JP2000294236A - Nickel electrode and its manufacture - Google Patents

Nickel electrode and its manufacture

Info

Publication number
JP2000294236A
JP2000294236A JP11099834A JP9983499A JP2000294236A JP 2000294236 A JP2000294236 A JP 2000294236A JP 11099834 A JP11099834 A JP 11099834A JP 9983499 A JP9983499 A JP 9983499A JP 2000294236 A JP2000294236 A JP 2000294236A
Authority
JP
Japan
Prior art keywords
nickel
resin
plating film
electrode
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11099834A
Other languages
Japanese (ja)
Other versions
JP3553816B2 (en
Inventor
Tadashi Kiyokawa
忠 清川
Hajime Kiyokawa
肇 清川
Masayuki Takashima
正之 高島
Yuichi Matsumura
勇一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiyokawa Plating Industries Co Ltd
Original Assignee
Kiyokawa Plating Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiyokawa Plating Industries Co Ltd filed Critical Kiyokawa Plating Industries Co Ltd
Priority to JP09983499A priority Critical patent/JP3553816B2/en
Publication of JP2000294236A publication Critical patent/JP2000294236A/en
Application granted granted Critical
Publication of JP3553816B2 publication Critical patent/JP3553816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nickel electrode with which a high energy density and a high output density are available. SOLUTION: This nickel electrode contains nickel hydroxide powder whose surface is coated with a metal plating coat containing fine thermoplastic resin particles. The plating coat is porous and allows molecules of water and hydroxide ions to diffuse into it. The electrode is made by press molding the nickel hydroxide powder whose surface is coated with the metal plating coat containing the fine thermoplastic resin particles, at a temperature under a thermal cracking temperature of the thermoplastic resin, or by filling an electrode substrate with a paste of the nickel hydroxide powder having the metal plating coat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電池
用のニッケル電極およびその製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a nickel electrode for an alkaline secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】ニッケル電極は、ニッケル・カドミウム
電池、ニッケル・水素化物電池をはじめ、ニッケル・亜
鉛電池、ニッケル・鉄電池など多くのアルカリ電池に共
通の正極として用いられている。このうち、近年、急速
に発展してきたニッケル・水素化物電池は、携帯電話な
どの小型ポータブル機器用から大型電気自動車用まで多
機種の電源として使用されている。従来の焼結式水酸化
ニッケル電極は、カルボニルニッケルをパンチングメタ
ル上に焼結させた三次元多孔体基板に、ニッケル塩溶融
液を含浸させて化学的または電気化学的に水酸化ニッケ
ルに変換する方法がとられてきた。しかし、焼結式三次
元多孔体基板の多孔度が約80%であることからエネル
ギー密度が低くなること、製造工程が複雑であることな
どの問題があった。一方、ペースト式ニッケル電極は、
水酸化ニッケル粉末とコバルト化合物の粉末などを混合
したものか、もしくは、水酸化ニッケル表面にコバルト
化合物をコーティングした粉末を多孔度が95%以上の
三次元多孔体基板に充填して作製される。これにより、
高エネルギー密度の電極が得られるようになった。しか
し、高率放電特性は燒結式ニッケル電極よりも低い。電
気自動車用途などの電池においては、さらなる高エネル
ギー密度化、高出力密度化が要求されているのに加え
て、コバルト化合物使用などによるコスト高が問題とな
っている。
2. Description of the Related Art Nickel electrodes are used as a common positive electrode in many alkaline batteries such as nickel-cadmium batteries, nickel-hydride batteries, nickel-zinc batteries, nickel-iron batteries. Of these, nickel / hydride batteries, which have been rapidly developing in recent years, are used as power sources for various types of devices from small portable devices such as mobile phones to large electric vehicles. Conventional sintered nickel hydroxide electrodes are chemically or electrochemically converted into nickel hydroxide by impregnating a three-dimensional porous substrate obtained by sintering carbonyl nickel on a punching metal with a nickel salt melt. The way has been taken. However, since the porosity of the sintered three-dimensional porous substrate is about 80%, there are problems such as a low energy density and a complicated manufacturing process. On the other hand, paste-type nickel electrodes
It is prepared by mixing a nickel hydroxide powder and a cobalt compound powder or a powder obtained by coating a nickel compound surface with a cobalt compound into a three-dimensional porous substrate having a porosity of 95% or more. This allows
High energy density electrodes can now be obtained. However, the high rate discharge characteristics are lower than those of sintered nickel electrodes. Batteries for use in electric vehicles and the like are required to have higher energy density and higher output density, and also have a problem of high cost due to the use of a cobalt compound.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであり、ペースト式電極、焼結式
電極のそれぞれの長所である高エネルギー密度、高出力
密度特性を兼ね備え、さらに低コストタイプの水酸化ニ
ッケル粉末を用いたニッケル電極を提供しようとするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has both high energy density and high output density characteristics which are advantages of a paste type electrode and a sintered type electrode. It is another object of the present invention to provide a nickel electrode using a low-cost type nickel hydroxide powder.

