-リンの複合被膜からなるものである。 In addition, as a method for forming a metal coating layer on the surface of nickel hydroxide, while stirring nickel hydroxide fine particles in an electroless plating bath, a solution containing palladium chloride and hydrochloric acid as main components is added to nickel hydroxide. It has been proposed to form an electroless plating coating layer by carrying a palladium catalyst on the surface of fine particles and performing electroless plating at the same time (Patent Document 2). In Patent Document 2, the coating layer for electroless plating is composed of a nickel-phosphorus composite coating.

このように、特許文献2では、無電解めっきの被覆層にはリン元素が多く含有されている。しかし、リン元素は蓄電池の性能向上、特に、容量維持率を阻害する場合があり、特許文献2では、やはり、高温放置後における容量維持率に改善の余地があった。 Thus, in Patent Document 2, the electroless plating coating layer contains a large amount of elemental phosphorus. However, the phosphorus element may hinder the performance improvement of the storage battery, particularly the capacity retention rate.

また、蓄電池の正極用化合物には、長期間に渡って安定して性能を発揮するために、耐久性、すなわち、機械的強度も要求される。 In addition, durability, that is, mechanical strength is also required for positive electrode compounds for storage batteries in order to exhibit performance stably over a long period of time.

特開2001-52695号公報JP-A-2001-52695 特開2004-315946号公報Japanese Patent Application Laid-Open No. 2004-315946

上記事情に鑑み、本発明の目的は、高温放置後における容量維持率に優れ、高強度を有する正極用化合物を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a positive electrode compound having excellent capacity retention after standing at high temperature and having high strength.

本発明の態様は、一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、前記被覆層のニッケル元素の含有量が、前記核100質量部に対して5質量部以上20質量部以下、前記二次粒子の平均圧壊強度が45.0MPa以上である正極用化合物である。本明細書では、正極用化合物の平均圧壊強度は、株式会社島津製作所製「微小圧縮試験機MCT-510」にて測定した値を意味する。 An aspect of the present invention is a secondary particle in which primary particles are aggregated, a core containing a nickel composite hydroxide, and a coating containing a nickel element having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less on the surface of the core. and a layer, wherein the content of the nickel element in the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the nuclei, and the average crushing strength of the secondary particles is 45.5 parts by mass. It is a positive electrode compound having a pressure of 0 MPa or more. In this specification, the mean crushing strength of the positive electrode compound means the value measured by Shimadzu Corporation's "microcompression tester MCT-510".

本発明の態様は、前記核が、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された金属元素を少なくとも1種含む正極用化合物である。 An aspect of the present invention is a positive electrode compound in which the nucleus contains at least one metal element selected from the group consisting of cobalt, zinc, manganese, lithium, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten.

本発明の態様は、前記ニッケル元素を含む被覆層の平均一次粒子径が、10nm以上100nm以下である正極用化合物である。本明細書では、被覆層のニッケル元素の平均一次粒子径は、電界放出形走査電子顕微鏡(FE-SEM)にて被覆層を観察した画像から一次粒子を10個選択し、選択した上記一次粒子の最長直径の部位を、それぞれ測定した値の平均値を意味する。 An aspect of the present invention is the compound for positive electrode, wherein the coating layer containing the nickel element has an average primary particle size of 10 nm or more and 100 nm or less. In this specification, the average primary particle size of the nickel element in the coating layer is obtained by selecting 10 primary particles from an image of the coating layer observed with a field emission scanning electron microscope (FE-SEM), and selecting the primary particles. Means the average value of the values measured for the longest diameter part of the .

本発明の態様は、さらに、パラジウム化合物を含む正極用化合物である。 An aspect of the invention is further a positive electrode compound comprising a palladium compound.

本発明の態様は、アルカリ蓄電池の正極活物質用である正極用化合物である。 An aspect of the present invention is a positive electrode compound for use as a positive electrode active material in an alkaline storage battery.

本発明の態様は、前記核が、一般式(1)
Ni(1-x)(OH)2+a (1)
(式中:0<x≦0.2、0≦a≦0.2、Mは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、イットリウム及びイッテルビウムからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物である。
In an embodiment of the present invention, the core is represented by general formula (1)
Ni (1−x) M x (OH) 2+a (1)
(In the formula: 0 < x ≤ 0.2, 0 ≤ a ≤ 0.2, M is at least one metal element selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, yttrium and ytterbium ) is a positive electrode compound represented by

本発明の態様は、非水系電解質二次電池の正極活物質の前駆体用である正極用化合物である。 An aspect of the present invention is a positive electrode compound that is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery.

本発明の態様は、前記核が、一般式(3)
Ni(1-z)(OH)2+c (3)
(式中:0<z≦0.7、0≦c≦0.28、Pは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物である。
In an embodiment of the present invention, the core is represented by general formula (3)
Ni (1−z) P z (OH) 2+c (3)
(In the formula: 0 < z ≤ 0.7, 0 ≤ c ≤ 0.28, P is at least one selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten shows the metal element of.) is a positive electrode compound represented by.

本発明の態様は、上記正極用化合物を前駆体として用いた、非水系電解質二次電池用正極活物質である。 An aspect of the present invention is a positive electrode active material for a non-aqueous electrolyte secondary battery using the positive electrode compound as a precursor.

本発明の態様によれば、ニッケル複合水酸化物を含む核と、核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有し、被覆層のニッケル元素の含有量が、核100質量部に対して5質量部以上20質量部以下であることにより、高温放置後における容量維持率に優れた正極用化合物を得ることができる。また、前記二次粒子の平均圧壊強度が45.0MPa以上なので、高強度を有する正極用化合物を得ることができる。 According to an aspect of the present invention, a core containing a nickel composite hydroxide and a coating layer containing a nickel element containing 500 ppm or less of cobalt and 10 ppm or less of phosphorus on the surface of the core, When the content of the nickel element is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core, it is possible to obtain a positive electrode compound having an excellent capacity retention rate after being left at a high temperature. Moreover, since the average crushing strength of the secondary particles is 45.0 MPa or more, a positive electrode compound having high strength can be obtained.

本発明の態様によれば、被覆層のニッケル元素の平均一次粒子径が、10nm以上100nm以下であることにより、被覆層の表面が平滑化されて、正極用化合物の平均圧壊強度をさらに向上させることができる。 According to the aspect of the present invention, since the average primary particle size of the nickel element in the coating layer is 10 nm or more and 100 nm or less, the surface of the coating layer is smoothed, and the average crushing strength of the positive electrode compound is further improved. be able to.

以下に、本発明の正極用化合物について、詳細を説明する。本発明の正極用化合物は、一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、前記被覆層のニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下、前記二次粒子の平均圧壊強度が45.0MPa以上である。従って、本発明の正極用化合物は、コア・シェル構造を有した粒子であり、ニッケルを含む複合水酸化物粒子の核とニッケルを含む被覆層を有する、ニッケル含有被覆ニッケル複合水酸化物となっている。 Below, the compound for positive electrodes of this invention is demonstrated in detail. The positive electrode compound of the present invention is secondary particles in which primary particles are agglomerated, and includes a nucleus containing a nickel composite hydroxide and a nickel element having a cobalt element content of 500 ppm or less and a phosphorus element content of 10 ppm or less on the surface of the nucleus. and a coating layer containing nickel, wherein the nickel element content of the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core, and the average crushing strength of the secondary particles is 45.0 parts by mass. 0 MPa or more. Therefore, the positive electrode compound of the present invention is a particle having a core-shell structure, and is a nickel-containing coated nickel composite hydroxide having a nucleus of nickel-containing composite hydroxide particles and a nickel-containing coating layer. ing.

粒子状である本発明の正極用化合物の形状は、特に限定されず、例えば、略球形を挙げることができる。 The shape of the particulate positive electrode compound of the present invention is not particularly limited, and for example, it may be substantially spherical.

本発明の正極用化合物は、複数の一次粒子が凝集して形成された二次粒子である。本発明の正極用化合物の平均圧壊強度は、45.0MPa以上である。この優れた平均圧壊強度は、被覆層のニッケル元素が微細化されていることにより、被覆層の表面が平滑化されていることに起因していると考えられる。正極用化合物の平均圧壊強度は、45.0MPa以上であれば、特に限定されず、高い平均圧壊強度ほど好ましいが、例えば、50.0MPa以上がより好ましく、55.0MPa以上が特に好ましい。正極用化合物の平均圧壊強度の上限値は、特に限定されないが、例えば、効率的に製造可能である点で、100MPaである。 The positive electrode compound of the present invention is secondary particles formed by aggregation of a plurality of primary particles. The average crushing strength of the positive electrode compound of the present invention is 45.0 MPa or more. It is considered that this excellent average crushing strength is due to the fact that the surface of the coating layer is smoothed by miniaturizing the nickel element in the coating layer. The average crushing strength of the positive electrode compound is not particularly limited as long as it is 45.0 MPa or more, and a higher average crushing strength is preferable, but for example, 50.0 MPa or more is more preferable, and 55.0 MPa or more is particularly preferable. The upper limit of the average crushing strength of the positive electrode compound is not particularly limited, but is, for example, 100 MPa in terms of efficient production.

正極用化合物の粒度分布は、特に限定されないが、例えば、累積体積百分率が50体積%の二次粒子径D50(以下、単に「D50」ということがある。)の下限値は、高温耐性を得る点から、2.0μmが好ましく、2.5μmがより好ましく、3.0μmが特に好ましい。一方で、正極用化合物のD50の上限値は、密度の向上と電解液との接触面を確保することのバランスの点から、30.0μmが好ましく、25.0μmが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。 The particle size distribution of the positive electrode compound is not particularly limited, but for example, the lower limit of the secondary particle diameter D50 (hereinafter sometimes simply referred to as "D50") at a cumulative volume percentage of 50% by volume provides high temperature resistance. From the point of view, 2.0 μm is preferable, 2.5 μm is more preferable, and 3.0 μm is particularly preferable. On the other hand, the upper limit of D50 of the positive electrode compound is preferably 30.0 μm, particularly preferably 25.0 μm, from the viewpoint of the balance between improving the density and securing the contact surface with the electrolytic solution. In addition, the above-described lower limit value and upper limit value can be combined arbitrarily.

正極用化合物の核の組成としては、ニッケル水酸化物を含む組成であれば、特に限定されないが、必要に応じて、ニッケルの他に、さらに、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を含む水酸化物でもよい。 The composition of the nucleus of the positive electrode compound is not particularly limited as long as it contains nickel hydroxide, but if necessary, cobalt, zinc, manganese, lithium, magnesium, aluminum, A hydroxide containing at least one metal element selected from the group consisting of zirconium, yttrium, ytterbium and tungsten may also be used.

本発明の正極用化合物は、例えば、アルカリ蓄電池の正極活物質用、非水系電解質二次電池の正極活物質用、非水系電解質二次電池の正極活物質の前駆体用として用いることができる。 The positive electrode compound of the present invention can be used, for example, as a positive electrode active material for alkaline storage batteries, a positive electrode active material for non-aqueous electrolyte secondary batteries, and a precursor of a positive electrode active material for non-aqueous electrolyte secondary batteries.

本発明の正極用化合物が、アルカリ蓄電池の正極活物質用として適用される場合、核の組成として下記一般式(1)
Ni(1-x)(OH)2+a (1)
(式中:0<x≦0.2、0≦a≦0.2、Mは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、イットリウム及びイッテルビウムからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物を挙げることができる。
When the positive electrode compound of the present invention is applied as a positive electrode active material for an alkaline storage battery, the composition of the core is represented by the following general formula (1)
Ni (1−x) M x (OH) 2+a (1)
(In the formula: 0 < x ≤ 0.2, 0 ≤ a ≤ 0.2, M is at least one metal element selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, yttrium and ytterbium ) can be mentioned.

本発明の正極用化合物が、非水系電解質二次電池の正極活物質用として適用される場合、核の組成として下記一般式(2)
Li[Li(Ni(1-b)1-y]O (2)
(式中:0<b≦0.7、0≦y≦0.50、Nは、コバルト、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物を挙げることができる。
When the positive electrode compound of the present invention is applied as a positive electrode active material for a non-aqueous electrolyte secondary battery, the composition of the core is represented by the following general formula (2)
Li[Li y (Ni (1-b) N b ) 1-y ]O 2 (2)
(In the formula: 0 < b ≤ 0.7, 0 ≤ y ≤ 0.50, N is at least one metal selected from the group consisting of cobalt, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten element.) can be mentioned.

非水系電解質二次電池の正極活物質用の正極用化合物は、ニッケル複合水酸化物にリチウムイオンを添加して焼成することで核(例えば、一般式(2)で表される核)を調製し、得られた核に、コバルト元素が500ppm以下及びリン元素が10ppm以下であり且つニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下であるニッケル元素を含む被覆層を形成することで、得ることができる。 A positive electrode compound for a positive electrode active material of a non-aqueous electrolyte secondary battery is prepared by adding lithium ions to nickel composite hydroxide and firing to prepare a nucleus (for example, a nucleus represented by general formula (2)). Then, on the obtained nucleus, a coating containing nickel element having a cobalt element content of 500 ppm or less, a phosphorus element content of 10 ppm or less, and a nickel element content of 5 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the nucleus. It can be obtained by forming layers.

また、本発明の正極用化合物が、非水系電解質二次電池の正極活物質の前駆体用として適用される場合、核の組成として下記一般式(3)
Ni(1-z)(OH)2+c (3)
(式中:0<z≦0.7、0≦c≦0.28、Pは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される正極用化合物を挙げることができる。
Further, when the positive electrode compound of the present invention is applied as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, the composition of the core is represented by the following general formula (3)
Ni (1−z) P z (OH) 2+c (3)
(In the formula: 0 < z ≤ 0.7, 0 ≤ c ≤ 0.28, P is at least one selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten is a metal element of.) can be mentioned.

ニッケル含有被覆ニッケル複合水酸化物である本発明の正極用化合物(例えば、一般式(3)で表される核を有するニッケル含有被覆ニッケル複合水酸化物)に、さらにリチウムイオンを添加して、焼成することで、非水系電解質二次電池の正極活物質を得ることができる。上記から、非水系電解質二次電池としては、例えば、リチウムイオン二次電池を挙げることができる。 Lithium ions are further added to the positive electrode compound of the present invention, which is a nickel-containing coated nickel composite hydroxide (for example, a nickel-containing coated nickel composite hydroxide having a nucleus represented by general formula (3)), By firing, a positive electrode active material for a non-aqueous electrolyte secondary battery can be obtained. As described above, non-aqueous electrolyte secondary batteries include, for example, lithium ion secondary batteries.

本発明の正極用化合物では、上記した核の表面は、コバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層で被覆されている。上記コバルト元素及びリン元素の含有量は、被覆層中における含有量である。本発明の正極用化合物では、上記被覆層で被覆されていることで、高温放置後(例えば、90℃程度)における容量維持率が向上する。コバルト元素の含有量は500ppm以下であれば、特に限定されないが、高温放置後における容量維持率をより確実に向上させる点から、200ppm以下が好ましく、100ppm以下がより好ましく、50ppm以下がさらに好ましく、10ppm以下が特に好ましい。リン元素の含有量は、10ppm以下であれば、特に限定されないが、高温放置後における容量維持率をより確実に向上させる点から、5ppm以下がより好ましく、2ppm以下が特に好ましい。上記から、ニッケル元素を含む被覆層の主成分は、ニッケル元素である。 In the positive electrode compound of the present invention, the surface of the core is coated with a coating layer containing nickel containing 500 ppm or less of cobalt and 10 ppm or less of phosphorus. The content of the cobalt element and the phosphorus element is the content in the coating layer. In the positive electrode compound of the present invention, since it is covered with the coating layer, the capacity retention rate after being left at a high temperature (for example, about 90° C.) is improved. Although the content of the cobalt element is not particularly limited as long as it is 500 ppm or less, it is preferably 200 ppm or less, more preferably 100 ppm or less, and further preferably 50 ppm or less from the viewpoint of more reliably improving the capacity retention rate after being left at high temperatures. 10 ppm or less is particularly preferred. The phosphorus element content is not particularly limited as long as it is 10 ppm or less, but from the viewpoint of more reliably improving the capacity retention rate after being left at high temperature, it is more preferably 5 ppm or less, and particularly preferably 2 ppm or less. From the above, the main component of the coating layer containing nickel element is nickel element.

上記の通り、ニッケル元素を含む被覆層の組成は、コバルト元素が500ppm以下及びリン元素が10ppm以下であり、主にニッケル元素からなる。被覆層中におけるニッケルの含有量は、例えば、高温放置後における容量維持率をより確実に向上させる点から、99質量%以上が好ましく、99.9質量%以上がより好ましく、100質量%が特に好ましい。 As described above, the composition of the coating layer containing nickel element is 500 ppm or less of cobalt element and 10 ppm or less of phosphorus element, and is mainly composed of nickel element. The content of nickel in the coating layer is preferably 99% by mass or more, more preferably 99.9% by mass or more, more preferably 99.9% by mass or more, and particularly 100% by mass, in order to more reliably improve the capacity retention rate after being left at high temperatures, for example. preferable.

また、被覆層のニッケル元素の含有量は、核100質量部に対して5質量部以上20質量部以下の範囲である。被覆層のニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下であることにより、高温放置後においても優れた容量維持率を得ることができる。被覆層のニッケル元素の含有量は、核100質量部に対して5質量部以上20質量部以下であれば、特に限定されないが、高温放置後における容量維持率をさらに向上させる点から、核100質量部に対して7質量部以上15質量部以下が特に好ましい。 Moreover, the content of the nickel element in the coating layer is in the range of 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core. When the content of the nickel element in the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core, an excellent capacity retention rate can be obtained even after being left at a high temperature. The content of the nickel element in the coating layer is not particularly limited as long as it is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core. 7 parts by mass or more and 15 parts by mass or less is particularly preferable with respect to parts by mass.

被覆層のニッケル元素は、粒子状である。ニッケル粒子が重なり合った状態で、ニッケル複合水酸化物を含む核表面を被覆している。被覆層の各ニッケル元素の形状は、特に限定されず、例えば、略球形である。 The nickel element in the coating layer is particulate. The surface of the core containing the nickel composite hydroxide is coated with the nickel particles in an overlapping state. The shape of each nickel element in the coating layer is not particularly limited, and is, for example, substantially spherical.

被覆層のニッケル元素の平均一次粒子径は、特に限定されないが、10nm以上100nm以下の範囲であることが好ましい。被覆層のニッケル元素の平均一次粒子径が10nm以上100nm以下であることにより、ニッケル元素が微細化されているので、被覆層の表面が平滑化されて、正極用化合物の平均圧壊強度をさらに向上させることができる。被覆層のニッケル元素の平均一次粒子径は、20nm以上80nm以下がより好ましく、30nm以上70nm以下が特に好ましい。なお、ニッケル元素を含む被覆層は、ニッケル複合水酸化物を含む核の表面全体を被覆してもよく、ニッケル複合水酸化物を含む核の表面の一部領域を被覆していてもよい。 Although the average primary particle size of the nickel element in the coating layer is not particularly limited, it is preferably in the range of 10 nm or more and 100 nm or less. Since the nickel element in the coating layer has an average primary particle diameter of 10 nm or more and 100 nm or less, the nickel element is finely divided, so that the surface of the coating layer is smoothed, and the average crushing strength of the positive electrode compound is further improved. can be made The average primary particle size of the nickel element in the coating layer is more preferably 20 nm or more and 80 nm or less, and particularly preferably 30 nm or more and 70 nm or less. The coating layer containing the nickel element may cover the entire surface of the nucleus containing the nickel composite hydroxide, or may cover a partial region of the surface of the nucleus containing the nickel composite hydroxide.

また、被覆層の平均厚さは、特に限定されず、例えば、その下限値は、平均圧壊強度をより確実に向上させる点から20nmが好ましく、70nmが特に好ましい。一方で、その上限値は、主に核が正極用化合物の電池特性の発揮に寄与するところ、正極用化合物の優れた電池特性を確実に維持する点から200nmが好ましく、100nmが特に好ましい。 The average thickness of the coating layer is not particularly limited. For example, the lower limit thereof is preferably 20 nm, particularly preferably 70 nm, from the viewpoint of more reliably improving the average crushing strength. On the other hand, the upper limit is preferably 200 nm, particularly preferably 100 nm, from the viewpoint of reliably maintaining the excellent battery characteristics of the positive electrode compound, since the nucleus mainly contributes to the exhibition of the battery characteristics of the positive electrode compound.

後述するように、本発明の正極用化合物では、その製造にあたり、パラジウム触媒を使用する。従って、本発明の正極用化合物では、微量のパラジウム化合物が含まれる。正極用化合物中におけるパラジウム元素の含有量は、例えば、1ppm以上100ppm以下である。 As will be described later, the positive electrode compound of the present invention uses a palladium catalyst in its production. Therefore, the positive electrode compound of the present invention contains a very small amount of palladium compound. The content of the palladium element in the positive electrode compound is, for example, 1 ppm or more and 100 ppm or less.

本発明の正極用化合物のBET比表面積は、特に限定されないが、例えば、密度の向上と電解液との接触面を確保することのバランスの点から、下限値は0.1m/gが好ましく、0.3m/gが特に好ましい。一方で、その上限値は50.0m/gが好ましく、40.0m/gが特に好ましい。なお、上記した下限値、上限値は、任意で組み合わせることができる。The BET specific surface area of the positive electrode compound of the present invention is not particularly limited, but, for example, the lower limit is preferably 0.1 m 2 /g from the viewpoint of the balance between improving the density and ensuring a contact surface with the electrolytic solution. , 0.3 m 2 /g are particularly preferred. On the other hand, the upper limit is preferably 50.0 m 2 /g, particularly preferably 40.0 m 2 /g. In addition, the above-described lower limit value and upper limit value can be combined arbitrarily.

本発明の正極用化合物のタップ密度は、特に限定されないが、例えば、正極活物質として使用した際における充填度の向上の点から、1.5g/cm以上が好ましく、1.7g/cm以上が特に好ましい。The tap density of the positive electrode compound of the present invention is not particularly limited . The above are particularly preferred.