【0004】[0004]

【課題を解決するための手段】本発明のニッケル電極
は、表面に熱可塑性樹脂の微粒子を包含した金属メッキ
被膜を有する水酸化ニッケル粉末を含むことを特徴とす
る。本発明は、表面に熱可塑性樹脂の微粒子を包含した
金属メッキ被膜を有する水酸化ニッケル粉末を前記熱可
塑性樹脂の熱分解温度未満の温度下で加圧成型すること
により多孔性のニッケル電極を得るものである。また、
本発明は、前記表面に熱可塑性樹脂の微粒子を包含した
金属メッキ被膜を有する水酸化ニッケル粉末を用いて作
製するペースト式電極にも関する。水酸化ニッケルは、
本来絶縁性物質であるが、本発明においては導電性を確
保するためにその表面に金属メッキを施し、成型性を高
めるために金属メッキ被膜が熱可塑性樹脂の微粒子を包
含している。
According to the present invention, there is provided a nickel electrode comprising a nickel hydroxide powder having a metal plating film containing fine particles of a thermoplastic resin on the surface. The present invention provides a porous nickel electrode by pressure molding a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface thereof at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. Things. Also,
The present invention also relates to a paste electrode manufactured using a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface. Nickel hydroxide is
Although it is originally an insulating substance, in the present invention, its surface is plated with metal to secure conductivity, and the metal plating film contains fine particles of a thermoplastic resin in order to enhance moldability.

【0005】従って、本発明によれば、表面に熱可塑性
樹脂の微粒子を包含した金属メッキ被膜を有する水酸化
ニッケル粉末を前記熱可塑性樹脂の熱分解温度未満の温
度下で加圧成型することにより多孔性の水酸化ニッケル
電極を得ることができる。また、前記表面に熱可塑性樹
脂の微粒子を包含した金属メッキ被膜を有する水酸化ニ
ッケル粉末を用いてペースト式電極を作製することもで
きる。前記金属メッキ被膜は、水分子及び水酸化物イオ
ンの拡散を許容する多孔質被膜である。多孔質被膜であ
れば、充電反応または放電反応に必要な物質種またはイ
オン種を水酸化ニッケル粒子表面または内部に供給する
際の妨げにはならない。また、前記金属メッキ被膜は、
エネルギー密度を低下させないため、水酸化ニッケル量
に対し20重量%以下、好ましくは5〜17%が適当で
ある。
Therefore, according to the present invention, a nickel hydroxide powder having a metal plating film containing fine particles of a thermoplastic resin on its surface is molded under pressure at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. A porous nickel hydroxide electrode can be obtained. Also, a paste-type electrode can be manufactured using nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface. The metal plating film is a porous film that allows diffusion of water molecules and hydroxide ions. The porous coating does not hinder the supply of the substance species or ionic species necessary for the charge or discharge reaction to the surface or inside of the nickel hydroxide particles. Further, the metal plating film,
In order not to lower the energy density, the amount is suitably 20% by weight or less, preferably 5 to 17% based on the amount of nickel hydroxide.