本発明の正極用化合物のバルク密度は、特に限定されないが、例えば、正極活物質として使用した際における充填度の向上の点から0.8g/cm以上が好ましく、1.0g/cm以上が特に好ましい。The bulk density of the positive electrode compound of the present invention is not particularly limited, but is preferably 0.8 g/cm 3 or more, and 1.0 g/cm 3 or more, for example, from the viewpoint of improving the filling degree when used as a positive electrode active material. is particularly preferred.

次に、本発明の正極用化合物の製造方法例について説明する。 Next, an example of the method for producing the positive electrode compound of the present invention will be described.

上記製造方法としては、例えば、まず、核となる、ニッケル複合水酸化物粒子を調製する。ニッケル複合水酸化物粒子の調製方法は、まず、共沈法により、ニッケルの塩溶液(例えば、硫酸塩溶液)またはニッケルと他の金属元素(例えば、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及び/またはタングステン)の塩溶液(例えば、硫酸塩溶液)と錯化剤とを反応させて、ニッケル複合水酸化物粒子(例えば、水酸化ニッケル粒子、ニッケルと他の金属元素(例えば、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及び/またはタングステン)とを含む水酸化物粒子)を調製して、ニッケル複合水酸化物粒子を含むスラリー状の懸濁物を得る。懸濁物の溶媒としては、例えば、水が使用される。 As the above production method, for example, first, nickel composite hydroxide particles that serve as nuclei are prepared. The method for preparing nickel composite hydroxide particles is to first prepare a nickel salt solution (e.g., sulfate solution) or nickel and other metal elements (e.g., cobalt, zinc, manganese, lithium, magnesium, aluminum) by a coprecipitation method. , zirconium, yttrium, ytterbium and/or tungsten) are reacted with a complexing agent to form nickel composite hydroxide particles (e.g. nickel hydroxide particles, nickel and other metal element (e.g., cobalt, zinc, manganese, lithium, magnesium, aluminum, zirconium, yttrium, ytterbium and/or tungsten)) is prepared to form a slurry containing nickel composite hydroxide particles; A suspension is obtained. Water, for example, is used as a solvent for the suspension.

上記錯化剤としては、水溶液中で、ニッケル及び上記他の金属元素のイオンと錯体を形成可能なものであれば、特に限定されず、例えば、アンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。なお、沈殿に際しては、水溶液のpH値を調整するため、必要に応じて、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)を添加してもよい。 The complexing agent is not particularly limited as long as it can form a complex with ions of nickel and other metal elements in an aqueous solution. , ammonium fluoride, etc.), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine. In the precipitation, an alkali metal hydroxide (for example, sodium hydroxide, potassium hydroxide) may be added as necessary to adjust the pH value of the aqueous solution.

上記塩溶液に加えて、錯化剤を反応槽に連続して供給すると、ニッケル及び上記他の金属元素が反応し、ニッケル複合水酸化物粒子が調製される。反応に際しては、反応槽の温度を、例えば、10℃~80℃、好ましくは20~70℃の範囲内で制御し、反応槽内のpH値を液温25℃基準で、例えば、pH9~pH13、好ましくはpH11~13の範囲内で制御しつつ、反応槽内の物質を、適宜、撹拌する。反応槽としては、例えば、形成されたニッケル複合水酸化物粒子を分離するためにオーバーフローさせる、連続式を挙げることができる。 When the complexing agent is continuously supplied to the reactor in addition to the salt solution, nickel and the other metal elements react to prepare nickel composite hydroxide particles. During the reaction, the temperature of the reaction vessel is controlled, for example, within the range of 10° C. to 80° C., preferably 20° C. to 70° C., and the pH value in the reaction vessel is adjusted to a liquid temperature of 25° C., for example, pH 9 to pH 13. While controlling the pH preferably within the range of 11 to 13, the substances in the reaction vessel are appropriately stirred. The reactor can include, for example, a continuous type, overflowing to separate the formed nickel composite hydroxide particles.

次に、上記のようにして得られた、核となるニッケル複合水酸化物粒子に、パラジウム系触媒と界面活性剤を供給して、ニッケル複合水酸化物粒子表面にパラジウム系触媒を担持させる。その後、パラジウム系触媒を担持させたニッケル複合水酸化物粒子を、リン元素が含まれず主にニッケルからなるめっき液に浸漬させ、さらにヒドラジン系の添加剤を投入して無電解めっきを行って、ニッケル複合水酸化物粒子表面にニッケルをめっきする。無電解めっきにあたっては、被覆層のニッケル元素の含有量が核100質量部に対して5質量部以上20質量部以下となるように、膜厚及び/又はめっき液の組成を調整して、ニッケル複合水酸化物粒子表面にめっき膜を形成する。これにより、コバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層を形成できる。 Next, a palladium-based catalyst and a surfactant are supplied to the core nickel composite hydroxide particles obtained as described above to support the palladium-based catalyst on the surfaces of the nickel composite hydroxide particles. After that, the nickel composite hydroxide particles supporting a palladium-based catalyst are immersed in a plating solution containing no phosphorus element and mainly composed of nickel, and a hydrazine-based additive is added to perform electroless plating. Nickel is plated on the surface of the nickel composite hydroxide particles. In the electroless plating, the film thickness and/or the composition of the plating solution are adjusted so that the content of the nickel element in the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core. A plated film is formed on the surface of the composite hydroxide particles. This makes it possible to form a coating layer containing nickel with a cobalt content of 500 ppm or less and a phosphorus content of 10 ppm or less.

上記した無電解めっきを用いた被覆層の形成方法では、被覆層のニッケル元素の平均一次粒子径が10nm以上100nm以下の範囲となる。なお、ニッケル複合水酸化物粒子表面にパラジウム系触媒を担持させないと、被覆層のニッケル元素の平均一次粒子径が100nm超に粗大化し、被覆層の表面が粗面化されて、45.0MPa以上の平均圧壊強度が得られない。 In the above method of forming a coating layer using electroless plating, the average primary particle size of the nickel element in the coating layer is in the range of 10 nm or more and 100 nm or less. If the surface of the nickel composite hydroxide particles is not loaded with a palladium-based catalyst, the average primary particle size of the nickel element in the coating layer is coarsened to more than 100 nm, and the surface of the coating layer is roughened to a pressure of 45.0 MPa or more. of average crushing strength cannot be obtained.

次に、本発明の正極用化合物を用いた正極について説明する。以下に、本発明の正極用化合物をニッケル水素二次電池等のアルカリ蓄電池の正極として用いる場合について説明する。正極は、正極集電体と、正極集電体表面に形成された、本発明の正極用化合物を含有する正極活物質層を備える。正極活物質層は、本発明の正極用化合物である正極活物質と、バインダー(結着剤)と、必要に応じて導電助剤とを有する。導電助剤としては、例えば、畜電池(二次電池)のために使用できるものであれば、特に限定されないが、アセチレンブラック(AB)、金属コバルト、酸化コバルト等を用いることができる。バインダーとしては、特に限定されないが、ポリマー樹脂、例えば、ポリフッ化ビニリデン(PVdF)、ブタジエンゴム(BR)、ポリビニルアルコール(PVA)、及びカルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等、並びにこれらの組み合わせを挙げることができる。正極集電体としては、特に限定されないが、パンチングメタル、エキスパンドメタル、金網、発泡金属、例えば発泡ニッケル、網状金属繊維焼結体、金属めっき樹脂板などを挙げることができる。 Next, a positive electrode using the compound for a positive electrode of the present invention will be described. A case where the positive electrode compound of the present invention is used as the positive electrode of an alkaline storage battery such as a nickel-hydrogen secondary battery will be described below. The positive electrode includes a positive electrode current collector and a positive electrode active material layer containing the positive electrode compound of the present invention formed on the surface of the positive electrode current collector. The positive electrode active material layer has a positive electrode active material, which is the positive electrode compound of the present invention, a binder (binding agent), and, if necessary, a conductive aid. The conductive aid is not particularly limited as long as it can be used for storage batteries (secondary batteries), but acetylene black (AB), metallic cobalt, cobalt oxide, etc. can be used. Binders include, but are not limited to, polymer resins such as polyvinylidene fluoride (PVdF), butadiene rubber (BR), polyvinyl alcohol (PVA), carboxymethylcellulose (CMC), polytetrafluoroethylene (PTFE), and the like. Combinations of these can be mentioned. Examples of the positive electrode current collector include, but are not limited to, punching metal, expanded metal, wire mesh, foam metal such as nickel foam, sintered net-like metal fiber, and metal-plated resin plate.

ニッケル水素二次電池等のアルカリ蓄電池の正極の製造方法としては、例えば、先ず、本発明の正極用化合物と導電助剤と結着剤と水とを混合して正極活物質スラリーを調製する。次いで、上記正極活物質スラリーを正極集電体に、公知の充填方法で充填して乾燥後、プレス等にて圧延・固着することで正極を得ることができる。 As a method for producing a positive electrode of an alkaline storage battery such as a nickel-hydrogen secondary battery, for example, the positive electrode compound of the present invention, a conductive aid, a binder and water are mixed to prepare a positive electrode active material slurry. Then, the positive electrode current collector is filled with the positive electrode active material slurry by a known filling method, dried, and then rolled and fixed by a press or the like to obtain a positive electrode.

また、本発明の正極用化合物をリチウムイオン二次電池等の非水電解質二次電池の正極活物質の前駆体として用いる場合には、本発明の正極用化合物に炭酸リチウム、水酸化リチウム等のリチウム化合物を添加して、リチウム化合物と正極用化合物の混合物を得、得られた混合物を一次焼成(焼成温度は、例えば、600℃~900℃、焼成時間は、例えば、5時間~20時間)、さらに二次焼成(焼成温度は、例えば、700℃以上1000℃以下、焼成時間は、例えば、1~20時間)することで、リチウムイオン二次電池等の非水電解質二次電池の正極活物質を得ることができる。リチウムイオン二次電池等の非水電解質二次電池の正極は、正極集電体と、正極集電体表面に形成された、本発明の正極用化合物を前駆体として用いた正極活物質層を備える。正極活物質層は、本発明の正極用化合物を前駆体として用いた正極活物質と、バインダー(結着剤)と、必要に応じて導電助剤とを有する。正極集電体、バインダー、導電助剤としては、上記と同様のものを用いることができる。 When the positive electrode compound of the present invention is used as a precursor of the positive electrode active material of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, the positive electrode compound of the present invention may contain lithium carbonate, lithium hydroxide, or the like. A lithium compound is added to obtain a mixture of the lithium compound and the positive electrode compound, and the resulting mixture is first fired (the firing temperature is, for example, 600° C. to 900° C., and the firing time is, for example, 5 hours to 20 hours). , and further secondary firing (the firing temperature is, for example, 700 ° C. or higher and 1000 ° C. or lower, and the firing time is, for example, 1 to 20 hours) to make the positive electrode active in non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. You can get the substance. The positive electrode of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector and using the positive electrode compound of the present invention as a precursor. Prepare. The positive electrode active material layer has a positive electrode active material using the compound for a positive electrode of the present invention as a precursor, a binder (binding agent), and, if necessary, a conductive aid. As the positive electrode current collector, the binder, and the conductive aid, the same materials as those described above can be used.

リチウムイオン二次電池等の非水電解質二次電池の正極の製造方法としては、例えば、先ず、本発明の正極用化合物を前駆体として用いた正極活物質と導電助剤と結着剤とN-メチル-2-プロリドン(NMP)とを混合して正極活物質スラリーを調製する。次いで、上記正極活物質スラリーを正極集電体に、公知の充填方法で充填して乾燥後、プレス等にて圧延・固着することで正極を得ることができる。 As a method for producing a positive electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, for example, first, a positive electrode active material using the positive electrode compound of the present invention as a precursor, a conductive aid, a binder, and N - methyl-2-prolydone (NMP) to prepare a positive electrode active material slurry. Then, the positive electrode current collector is filled with the positive electrode active material slurry by a known filling method, dried, and then rolled and fixed by a press or the like to obtain a positive electrode.

上記のようにして得られた正極活物質を用いた正極と、負極集電体と負極集電体表面に形成された負極活物質を含む負極活物質層を備える負極と、所定の電解質と、セパレータとを、公知の方法で搭載することで蓄電池(例えば、アルカリ蓄電池、非水系電解質二次電池等)を組み上げることができる。 A positive electrode using the positive electrode active material obtained as described above, a negative electrode comprising a negative electrode current collector and a negative electrode active material layer containing the negative electrode active material formed on the surface of the negative electrode current collector, a predetermined electrolyte, A storage battery (for example, an alkaline storage battery, a non-aqueous electrolyte secondary battery, etc.) can be assembled by mounting a separator by a known method.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Examples of the present invention will now be described, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

実施例1~3の正極用化合物の製造方法
ニッケル複合水酸化物粒子の調製
攪拌機付きの反応槽に、硫酸ニッケルと硫酸コバルトと硫酸亜鉛とを所定比(ニッケル:コバルト:亜鉛=92.1:1.12:6.77の質量比)で溶解した水溶液に、硫酸アンモニウム水溶液と水酸化ナトリウム水溶液を滴下して反応容積500Lの反応槽内で反応温度45.0℃、液温40℃基準で反応pH12.1に維持しながら、攪拌回転数520rpmで攪拌羽根が250mmのプロペラの攪拌機により連続的に攪拌した。生成した水酸化物は反応槽のオーバーフロー管からオーバーフローさせて取り出した。取り出した水酸化物に、水洗、脱水、乾燥の各処理を施して、核となるニッケル複合水酸化物粒子を得た。得られたニッケル複合水酸化物粒子の組成は、ニッケル元素の含有量が92.1質量部、コバルト元素の含有量が1.12質量部、亜鉛元素の含有量が6.77質量部であることを誘導結合プラズマ発光分析装置にて確認した。
Manufacturing method of positive electrode compound of Examples 1 to 3 Preparation of nickel composite hydroxide particles In a reaction vessel equipped with a stirrer, nickel sulfate, cobalt sulfate, and zinc sulfate were added at a predetermined ratio (nickel: cobalt: zinc = 92.1: 1.12:6.77 mass ratio), an aqueous solution of ammonium sulfate and an aqueous solution of sodium hydroxide are added dropwise to react at a reaction temperature of 45.0 ° C. and a liquid temperature of 40 ° C. in a reaction vessel with a reaction volume of 500 L. While maintaining the pH at 12.1, the mixture was continuously stirred with a propeller stirrer having a stirring blade of 250 mm at a stirring speed of 520 rpm. The hydroxide produced was overflowed from the overflow tube of the reactor and removed. The extracted hydroxide was washed with water, dehydrated, and dried to obtain nickel composite hydroxide particles serving as nuclei. The resulting nickel composite hydroxide particles have a nickel element content of 92.1 parts by mass, a cobalt element content of 1.12 parts by mass, and a zinc element content of 6.77 parts by mass. This was confirmed by an inductively coupled plasma emission spectrometer.

上記のようにして調製したニッケル複合水酸化物粒子に、直接、無電解純ニッケルめっき処理を施して、被覆層としてニッケルめっき膜を有するニッケル複合水酸化物、すなわち、ニッケル含有被覆ニッケル複合水酸化物を製造した。より詳細には、以下の通りに、ニッケルめっき膜を有するニッケル複合水酸化物を製造した。 The nickel composite hydroxide particles prepared as described above are directly subjected to electroless pure nickel plating treatment to obtain a nickel composite hydroxide having a nickel plating film as a coating layer, that is, a nickel-containing coated nickel composite hydroxide. manufactured things. More specifically, a nickel composite hydroxide having a nickel plating film was produced as follows.

まず、粒子径10μmのニッケル複合水酸化物粒子を基材粒子として、基材粒子表面を改質するために、基材粒子をカチオン系界面活性剤で、10分間撹拌処理した。その後、ろ過水洗してから、パラジウムイオン触媒溶液で、10分間撹拌処理して、基材粒子表面にパラジウムイオンを吸着させた。その後、ろ過水洗してから、還元溶液で、10分間撹拌処理して、基材粒子表面にパラジウム触媒を担持させた。その後、ろ過水洗してから、80℃に加温した硫酸ニッケル溶液中にて、表面にパラジウム触媒を担持させた基材粒子を1分間予備撹拌した。なお、硫酸ニッケル溶液の組成は、ニッケル塩0.30mol/L、クエン酸塩1mol/L、炭酸塩1.7mol/Lとした。その後、ヒドラジン一水和物を0.4mol/Lの量で硫酸ニッケル溶液に投入した。反応開始後、表面にパラジウム触媒を担持させた基材粒子を、5分間以上、ヒドラジン一水和物を投入した硫酸ニッケル溶液中にて撹拌して、ニッケル複合水酸化物粒子表面にニッケルめっき膜を形成させていき、ニッケル元素を含む被覆層を形成させた。撹拌後、ニッケル元素を含む被覆層を形成させたニッケル複合水酸化物粒子をろ過水洗し、80℃で乾燥させた。このようにして、本発明に係る正極用化合物であるニッケル含有被覆ニッケル複合水酸化物粒子を得た。なお、ニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量は、硫酸ニッケル液の投入量を調節することで調整した。 First, nickel composite hydroxide particles having a particle diameter of 10 μm were used as base particles, and the base particles were subjected to stirring treatment with a cationic surfactant for 10 minutes in order to modify the surface of the base particles. Then, after filtering and washing with water, a palladium ion catalyst solution was added to the substrate particles and stirred for 10 minutes to adsorb palladium ions on the surfaces of the substrate particles. Then, after filtering and washing with water, the substrate particles were stirred for 10 minutes with a reducing solution to support the palladium catalyst on the surfaces of the substrate particles. Thereafter, after being filtered and washed with water, the substrate particles having a palladium catalyst supported on their surfaces were pre-stirred for 1 minute in a nickel sulfate solution heated to 80°C. The composition of the nickel sulfate solution was 0.30 mol/L nickel salt, 1 mol/L citrate, and 1.7 mol/L carbonate. Hydrazine monohydrate was then introduced into the nickel sulfate solution in an amount of 0.4 mol/L. After the start of the reaction, the base particles having the palladium catalyst supported on their surfaces are stirred for 5 minutes or longer in a nickel sulfate solution containing hydrazine monohydrate to form a nickel plating film on the surfaces of the nickel composite hydroxide particles. was formed to form a coating layer containing nickel element. After stirring, the nickel composite hydroxide particles on which a coating layer containing nickel element was formed were filtered, washed with water, and dried at 80°C. Thus, nickel-containing coated nickel composite hydroxide particles, which are the positive electrode compound according to the present invention, were obtained. The content of the nickel element in the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles was adjusted by adjusting the input amount of the nickel sulfate liquid.

比較例1の正極用化合物の製造方法
上記実施例と同様にして、核となるニッケル複合水酸化物粒子を得た。その後、核となるニッケル複合水酸化物粒子を、水酸化ナトリウムにて液温50℃基準でpH9.0に維持した反応浴中のアルカリ水溶液に投入した。投入後、該溶液を撹拌しながら、濃度90g/Lの硫酸コバルト水溶液を滴下した。この間、水酸化ナトリウム水溶液を適宜滴下して、液温50℃基準で反応浴をpH9.0に維持しながら1時間保持することで、ニッケル複合水酸化物粒子(核)の表面に水酸化コバルトからなる被覆層を形成させた、水酸化コバルト被覆ニッケル複合水酸化物粒子を得た。なお、被覆されたコバルトの含有量は、ニッケル複合水酸化物粒子100質量部に対して2.55質量部であった。
Method for Producing Positive Electrode Compound of Comparative Example 1 Nickel composite hydroxide particles serving as cores were obtained in the same manner as in the above example. Thereafter, the core nickel composite hydroxide particles were put into an alkaline aqueous solution in a reaction bath maintained at a pH of 9.0 with sodium hydroxide at a liquid temperature of 50°C. After the injection, an aqueous cobalt sulfate solution with a concentration of 90 g/L was added dropwise while stirring the solution. During this time, an aqueous sodium hydroxide solution is added dropwise as appropriate, and the reaction bath is maintained at a pH of 9.0 at a liquid temperature of 50° C. for 1 hour. Cobalt hydroxide-coated nickel composite hydroxide particles were obtained in which a coating layer consisting of was formed. The content of coated cobalt was 2.55 parts by mass with respect to 100 parts by mass of the nickel composite hydroxide particles.

その後、容積が25Lのハイスピードミキサー(深江パウテック株式会社製、型式FMD-25J)に、得られた水酸化コバルト被覆ニッケル複合水酸化物粒子を7Kg投入した。その後、空気を撹拌混合装置の導入口から撹拌混合装置内へ導入し排気口から排気しながら、撹拌混合装置底部の主攪拌羽を回転数200rpmで、撹拌混合装置側壁の副攪拌羽を1200rpmで、それぞれ回転させて水酸化コバルト被覆ニッケル複合水酸化物粒子を混合した。混合を継続しながら、加熱ジャケットで加熱させて撹拌混合装置内のサンプルの温度がほぼ90℃となった後、撹拌混合装置内に48質量%水酸化ナトリウム水溶液0.4Lを、約2分間、噴霧装置から噴霧した。噴霧終了後、約30分間は撹拌混合装置内の温度は約120℃まで昇温し、粒子の表面の色が薄いピンク色から黒色に変化した。その後、撹拌混合装置内の温度を室温に戻し、生成物粒子を取り出し、取り出した生成物粒子を水で洗浄した後、空気中で加熱乾燥した。このようにして比較例1の正極用化合物であるCoOOH被覆ニッケル複合水酸化物粒子を得た。 After that, 7 kg of the obtained cobalt hydroxide-coated nickel composite hydroxide particles were put into a 25-liter high-speed mixer (manufactured by Fukae Powtech Co., Ltd., model FMD-25J). After that, while introducing air into the stirring and mixing device from the inlet of the stirring and mixing device and exhausting it from the exhaust port, the main stirring blade on the bottom of the stirring and mixing device was rotated at 200 rpm, and the auxiliary stirring blade on the side wall of the stirring and mixing device was rotated at 1200 rpm. , respectively, to mix the cobalt hydroxide-coated nickel composite hydroxide particles. While continuing to mix, the temperature of the sample in the stirring and mixing device was heated by the heating jacket to reach approximately 90°C, and then 0.4 L of a 48% by mass sodium hydroxide aqueous solution was added to the stirring and mixing device for about 2 minutes. Nebulized from the nebulizer. After completion of spraying, the temperature in the stirring and mixing device increased to about 120° C. for about 30 minutes, and the surface color of the particles changed from pale pink to black. Thereafter, the temperature inside the stirring and mixing device was returned to room temperature, the product particles were taken out, washed with water, and then dried by heating in the air. Thus, CoOOH-coated nickel composite hydroxide particles, which are the positive electrode compound of Comparative Example 1, were obtained.