【0006】本発明は、表面に熱可塑性樹脂の微粒子を
包含した金属メッキ被膜を有する水酸化ニッケル粉末を
前記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型
することにより、前記水酸化ニッケル粉末が前記熱可塑
性樹脂により結合された多孔体を得るニッケル電極の製
造方法を提供する。さらに、本発明は、表面に熱可塑性
樹脂の微粒子を包含した金属メッキ被膜を有する水酸化
ニッケル粉末を金属支持体の片面または両面に配し、前
記熱可塑性樹脂の熱分解温度未満の温度下で加圧成型す
ることにより、前記水酸化ニッケル粉末が前記熱可塑性
樹脂により結合され、かつ前記金属支持体を一体に結合
した多孔体を得るニッケル電極の製造方法を提供する。
[0006] The present invention provides a method for producing a hydration resin by press-molding a nickel hydroxide powder having a metal plating film containing fine particles of a thermoplastic resin on the surface thereof at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. A method for producing a nickel electrode for obtaining a porous body in which nickel powder is bound by the thermoplastic resin. Furthermore, the present invention arranges nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on one or both surfaces of a metal support, and at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. The present invention provides a method for producing a nickel electrode, in which the nickel hydroxide powder is bonded by the thermoplastic resin by pressure molding to obtain a porous body in which the metal support is integrally bonded.

【0007】[0007]

【発明の実施の形態】水酸化ニッケル粉末を被覆するメ
ッキ被膜の金属としては、Ni、Co、Ni−Co、N
i−P、Ni−B、Co−PおよびCo−Bからなる群
より選んだものが好適に用いられる。メッキ被膜の膜厚
は、0.01〜50μm、好ましくは1〜10μmが適
当である。前記メッキ被膜に包含させる可塑性樹脂粉末
としては、ポリテトラフルオロエチレン、ポリエチレ
ン、ABS樹脂、ポリアミド、ポリスルフォン、AS樹
脂、ポリスチレン、塩化ビニリビデン樹脂、ポリフェニ
レンエーテル、メチルペンテン樹脂、およびメタクリル
酸樹脂からなる群より選ばれる樹脂の粒子が適当であ
る。樹脂粒子の粒径は、0.01〜50μm、好ましく
は1〜5μmが適当である。
BEST MODE FOR CARRYING OUT THE INVENTION Ni, Co, Ni-Co, N
Those selected from the group consisting of i-P, Ni-B, Co-P and Co-B are preferably used. The thickness of the plating film is suitably 0.01 to 50 μm, preferably 1 to 10 μm. Examples of the plastic resin powder included in the plating film include a group consisting of polytetrafluoroethylene, polyethylene, ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin. Resin particles selected from the above are appropriate. The particle size of the resin particles is suitably from 0.01 to 50 μm, preferably from 1 to 5 μm.

【0008】[0008]

【実施例】以下、実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0009】固溶体添加量が水酸化亜鉛6重量%、水酸
化コバルト7重量%の球状水酸化ニッケル粉末粒子を用
意し、以下に示す方法で無電解複合ニッケルメッキし
た。まず、前記球状水酸化ニッケル粉末粒子100gを
イオン交換水で洗浄した後、奥野製薬株式会社製OP−
113の名で販売されている脱脂剤の水溶液(60g/
l)からなる浴に60℃で10分間浸漬し、次いで水洗
する脱脂工程を行った。次に、30g/lの塩化第一ス
ズおよび15ml/lの塩酸を含むセンシタイザー液に
脱脂後の水酸化ニッケル粒子を25℃で3分間浸漬した
後に水洗する工程と、0.2g/lの塩化パラジウムお
よび4ml/lの塩酸を含むアクチベイター液に水酸化
ニッケル粒子を25℃で3分間浸漬した後に水洗する活
性化処理工程を行った。この活性化処理工程は2回繰り
返した。
[0009] Spherical nickel hydroxide powder particles having a solid solution addition amount of 6% by weight of zinc hydroxide and 7% by weight of cobalt hydroxide were prepared, and electroless composite nickel plating was performed by the following method. First, after washing 100 g of the spherical nickel hydroxide powder particles with ion-exchanged water, OP-OPO manufactured by Okuno Pharmaceutical Co., Ltd.
An aqueous solution of a degreasing agent sold under the name of 113 (60 g /
A degreasing step of immersing in the bath consisting of 1) at 60 ° C. for 10 minutes and then washing with water was performed. Next, the degreased nickel hydroxide particles are immersed in a sensitizer solution containing 30 g / l of stannous chloride and 15 ml / l of hydrochloric acid at 25 ° C. for 3 minutes, and then washed with water. An activation treatment step of immersing nickel hydroxide particles in an activator solution containing palladium chloride and 4 ml / l hydrochloric acid at 25 ° C. for 3 minutes and then washing with water was performed. This activation step was repeated twice.

【0010】次に、80℃の20g/lのグリシンと3
g/lの粒径0.3μmのポリテトラフルオロエチレン
(以下PTFEで表す)粒子と界面活性剤とを含む混合
液1リットル中に活性化処理後の水酸化ニッケル粒子を
投入して分散させた。この分散液を攪拌しながら、30
0g/lの硫酸ニッケル水溶液159mlと、282g
/1の次亜リン酸ナトリウムと150g/lの水酸化ナ
トリウムを含む混合水溶液159mlをそれぞれ10m
l/分の滴下速度で添加した。水素ガスの発生が終了す
るまで攪拌を続けた後、水洗、濾過、乾燥して、Ni−
PTFE複合メッキ被膜を有する水酸化ニッケル粉末試
料を得た。なお、濾液は無色であったので、供給したニ
ッケルイオンは全て水酸化ニッケル粒子表面に還元析出
された。
Next, 20 g / l glycine at 80 ° C. and 3 g
The activated nickel hydroxide particles were put into 1 liter of a mixed solution containing polytetrafluoroethylene (hereinafter, referred to as PTFE) particles having a particle size of 0.3 μm and a surfactant and dispersed therein. . While stirring this dispersion, 30
159 ml of 0 g / l nickel sulfate aqueous solution and 282 g
159 ml of a mixed aqueous solution containing 150 g / l sodium hydroxide and 150 g / l sodium hypophosphite each in 10 m
It was added at a dropping rate of 1 / min. After stirring was continued until the generation of hydrogen gas was completed, the mixture was washed with water, filtered and dried to obtain Ni-
A nickel hydroxide powder sample having a PTFE composite plating film was obtained. Since the filtrate was colorless, all the supplied nickel ions were reduced and precipitated on the surface of the nickel hydroxide particles.

【0011】このようにして得た試料の一部を走査型電
子顕微鏡で観察したところ、水酸化ニッケル粒子はPT
FEを包含した金属ニッケル皮膜で覆われていることが
わかった。メッキ皮膜は水酸化ニッケル粒子全体を覆う
のではなく、部分的に水酸化ニッケル粒子の表面が見え
る箇所が観察された。このような部分が存在するため
に、水分子や水酸化物イオンの水酸化ニッケル粒子への
拡散が可能となる。また、ICPによるメッキ量分析の
結果、メッキ量は水酸化ニッケルの10.8重量%相当
であることがわかった。さらに、メッキ被膜には、ニッ
ケルの他にリンが存在することが確認された。
When a part of the sample thus obtained was observed with a scanning electron microscope, the nickel hydroxide particles were found to be PT
It was found that it was covered with a metallic nickel film containing FE. The plating film did not cover the entire nickel hydroxide particles, but was partially observed where the surface of the nickel hydroxide particles was visible. The presence of such a portion enables diffusion of water molecules and hydroxide ions into the nickel hydroxide particles. Further, as a result of plating amount analysis by ICP, it was found that the plating amount was equivalent to 10.8% by weight of nickel hydroxide. Further, it was confirmed that phosphorus was present in the plating film in addition to nickel.