比較例2~4の正極用化合物の製造方法
上記実施例と同様にして、核となるニッケル複合水酸化物粒子を得た。その後、平均粒径10μmのニッケル複合水酸化物粒子に対して、無電解ニッケルめっきを施した。無電解めっき浴としては、以下に示す組成を有するものを用いた。
硫酸ニッケル22.0g/L
グリシン33.3g/L
次亜リン酸ナトリウム23.3g/L
水酸化ナトリウム12.3g/L
界面活性剤10mL/L
pH9.5
Method for Producing Positive Electrode Compounds of Comparative Examples 2 to 4 In the same manner as in the above Examples, nickel composite hydroxide particles serving as nuclei were obtained. After that, electroless nickel plating was applied to nickel composite hydroxide particles having an average particle size of 10 μm. As the electroless plating bath, one having the composition shown below was used.
Nickel sulfate 22.0g/L
Glycine 33.3 g/L
Sodium hypophosphite 23.3g/L
Sodium hydroxide 12.3g/L
Surfactant 10mL/L
pH 9.5

以上の条件を満たす3Lのめっき浴を60℃で建浴し、ニッケル複合水酸化物粒子50gを、直接、投入した。すなわち、浸漬脱脂工程、表面調整工程及びエッチング工程などの前処理工程は、一切行わなかった。ニッケル複合水酸化物粒子を投入した後、毎分500回転の速度でプロペラ撹拌を10分間行い、そこへ塩化パラジウム及び塩酸を主成分とする溶液(アクチベーター、塩化パラジウム濃度2g/L)を20mL投入した。この投入とともに、瞬時に発泡が始まり、パラジウムイオンの還元およびニッケルめっきが進行し始めた。発泡が終了するまでの約30分間、毎分500回転の速度でプロペラ撹拌を継続し、発泡終了後、撹拌を停止した。吸引ろ過器を用いてろ過した後、水洗を3回繰り返した後、80℃で1時間、温風で乾燥した。このようにして、比較例2~4の正極用化合物である、ニッケル-リン複合めっき膜で被覆されたニッケル複合水酸化物粒子を得た。なお、ニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量は、硫酸ニッケル液の投入量を調節することで調整した。 A 3 L plating bath satisfying the above conditions was prepared at 60° C., and 50 g of nickel composite hydroxide particles were directly added. That is, no pretreatment steps such as immersion degreasing, surface conditioning, and etching were performed. After charging the nickel composite hydroxide particles, propeller stirring was performed at a speed of 500 rpm for 10 minutes, and 20 mL of a solution containing palladium chloride and hydrochloric acid as main components (activator, palladium chloride concentration: 2 g/L) was added. put in. With this addition, bubbling started instantaneously, and reduction of palladium ions and nickel plating began to progress. Propeller stirring was continued at a speed of 500 rpm for about 30 minutes until foaming was completed, and stirring was stopped after foaming was completed. After filtration using a suction filter, washing with water was repeated three times, followed by drying with hot air at 80° C. for 1 hour. In this way, nickel composite hydroxide particles coated with a nickel-phosphorus composite plating film, which are positive electrode compounds of Comparative Examples 2 to 4, were obtained. The content of the nickel element in the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles was adjusted by adjusting the input amount of the nickel sulfate liquid.

実施例1~3のニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量、比較例1のニッケル複合水酸化物粒子100質量部に対する被覆層のコバルト元素の含有量、比較例2~4のニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量について、下記表1に示す。 The content of the nickel element in the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles of Examples 1 to 3, the content of the cobalt element in the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles of Comparative Example 1, Comparative Example Table 1 below shows the content of the nickel element in the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles of No. 2 to No. 4.

評価項目は以下の通りである。
(1)組成分析
実施例1~3及び比較例2~4で得られたニッケル複合水酸化物粉末の組成分析は、得られた粉末を塩酸もしくは王水に溶解させた後、誘導結合プラズマ発光分析装置(株式会社パーキンエルマージャパン製、7300DV)を用いて行った。
(2)平均圧壊強度
株式会社島津製作所製「微小圧縮試験機MCT-510」にて測定した。
実施例1~3及び比較例2~4で得られたニッケル複合水酸化物粉末について、株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて、任意に選んだ二次粒子1個に対して試験圧力(負荷)をかけ、二次粒子の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出した。この操作を計10回行い、圧壊強度の10回平均値から平均圧壊強度を算出した。
St=2.8×P/(π×d×d) (d:二次粒子径)(A)
Evaluation items are as follows.
(1) Composition analysis The composition analysis of the nickel composite hydroxide powders obtained in Examples 1 to 3 and Comparative Examples 2 to 4 was performed by dissolving the obtained powders in hydrochloric acid or aqua regia, followed by inductively coupled plasma emission. It was carried out using an analyzer (7300DV, manufactured by PerkinElmer Japan Co., Ltd.).
(2) Average crushing strength Measured by Shimadzu Corporation's "microcompression tester MCT-510".
For the nickel composite hydroxide powders obtained in Examples 1 to 3 and Comparative Examples 2 to 4, one arbitrarily selected secondary particle was measured using a "microcompression tester MCT-510" manufactured by Shimadzu Corporation. A test pressure (load) was applied to , and the amount of displacement of the secondary particles was measured. When the test pressure is gradually increased, the test force (P) is the pressure value at which the displacement amount becomes maximum while the test pressure is almost constant, and the formula of Hiramatsu et al. Vol.81, (1965)), the crushing strength (St) was calculated. This operation was performed 10 times in total, and the average crushing strength was calculated from the average value of the 10 times crushing strength.
St = 2.8 × P / (π × d × d) (d: secondary particle diameter) (A)

(3)容量維持率(90℃で6日間放置)
ニッケル水素電池について、0.2Cの深放電試験を実施した後に、無負荷接続状態にて90℃で6日間の自然放置することにより、ニッケル水素電池を放電した。深放電までの0.2Cで充電したときの放電容量に対する、深放電後2CY目の0.2Cで充電したときの放電容量を容量維持率とした。
(4)ニッケル元素を含む被覆層の平均一次粒子径
ニッケル元素を含む被覆層の平均一次粒子径は、電界放出形走査電子顕微鏡(FE-SEM)にて被覆層を観察した画像から、独立して存在している一次粒子をランダムに10個選択し、選択した上記一次粒子の最長直径の部位を、それぞれ測定し、その平均値を平均一次粒子径とした。
(3) Capacity retention rate (left at 90°C for 6 days)
The nickel-metal hydride battery was subjected to a 0.2 C deep discharge test, and then left unloaded at 90° C. for 6 days to discharge the nickel-metal hydride battery. The discharge capacity when charged at 0.2 C in the 2nd CY after deep discharge with respect to the discharge capacity when charged at 0.2 C until deep discharge was taken as the capacity retention rate.
(4) Average primary particle size of coating layer containing nickel element The average primary particle size of the coating layer containing nickel element is independent from the image of the coating layer observed with a field emission scanning electron microscope (FE-SEM). 10 primary particles were randomly selected, and the longest diameter portions of the selected primary particles were measured, and the average value was taken as the average primary particle size.

実施例1~3及び比較例2~4において、核であるニッケル複合水酸化物粒子にニッケル元素を含む被覆層が形成されていることは、核であるニッケル複合水酸化物粒子及び最終生成物であるニッケル含有被覆ニッケル複合水酸化物粒子の断面について、その中心部から表面部にわたって略等間隔に、それぞれ、エネルギー分散型X線分析(EDX)にて組成分析することで確認した。すなわち、下記表2に示すように、核では、核中心部と核表面部でニッケル量に大きな変化がないのに対し、ニッケル含有被覆ニッケル複合水酸化物粒子では、粒子中心部と粒子表面部とでニッケル量に大きな変化があり、粒子表面部が粒子中心部よりもニッケル量が顕著に大きい(表2の下線で示すニッケル量)。このことから、核であるニッケル複合水酸化物粒子にニッケル元素を含む被覆層が形成されていることが確認できた。 In Examples 1 to 3 and Comparative Examples 2 to 4, the fact that a coating layer containing a nickel element was formed on the nickel composite hydroxide particles that are the nuclei means that the nickel composite hydroxide particles that are the nuclei and the final product The cross section of the nickel-containing coated nickel composite hydroxide particles was confirmed by analyzing the composition by energy dispersive X-ray analysis (EDX) at approximately equal intervals from the center to the surface. That is, as shown in Table 2 below, in the core, there is no significant change in the amount of nickel between the core center and the core surface. There is a large change in the amount of nickel between the two, and the amount of nickel in the surface portion of the grain is significantly larger than that in the center portion of the grain (the amount of nickel indicated by the underline in Table 2). From this, it was confirmed that a coating layer containing nickel element was formed on the core nickel composite hydroxide particles.

評価結果を下記表1に示す。 The evaluation results are shown in Table 1 below.

Figure 0007290626000001
Figure 0007290626000001

Figure 0007290626000002
Figure 0007290626000002

なお、実施例1~3及び比較例2~4では、被覆層の形成にあたり、コバルト元素を添加していないことから、実施例1~3及び比較例2~4では、被覆層のコバルトの含有量は無し(0ppm)、と判断できる。 In Examples 1 to 3 and Comparative Examples 2 to 4, no cobalt element was added in forming the coating layer. It can be judged that there is no amount (0 ppm).

上記表1に示すように、ニッケル複合水酸化物粒子の表面にコバルト元素が0ppm及びリン元素が2ppm以下であるニッケル元素を含む被覆層を有し、該被覆層のニッケル元素の含有量がニッケル複合水酸化物粒子100質量部に対して5.0質量部以上10質量部以下である実施例1~3では、二次粒子の平均圧壊強度が55.3Mpa以上、90℃、6日目における容量維持率が77.7%以上であった。従って、実施例1~3では、高温放置後における容量維持率に優れ、高い平均圧壊強度を有する正極用化合物を得ることができた。特に、被覆層のニッケル元素の含有量がニッケル複合水酸化物粒子100質量部に対して10質量部である実施例1では、高温放置後における容量維持率と二次粒子の平均圧壊強度がさらに向上した。 As shown in Table 1 above, the surface of the nickel composite hydroxide particles has a coating layer containing a nickel element having a cobalt element of 0 ppm and a phosphorus element of 2 ppm or less, and the content of the nickel element in the coating layer is nickel. In Examples 1 to 3 in which the amount is 5.0 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the composite hydroxide particles, the average crushing strength of the secondary particles is 55.3 Mpa or more, 90 ° C., on the 6th day The capacity retention rate was 77.7% or more. Therefore, in Examples 1 to 3, it was possible to obtain a positive electrode compound having excellent capacity retention after being left at high temperature and having high average crushing strength. In particular, in Example 1, in which the content of the nickel element in the coating layer is 10 parts by mass with respect to 100 parts by mass of the nickel composite hydroxide particles, the capacity retention rate after standing at high temperature and the average crushing strength of the secondary particles are further improved. Improved.