【0012】次に、得られたNi−PTFE複合メッキ
被膜を有する水酸化ニッケル粉末試料1.5gを厚さ
0.06mmのパンチングメタル(穴あきの鉄板にニッ
ケルメッキしたもの)集電基板の両側に配し、200℃
において400kg/cm2の成型圧で加圧成型し、直
径23mm、厚さ1mmの成型体を得た。この成型体を
ニッケル網で包み込んで周囲をスポット溶接し、ニッケ
ルのリード線を設けてニッケル電極を得た。これを電極
Aとする。次に、複合メッキ被膜を有する水酸化ニッケ
ル粉末試料の代わりに、同じ固溶体組成のメッキをして
いない水酸化ニッケル粉末試料を用いること以外は電極
Aと同様の方法でニッケル電極を作製した。これを比較
電極Bとする。さらに、比較電極Bで用いた水酸化ニッ
ケル粉末試料に、一酸化コバルト粉末を10重量%混
合、分散させた試料を用いること、および加圧成型を常
温で行うこと以外は電極Aと同様の方法でニッケル電極
を作製した(高温で加圧すると一酸化コバルトが酸化さ
れて四三酸化コバルトに変化してしまうため)。これを
比較電極Cとする。電極A、比較電極Bおよび比較電極
Cの成型体の多孔度は、いずれも約30%であった。
Next, 1.5 g of the obtained nickel hydroxide powder sample having the Ni-PTFE composite plating film was punched on a current collector substrate having a thickness of 0.06 mm by punching metal (a nickel plate on a perforated iron plate). 200 ° C
Was molded under pressure at a molding pressure of 400 kg / cm 2 to obtain a molded body having a diameter of 23 mm and a thickness of 1 mm. The molded body was wrapped in a nickel net and the periphery was spot-welded, and a nickel lead wire was provided to obtain a nickel electrode. This is electrode A. Next, a nickel electrode was produced in the same manner as for the electrode A, except that a nickel hydroxide powder sample having the same solid solution composition but not plated was used instead of the nickel hydroxide powder sample having the composite plating film. This is designated as Comparative electrode B. Further, the same method as that of the electrode A except that the nickel hydroxide powder sample used in the comparative electrode B was mixed and dispersed with 10% by weight of cobalt monoxide powder, and the pressure molding was performed at room temperature. To produce a nickel electrode (since cobalt monoxide is oxidized and turned into cobalt trioxide when pressurized at high temperature). This is referred to as reference electrode C. The porosity of the molded articles of the electrode A, the comparative electrode B and the comparative electrode C was about 30%.

【0013】また、Ni−PTFE複合メッキ被膜を有
する水酸化ニッケル粉末試料に増粘剤を加えてペースト
状にし、三次元多孔体基板に充填して乾燥、プレスして
ニッケル電極を得た。これを電極Dとする。さらに、比
較電極Bで用いた水酸化ニッケル粉末試料に一酸化コバ
ルト粉末を10重量%混合、分散させた試料を用いるこ
と以外は電極Dと同様の方法でニッケル電極を作製し
た。これを従来電極Eとする。
A thickener was added to a nickel hydroxide powder sample having a Ni-PTFE composite plating film to form a paste, which was filled in a three-dimensional porous substrate, dried and pressed to obtain a nickel electrode. This is electrode D. Further, a nickel electrode was prepared in the same manner as for the electrode D except that a sample in which 10% by weight of cobalt monoxide powder was mixed and dispersed in the nickel hydroxide powder sample used for the comparative electrode B was used. This is referred to as a conventional electrode E.