また、実施例1~3から、の正極用化合物の平均圧壊強度の向上に伴い、高温放置後における容量維持率の向上する傾向が確認できた。さらに、実施例1~3は比較例2~4と比較して、ニッケル元素を含む被覆層の平均一次粒子径が58nm~83nmに微細化されていた。 Further, from Examples 1 to 3, it was confirmed that the capacity retention rate after being left at high temperature tended to improve as the average crushing strength of the positive electrode compound improved. Furthermore, in Examples 1 to 3, the average primary particle diameter of the nickel element-containing coating layer was reduced to 58 nm to 83 nm as compared with Comparative Examples 2 to 4.

一方で、CoOOH被覆されたニッケル複合水酸化物粒子である比較例1では、二次粒子の平均圧壊強度が44.7Mpa、90℃、6日目における容量維持率が70.0%にとどまった。従って、比較例1では、高温放置後における良好な容量維持率と高い平均圧壊強度を得ることができなかった。 On the other hand, in Comparative Example 1, which is CoOOH-coated nickel composite hydroxide particles, the average crushing strength of the secondary particles was 44.7 MPa, and the capacity retention rate on the 6th day at 90° C. was only 70.0%. . Therefore, in Comparative Example 1, it was not possible to obtain a good capacity retention ratio and a high average crushing strength after standing at high temperature.

また、ニッケル元素を含む被覆層中にリン元素が1570ppm~2327ppm含まれる比較例2~4では、高温放置後における容量維持率67.0%~75.2%、二次粒子の平均圧壊強度20.2Mpa~33.9Mpaと、いずれも大きく低減してしまった。特に、リン元素が2327ppm含まれる比較例2では、平均圧壊強度の低下が著しかった。 Further, in Comparative Examples 2 to 4 in which the coating layer containing the nickel element contained 1570 ppm to 2327 ppm of the phosphorus element, the capacity retention rate after standing at high temperature was 67.0% to 75.2%, and the average crushing strength of the secondary particles was 20. .2Mpa to 33.9Mpa, all of which have decreased significantly. In particular, in Comparative Example 2 containing 2327 ppm of elemental phosphorus, the decrease in average crushing strength was remarkable.

次に、実施例4、5、比較例5、6の正極用化合物の製造方法について説明する。 Next, methods for producing the positive electrode compounds of Examples 4 and 5 and Comparative Examples 5 and 6 will be described.

比較例6の正極用化合物の製造方法
攪拌機およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加した。硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.50:0.20:0.30となるように混合して、混合原料液を調製した。次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、反応槽内の溶液のpHが液温40℃基準でpH11.3になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケル複合水酸化物粒子であるニッケルコバルトマンガン複合水酸化物粒子を得た。得られたニッケル複合水酸化物粒子を、濾過後水洗し、105℃で乾燥することにより、比較例6のニッケル複合水酸化物の乾燥粉末を得た。
Manufacturing Method of Positive Electrode Compound of Comparative Example 6 After water was put into a reactor equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added. An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate, and an aqueous solution of manganese sulfate are mixed so that the atomic ratio of nickel atoms, cobalt atoms, and manganese atoms is 0.50:0.20:0.30 to form a mixed raw material solution. prepared. Next, this mixed raw material solution and an aqueous solution of ammonium sulfate are continuously added to the reaction vessel as a complexing agent while stirring, and water is added so that the pH of the solution in the reaction vessel becomes pH 11.3 at a liquid temperature of 40°C. An aqueous sodium oxide solution was added dropwise at appropriate times to obtain nickel-cobalt-manganese composite hydroxide particles, which are nickel composite hydroxide particles. The obtained nickel composite hydroxide particles were filtered, washed with water, and dried at 105° C. to obtain a dry powder of nickel composite hydroxide of Comparative Example 6.

実施例4の正極用化合物の製造方法
上記のようにして調製した比較例6のニッケル複合水酸化物粒子に、さらに、直接、無電解純ニッケルめっき処理を施して、実施例4の、被覆層としてニッケルめっき膜を有するニッケル複合水酸化物(被覆層としてニッケルめっき膜を有するニッケルコバルトマンガン複合水酸化物)、すなわち、ニッケル含有被覆ニッケル複合水酸化物を製造した。より詳細には、以下の通りに、ニッケルめっき膜を有するニッケル複合水酸化物を製造した。
Method for producing the positive electrode compound of Example 4 The nickel composite hydroxide particles of Comparative Example 6 prepared as described above were further directly subjected to electroless pure nickel plating treatment to form the coating layer of Example 4. A nickel composite hydroxide having a nickel plating film as a coating layer (nickel-cobalt-manganese composite hydroxide having a nickel plating film as a coating layer), that is, a nickel-containing coated nickel composite hydroxide was produced. More specifically, a nickel composite hydroxide having a nickel plating film was produced as follows.

まず、粒子径10μmのニッケル複合水酸化物粒子を基材粒子として、基材粒子表面を改質するために、基材粒子をカチオン系界面活性剤、10分間撹拌処理した。その後、ろ過水洗してから、パラジウムイオン触媒溶液で、10分間撹拌処理して、基材粒子表面にパラジウムイオンを吸着させた。その後、ろ過水洗してから、還元溶液で、10分間撹拌処理して、基材粒子表面にパラジウム触媒を担持させた。その後、ろ過水洗してから、80℃に加温した硫酸ニッケル溶液中にて、表面にパラジウム触媒を担持させた基材粒子を1分間予備撹拌した。なお、硫酸ニッケル溶液の組成は、ニッケル塩0.30mol/L、クエン酸塩1mol/L、炭酸塩1.7mol/Lとした。その後、ヒドラジン一水和物を0.4mol/Lの量で硫酸ニッケル溶液に投入した。反応開始後、表面にパラジウム触媒を担持させた基材粒子を、5分間以上、ヒドラジン一水和物を投入した硫酸ニッケル溶液中にて撹拌して、ニッケル複合水酸化物粒子表面にニッケルめっき膜を形成させていき、ニッケル元素を含む被覆層を形成させた。撹拌後、ニッケル元素を含む被覆層を形成させたニッケル複合水酸化物粒子をろ過水洗し、80℃で乾燥させた。このようにして、本発明に係る正極用化合物であるニッケル含有被覆ニッケル複合水酸化物粒子を得た。なお、ニッケル複合水酸化物粒子100質量部に対する被覆層のニッケル元素の含有量(10質量部)は、硫酸ニッケル液の投入量を調節することで調整した。 First, nickel composite hydroxide particles having a particle diameter of 10 μm were used as base particles, and the base particles were treated with a cationic surfactant with stirring for 10 minutes in order to modify the surface of the base particles. Then, after filtering and washing with water, a palladium ion catalyst solution was added to the substrate particles and stirred for 10 minutes to adsorb palladium ions on the surfaces of the substrate particles. Then, after filtering and washing with water, the substrate particles were stirred for 10 minutes with a reducing solution to support the palladium catalyst on the surfaces of the substrate particles. Thereafter, after being filtered and washed with water, the substrate particles having a palladium catalyst supported on their surfaces were pre-stirred for 1 minute in a nickel sulfate solution heated to 80°C. The composition of the nickel sulfate solution was 0.30 mol/L nickel salt, 1 mol/L citrate, and 1.7 mol/L carbonate. Hydrazine monohydrate was then introduced into the nickel sulfate solution in an amount of 0.4 mol/L. After the start of the reaction, the base particles having the palladium catalyst supported on their surfaces are stirred for 5 minutes or longer in a nickel sulfate solution containing hydrazine monohydrate to form a nickel plating film on the surfaces of the nickel composite hydroxide particles. was formed to form a coating layer containing nickel element. After stirring, the nickel composite hydroxide particles on which a coating layer containing nickel element was formed were filtered, washed with water, and dried at 80°C. Thus, nickel-containing coated nickel composite hydroxide particles, which are the positive electrode compound according to the present invention, were obtained. The nickel element content (10 parts by mass) of the coating layer with respect to 100 parts by mass of the nickel composite hydroxide particles was adjusted by adjusting the input amount of the nickel sulfate solution.

実施例5の正極用化合物の製造方法
以上のようにして得られた実施例4のニッケル含有被覆ニッケル複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.03となるように秤量して混合した後、大気雰囲気下740℃で8.4時間一次焼成して、リチウム-ニッケル含有被覆ニッケル複合酸化物を一次焼成粉末として得た。その後、一次焼成粉末を粉砕し、大気雰囲気下940℃で8.4時間二次焼成して、実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物を二次焼成粉末として得た。
Method for producing a positive electrode compound of Example 5 Li/(Ni + Co + Mn) = 1.03 by combining the dry powder of the nickel-containing coated nickel composite hydroxide of Example 4 obtained as described above and the lithium carbonate powder. After weighing and mixing as described above, primary firing was performed at 740° C. for 8.4 hours in an air atmosphere to obtain a lithium-nickel-containing coated nickel composite oxide as a primary firing powder. Thereafter, the primary fired powder was pulverized and secondary fired at 940° C. for 8.4 hours in an air atmosphere to obtain the lithium-nickel-containing coated nickel composite oxide of Example 5 as a secondary fired powder.

比較例5の正極用化合物の製造方法
比較例6のニッケル複合水酸化物の乾燥粉末と炭酸リチウム粉末とをLi/(Ni+Co+Mn)=1.03となるように秤量して混合した後、大気雰囲気下740℃で8.4時間一次焼成して、リチウム-ニッケル複合酸化物を一次焼成粉末として得た。その後、一次焼成粉末を粉砕し、大気雰囲気下940℃で8.4時間二次焼成して、比較例5のリチウム-ニッケル複合酸化物を二次焼成粉末として得た。
Method for producing the positive electrode compound of Comparative Example 5 After weighing and mixing the dry powder of the nickel composite hydroxide and the lithium carbonate powder of Comparative Example 6 so that Li / (Ni + Co + Mn) = 1.03, the mixture is placed in an air atmosphere. After primary firing at 740° C. for 8.4 hours, a lithium-nickel composite oxide was obtained as a primary fired powder. Thereafter, the primary fired powder was pulverized and secondary fired at 940° C. for 8.4 hours in an air atmosphere to obtain a lithium-nickel composite oxide of Comparative Example 5 as a secondary fired powder.

評価項目は以下の通りである。
(1)組成分析
実施例5及び比較例5で得られた正極用化合物粉末の組成分析は、得られた粉末を塩酸もしくは王水に溶解させた後、誘導結合プラズマ発光分析装置(株式会社パーキンエルマージャパン社製、7300DV)を用いて行った。
(2)平均圧壊強度
島津微小圧縮試験機MCT-510にて測定した。
実施例4、5及び比較例5、6で得られたニッケル複合水酸化物粉末について、株式会社島津製作所製「微小圧縮試験機MCT-510」を用いて、任意に選んだ二次粒子1個に対して試験圧力(負荷)をかけ、二次粒子の変位量を測定した。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出した。この操作を計10回行い、圧壊強度の10回平均値から平均圧壊強度を算出した。
St=2.8×P/(π×d×d) (d:二次粒子径)(A)
Evaluation items are as follows.
(1) Composition Analysis The composition analysis of the positive electrode compound powders obtained in Example 5 and Comparative Example 5 was performed by dissolving the obtained powders in hydrochloric acid or aqua regia, followed by an inductively coupled plasma emission spectrometer (Perkin Co., Ltd.). 7300DV (manufactured by Elmer Japan) was used.
(2) Average crushing strength Measured with Shimadzu Micro Compression Tester MCT-510.
For the nickel composite hydroxide powders obtained in Examples 4 and 5 and Comparative Examples 5 and 6, one arbitrarily selected secondary particle was measured using a "microcompression tester MCT-510" manufactured by Shimadzu Corporation. A test pressure (load) was applied to , and the amount of displacement of the secondary particles was measured. When the test pressure is gradually increased, the test force (P) is the pressure value at which the displacement amount becomes maximum while the test pressure is almost constant, and the formula of Hiramatsu et al. Vol.81, (1965)), the crushing strength (St) was calculated. This operation was performed 10 times in total, and the average crushing strength was calculated from the average value of the 10 times crushing strength.
St = 2.8 × P / (π × d × d) (d: secondary particle diameter) (A)

(3)60℃保存における自己放電率、容量回復率
実施例5、比較例5の正極用化合物粉末を用いて作製したラミネートセル型電池を用いて、25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、0.2Cの条件で3.0Vまで放電した。このときの放電容量を1.とする。25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、60℃環境下で2週間放置した。2週間放置終了後25℃環境温度に戻し、0.2Cの条件で3.0Vまで放電した。このときの放電容量を2.とする。次に、25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、0.2Cの条件で3.0Vまで放電した。このときの放電容量を3.とする。25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、60℃環境下でさらに2週間放置した。2週間放置終了後25℃環境温度に戻し、0.2Cの条件で3.0Vまで放電した。このときの放電容量を4.とする。次に、25℃の環境温度で0.2Cの条件で4.2VまでCV条件で充電した後、0.2Cの条件で3.0Vまで放電した。このときの放電容量を5.とする。
60℃保存における自己放電率と容量回復率を次式に示す。
(a)2週間放置後の自己放電率、容量回復率
自己放電率(%)=(1.-2.)×100
容量回復率(%)=(3./1.)×100
(b)4週間放置後の自己放電率、容量回復率
自己放電率(%)=(1.-4.)×100
容量回復率(%)=(5./1.)×100
(4)60℃条件におけるサイクル特性
実施例5、比較例5の正極用化合物粉末を用いて作製したラミネートセル型電池を用いて、60℃環境温度で2Cの条件で4.2VまでCC条件で充電した後、2Cの条件で3.0Vまで放電した。この充放電操作を500サイクル行った。1サイクル目に放電した容量に対する500サイクル目に放電した容量の割合を容量維持率とした。
容量維持率(%)=500サイクル目放電容量(mAh/g)/1サイクル目放電容量(mAh/g)×100
(5)ニッケル元素を含む被覆層の平均一次粒子径
実施例4の正極用化合物粉末のニッケル元素を含む被覆層の平均一次粒子径は、電界放出形走査電子顕微鏡(FE-SEM)にて被覆層を観察した画像から、独立して存在している一次粒子をランダムに10個選択し、選択した上記一次粒子の最長直径の部位を、それぞれ測定し、その平均値を平均一次粒子径とした。
(3) Self-discharge rate and capacity recovery rate when stored at 60 ° C. Using the laminate cell type battery produced using the positive electrode compound powder of Example 5 and Comparative Example 5, the environmental temperature was 25 ° C. and the condition was 0.2 C. After charging to 4.2V under CV conditions, the battery was discharged to 3.0V under 0.2C conditions. The discharge capacity at this time is 1. and After charging under CV conditions to 4.2 V under conditions of 0.2 C at an environmental temperature of 25° C., the batteries were left in an environment of 60° C. for two weeks. After leaving the battery for 2 weeks, the temperature was returned to 25°C, and the battery was discharged to 3.0V under the condition of 0.2C. Assume that the discharge capacity at this time is 2. Next, after charging under CV conditions to 4.2 V under conditions of 0.2 C and an ambient temperature of 25° C., the batteries were discharged to 3.0 V under conditions of 0.2 C. Assume that the discharge capacity at this time is 3. After charging under CV conditions to 4.2 V under conditions of 0.2 C at an environmental temperature of 25° C., the batteries were left in an environment of 60° C. for another two weeks. After leaving the battery for 2 weeks, the temperature was returned to 25°C, and the battery was discharged to 3.0V under the condition of 0.2C. Assume that the discharge capacity at this time is 4. Next, after charging under CV conditions to 4.2 V under conditions of 0.2 C and an ambient temperature of 25° C., the batteries were discharged to 3.0 V under conditions of 0.2 C. Assume that the discharge capacity at this time is 5.
The following equations show the self-discharge rate and capacity recovery rate when stored at 60°C.
(a) Self-discharge rate and capacity recovery rate after left for 2 weeks Self-discharge rate (%) = (1.-2.) x 100
Capacity recovery rate (%) = (3./1.) x 100
(b) Self-discharge rate and capacity recovery rate after being left for 4 weeks Self-discharge rate (%) = (1.-4.) x 100
Capacity recovery rate (%) = (5./1.) x 100
(4) Cycle characteristics under conditions of 60° C. Using the laminate cell-type batteries produced using the positive electrode compound powders of Example 5 and Comparative Example 5, under CC conditions up to 4.2 V under conditions of 2C at 60° C. ambient temperature. After charging, it was discharged to 3.0V under the condition of 2C. This charging/discharging operation was performed 500 cycles. The ratio of the capacity discharged at the 500th cycle to the capacity discharged at the 1st cycle was taken as the capacity retention rate.
Capacity retention rate (%) = 500th cycle discharge capacity (mAh/g) / 1st cycle discharge capacity (mAh/g) x 100
(5) Average primary particle size of coating layer containing nickel element The average primary particle size of the coating layer containing nickel element of the positive electrode compound powder of Example 4 was measured using a field emission scanning electron microscope (FE-SEM). From the image obtained by observing the layer, 10 independently existing primary particles were randomly selected, and the longest diameter portions of the selected primary particles were measured, and the average value was taken as the average primary particle diameter. .

評価結果を下記表3に示す。 The evaluation results are shown in Table 3 below.

Figure 0007290626000003
Figure 0007290626000003

実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物粉末の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.011:0.575:0.170:0.255であった。比較例5のリチウム-ニッケルコバルトマンガン複合酸化物末の組成分析を行ったところ、Li:Ni:Co:Mnのモル比は、1.022:0.499:0.200:0.301であった。
上記表3に示すように、実施例4のニッケル含有被覆ニッケル複合水酸化物の平均圧壊強度45.9Mpaは、比較例6の平均圧壊強度が65.0Mpaであるニッケル複合水酸化物に比べて粒子強度が低下した。しかし、実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、実施例4のニッケル含有被覆ニッケルコバルトマンガン複合水酸化物をリチウム焼成した酸化物であり、平均圧壊強度が64.3Mpaである比較例5のリチウム-ニッケル複合酸化物に比べ、実施例5の平均圧壊強度は79.7Mpaと粒子強度が向上した。
Composition analysis of the lithium-nickel-containing coated nickel composite oxide powder of Example 5 revealed that the molar ratio of Li:Ni:Co:Mn was 1.011:0.575:0.170:0.255. there were. Composition analysis of the lithium-nickel-cobalt-manganese composite oxide powder of Comparative Example 5 revealed that the molar ratio of Li:Ni:Co:Mn was 1.022:0.499:0.200:0.301. rice field.
As shown in Table 3 above, the nickel-containing coated nickel composite hydroxide of Example 4 has an average crushing strength of 45.9 Mpa compared to the nickel composite hydroxide of Comparative Example 6 having an average crushing strength of 65.0 Mpa. Particle strength decreased. However, the lithium-nickel-containing coated nickel composite oxide of Example 5 is an oxide obtained by firing the nickel-containing coated nickel-cobalt-manganese composite hydroxide of Example 4 with lithium, and has an average crushing strength of 64.3 MPa. Compared to the lithium-nickel composite oxide of Example 5, the average crushing strength of Example 5 was 79.7 Mpa, which was an improvement in particle strength.

上記表3に示すように、比較例5の60℃2週間保存における自己放電率、容量回復率がそれぞれ32.1%、79.1%であるリチウム-ニッケルコバルトマンガン複合酸化物に比べ、粒子強度が高い実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、60℃2週間保存における自己放電率、容量回復率がそれぞれ31.2%、80.6%と優れた特性を有していた。また、比較例5の60℃4週間保存における自己放電率、容量回復率がそれぞれ39.1%、68.5%であるリチウム-ニッケル複合酸化物に比べ、粒子強度が高い実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、60℃4週間保存における自己放電率、容量回復率がそれぞれ36.6%、70.6%と優れた特性を有していた。 As shown in Table 3 above, compared to the lithium-nickel-cobalt-manganese composite oxide having a self-discharge rate and a capacity recovery rate of 32.1% and 79.1%, respectively, when stored at 60° C. for 2 weeks in Comparative Example 5, particles The lithium-nickel-containing coated nickel composite oxide of Example 5, which has a high strength, has excellent self-discharge rate and capacity recovery rate of 31.2% and 80.6%, respectively, when stored at 60° C. for 2 weeks. rice field. In addition, compared to the lithium of Comparative Example 5, which has a self-discharge rate and a capacity recovery rate of 39.1% and 68.5%, respectively, after storage at 60° C. for 4 weeks, the lithium of Example 5 has a high particle strength. - Nickel-containing coated nickel composite oxide had excellent properties of 36.6% in self-discharge rate and 70.6% in capacity recovery rate after storage at 60°C for 4 weeks, respectively.

上記表3に示すように、比較例5の60℃条件における500サイクルの容量維持率が66.9%であるリチウム-ニッケル複合酸化物に比べ、粒子強度が高い実施例5のリチウム-ニッケル含有被覆ニッケル複合酸化物は、60℃条件における500サイクルの容量維持率が70.4%と高い容量維持率を有していた。 As shown in Table 3 above, compared to the lithium-nickel composite oxide having a capacity retention rate of 66.9% at 500 cycles at 60 ° C. in Comparative Example 5, the lithium-nickel-containing lithium of Example 5 has high particle strength. The coated nickel composite oxide had a high capacity retention rate of 70.4% after 500 cycles at 60°C.

さらに、実施例4のニッケル元素を含む被覆層の平均一次粒子径が50nm~90nmに微細化されていた。 Furthermore, the average primary particle size of the coating layer containing nickel element in Example 4 was reduced to 50 nm to 90 nm.

本発明の正極用化合物は、上記被覆層の構造を有することにより、高温放置後における容量維持率に優れ、高強度を有するので、広汎な蓄電池の分野で利用可能であり、例えば、アルカリ蓄電池の正極活物質用、非水系電解質二次電池の正極活物質用、非水系電解質二次電池の正極活物質の前駆体用として利用価値が高い。 Since the positive electrode compound of the present invention has the structure of the coating layer, it has excellent capacity retention rate after being left at high temperature and has high strength, so it can be used in a wide range of storage battery fields. It is highly useful as a positive electrode active material, as a positive electrode active material for non-aqueous electrolyte secondary batteries, and as a precursor of a positive electrode active material for non-aqueous electrolyte secondary batteries.

Claims (8)

一次粒子が凝集した二次粒子であり、ニッケル複合水酸化物を含む核と、前記核の表面にコバルト元素が500ppm以下及びリン元素が10ppm以下であるニッケル元素を含む被覆層と、を有する正極用化合物であり、
前記被覆層のニッケル元素の含有量が、前記核100質量部に対して5質量部以上20質量部以下、
前記ニッケル元素を含む被覆層の平均一次粒子径が、10nm以上90nm以下、
前記二次粒子の平均圧壊強度が45.0MPa以上である正極用化合物。
A positive electrode having a core that is a secondary particle obtained by agglomeration of primary particles and contains a nickel composite hydroxide, and a coating layer containing a nickel element having a cobalt element of 500 ppm or less and a phosphorus element of 10 ppm or less on the surface of the core. is a compound for
The content of the nickel element in the coating layer is 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the core,
The average primary particle size of the coating layer containing the nickel element is 10 nm or more and 90 nm or less,
The positive electrode compound, wherein the average crushing strength of the secondary particles is 45.0 MPa or more.
前記核が、コバルト、亜鉛、マンガン、リチウム、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された金属元素を少なくとも1種含む請求項1に記載の正極用化合物。 2. The positive electrode compound according to claim 1, wherein said core contains at least one metal element selected from the group consisting of cobalt, zinc, manganese, lithium, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten. さらに、パラジウム化合物を含む請求項1または2に記載の正極用化合物。 3. The positive electrode compound according to claim 1, further comprising a palladium compound. アルカリ蓄電池の正極活物質用である請求項1乃至3のいずれか1項に記載の正極用化合物。 4. The positive electrode compound according to any one of claims 1 to 3, which is used as a positive electrode active material for alkaline storage batteries. 前記核が、一般式(1)
Ni(1-x)(OH)2+a (1)
(式中:0<x≦0.2、0≦a≦0.2、Mは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、イットリウム及びイッテルビウムからなる群から選択された少なくとも1種の金属元素を示す。)で表される請求項4に記載の正極用化合物。
The nucleus has the general formula (1)
Ni (1−x) M x (OH) 2+a (1)
(In the formula: 0 < x ≤ 0.2, 0 ≤ a ≤ 0.2, M is at least one metal element selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, yttrium and ytterbium The compound for a positive electrode according to claim 4, which is represented by ).
非水系電解質二次電池の正極活物質の前駆体用である請求項1乃至3のいずれか1項に記載の正極用化合物。 4. The positive electrode compound according to any one of claims 1 to 3, which is used as a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery. 前記核が、一般式(3)
Ni(1-z)(OH)2+c (3)
(式中:0<z≦0.7、0≦c≦0.28、Pは、コバルト、亜鉛、マンガン、マグネシウム、アルミニウム、ジルコニウム、イットリウム、イッテルビウム及びタングステンからなる群から選択された少なくとも1種の金属元素を示す。)で表される請求項6に記載の正極用化合物。
The nucleus has the general formula (3)
Ni (1−z) P z (OH) 2+c (3)
(In the formula: 0 < z ≤ 0.7, 0 ≤ c ≤ 0.28, P is at least one selected from the group consisting of cobalt, zinc, manganese, magnesium, aluminum, zirconium, yttrium, ytterbium and tungsten The compound for a positive electrode according to claim 6, which is represented by the following metal element.
請求項7に記載の正極用化合物を前駆体として用いた、非水系電解質二次電池用正極活物質の製造方法 A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, using the positive electrode compound according to claim 7 as a precursor.
JP2020507755A 2018-03-20 2019-03-15 Positive electrode compound and method for producing positive electrode active material Active JP7290626B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018053308 2018-03-20
JP2018053308 2018-03-20
PCT/JP2019/010859 WO2019181788A1 (en) 2018-03-20 2019-03-15 Compound for positive electrode

Publications (2)

Publication Number Publication Date
JPWO2019181788A1 JPWO2019181788A1 (en) 2021-03-25
JP7290626B2 true JP7290626B2 (en) 2023-06-13

Family

ID=67987177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020507755A Active JP7290626B2 (en) 2018-03-20 2019-03-15 Positive electrode compound and method for producing positive electrode active material

Country Status (4)

Country Link
JP (1) JP7290626B2 (en)
KR (1) KR20200133347A (en)
CN (1) CN111868975B (en)
WO (1) WO2019181788A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000406A (en) * 2020-06-18 2022-01-04 株式会社田中化学研究所 Cobalt-coated nickel-containing hydroxide particles
JP6806943B1 (en) * 2020-06-18 2021-01-06 株式会社田中化学研究所 Cobalt-coated nickel-containing hydroxide particles
KR20230157787A (en) * 2022-05-10 2023-11-17 주식회사 엘지화학 Manufacturing method of positive electrode active material
JP7412485B1 (en) * 2022-07-15 2024-01-12 住友化学株式会社 Method for producing metal composite hydroxide particles and positive electrode active material for lithium secondary batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294236A (en) 1999-04-07 2000-10-20 Kiyokawa Mekki Kogyo Kk Nickel electrode and its manufacture
WO2016068263A1 (en) 2014-10-30 2016-05-06 住友金属鉱山株式会社 Nickel-containing composite hydroxide and production process therefor, positive active material for nonaqueous-electrolyte secondary battery and production process therefor, and nonaqueous-electrolyte secondary battery
WO2016126622A1 (en) 2015-02-05 2016-08-11 Basf Corporation Nickel hydroxide positive electrode for alkaline rechargeable battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842164A (en) * 1981-09-08 1983-03-11 Fuji Elelctrochem Co Ltd Hermetic alkaline battery and manufacturing method thereof
JPS63148551A (en) * 1986-12-11 1988-06-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode for alkaline battery
JPH0982323A (en) * 1995-09-18 1997-03-28 L Tec Asia Service:Kk Nickel hydroxide for battery and alkaline battery using it
JP3489396B2 (en) * 1997-06-18 2004-01-19 住友金属鉱山株式会社 Metal-coated nickel hydroxide for positive electrode material and method for producing the same
TW445664B (en) * 1999-07-21 2001-07-11 Chung Shan Inst Of Science Nickel-nickel hydroxide electrode and its fabric method
JP2001052695A (en) 1999-08-10 2001-02-23 Tanaka Chemical Corp Manufacture of positive electrode active material for alkaline storage battery
JP3871653B2 (en) 2003-04-18 2007-01-24 清川メッキ工業株式会社 Method for producing conductive fine particles
CN100444433C (en) * 2006-12-27 2008-12-17 河南师范大学 Method of nickel hydroxide surface metallization
JP5664930B2 (en) * 2012-06-29 2015-02-04 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN104538604B (en) * 2015-01-20 2017-03-22 河北工业大学 Surface modifying method for lithium nickel manganese oxide positive electrode material
CN105990566B (en) * 2015-02-03 2019-02-22 微宏动力***(湖州)有限公司 Nickel oxide composite negative pole material and preparation method thereof
CN104779389B (en) * 2015-05-06 2017-01-11 深圳市玖创科技有限公司 Preparing method of high-capacity lithium cobalt oxide positive electrode material
CN104795562A (en) * 2015-05-06 2015-07-22 田东 Preparation method of modified ternary cathode material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294236A (en) 1999-04-07 2000-10-20 Kiyokawa Mekki Kogyo Kk Nickel electrode and its manufacture
WO2016068263A1 (en) 2014-10-30 2016-05-06 住友金属鉱山株式会社 Nickel-containing composite hydroxide and production process therefor, positive active material for nonaqueous-electrolyte secondary battery and production process therefor, and nonaqueous-electrolyte secondary battery
WO2016126622A1 (en) 2015-02-05 2016-08-11 Basf Corporation Nickel hydroxide positive electrode for alkaline rechargeable battery

Also Published As

Publication number Publication date
JPWO2019181788A1 (en) 2021-03-25
CN111868975A (en) 2020-10-30
KR20200133347A (en) 2020-11-27
WO2019181788A1 (en) 2019-09-26
CN111868975B (en) 2023-11-17

Similar Documents

Publication Publication Date Title
JP7290626B2 (en) Positive electrode compound and method for producing positive electrode active material
CN107123792B (en) Ternary cathode material with double-layer composite structure and preparation method thereof
EP0721229B1 (en) Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode
WO2020044795A1 (en) Positive electrode active material particles for secondary batteries, and method for producing positive electrode active material particles for secondary batteries
JP7216059B2 (en) Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same
JP5700282B2 (en) Alkaline storage battery
CN107251284B (en) Nickel hydroxide positive electrode for alkaline rechargeable batteries
KR102015425B1 (en) Positive active material for lithium secondary battery with copper-manganese coating thereon, lithium secondary battery having the same, and method for manufacturing thereof
JP7290625B2 (en) Positive electrode compound and method for producing positive electrode active material
JP7168572B2 (en) Positive electrode active material for alkaline storage batteries
JP7261059B2 (en) Negative electrode for nickel-metal hydride secondary battery, method for manufacturing this negative electrode, nickel-hydrogen secondary battery using this negative electrode, and hydrogen-absorbing alloy powder
JP2019501503A (en) Nickel hydroxide composites for alkaline rechargeable batteries
JP6213316B2 (en) Nickel hydroxide nickel hydroxide and alkaline storage battery for alkaline storage battery
JP5309479B2 (en) Alkaline storage battery
JP7168571B2 (en) Positive electrode active material for alkaline storage battery and method for producing positive electrode active material for alkaline storage battery
CN115003634B (en) Method for producing mixture of positive electrode active material particles of nickel-lithium-rich composite transition metal oxide
WO2022219898A1 (en) Positive electrode material for nickel hydrogen secondary battery and method for producing positive electrode material for nickel hydrogen secondary battery
WO2024014558A1 (en) Composite metal hydroxide and method for producing positive electrode active substance for lithium secondary battery
JP6299294B2 (en) Nickel hydroxide and alkaline storage battery for alkaline storage battery
JPH10162821A (en) Hydrogen storage alloy electrode and manufacture thereof
CN116632186A (en) Nickel-based positive electrode material with entropy gradient and preparation method thereof
JPH08329942A (en) Manufacture of positive active material for alkaline storage battery
JPH07320736A (en) Non-sintered nickel electrode for alkaline storage battery
JP2002063898A (en) Positive electrode active material for alkaline secondary battery
JPH1012238A (en) Non-sintered nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230601

R150 Certificate of patent or registration of utility model

Ref document number: 7290626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150