【0014】これらの電極と水素吸蔵合金電極を組み合
わせて開放型電池を作製し、20℃で充放電試験を行っ
た。充電は0.1Cで150%、放電は0.2Cで終止
電圧を1.0Vとし、充放電を10サイクル行った。い
ずれの電極も放電容量が安定したので、10サイクル目
の電極重量および電極体積あたりの放電容量と活物質利
用率を表1に示す。
An open-type battery was manufactured by combining these electrodes and a hydrogen storage alloy electrode, and a charge / discharge test was performed at 20 ° C. Charging was performed at 0.1 C at 150%, discharging was performed at 0.2 C at a final voltage of 1.0 V, and charging and discharging were performed for 10 cycles. Since the discharge capacity was stable for all the electrodes, Table 1 shows the discharge capacity per unit electrode volume and the discharge capacity per 10 electrode cycles and the active material utilization rate.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなとおり、比較電極B以外
は、電極重量および電極体積あたりの放電容量が従来電
極Eよりも向上した。これは活物質利用率による影響が
大きい。活物質利用率とは、放電容量の実測値と計算値
の比を表したものである。本発明による電極Aおよび電
極Dは、活物質利用率が向上したため、電極重量および
電極体積あたりの放電容量が増大した。また、比較電極
Cは、活物質利用率の向上は見られなかったが、電極に
三次元多孔体を用いていないので、見かけの電極重量お
よび電極体積あたりの放電容量が増大した。本発明の電
極Aが最大容量を示しているのは、これらの相乗効果に
よる。一方、比較電極Bは、金属メッキ被膜やコバルト
化合物が存在しないので、反応性が悪くなり、活物質利
用率が極端に低下した。
As is clear from Table 1, except for the comparative electrode B, the discharge capacity per electrode weight and electrode volume was improved as compared with the conventional electrode E. This is largely affected by the active material utilization. The active material utilization expresses a ratio between a measured value and a calculated value of the discharge capacity. In the electrodes A and D according to the present invention, since the active material utilization rate was improved, the discharge capacity per electrode weight and electrode volume was increased. In Comparative electrode C, no improvement in the active material utilization was observed, but the apparent electrode weight and discharge capacity per electrode volume increased because no three-dimensional porous body was used for the electrode. The electrode A of the present invention exhibits the maximum capacity due to these synergistic effects. On the other hand, since the comparative electrode B did not have a metal plating film or a cobalt compound, the reactivity was deteriorated and the active material utilization rate was extremely reduced.

【0017】次に、前記開放型電池を用いて高率放電試
験を行った。放電のレートは1C〜20Cまでさまざま
に行った。それぞれの放電レートにおいて、放電開始か
ら10秒目の電池電圧を測定し、横軸に放電レート、縦
軸に電池電圧をプロットした結果を図1に示す。図1か
ら明らかなとおり、本発明による電極Aおよび電極D
は、良好な導電性ネットワークを持つため、従来電極E
に比べ優れた高率放電特性を示した。比較電極Bは、導
電性ネットワークを全く持たないので、粒子間接触抵抗
が大きく、いずれの放電レートでも大きな電圧降下を示
した。また、比較電極Cは、コバルト化合物からなる導
電性ネットワークを持つが、ニッケルの三次元多孔体を
用いていないので、大電流放電時には導電性が不十分と
なるため、電圧降下が著しくなる。
Next, a high-rate discharge test was performed using the open-type battery. The discharge rate was varied from 1C to 20C. At each discharge rate, the battery voltage at 10 seconds after the start of discharge was measured, and the discharge rate was plotted on the horizontal axis and the battery voltage was plotted on the vertical axis, and the results are shown in FIG. As is evident from FIG. 1, electrode A and electrode D according to the invention
Has a good conductive network, so that the conventional electrode E
It exhibited excellent high-rate discharge characteristics as compared to Since the comparative electrode B had no conductive network at all, the contact resistance between particles was large, and a large voltage drop was shown at any discharge rate. Further, although the comparative electrode C has a conductive network made of a cobalt compound, it does not use a three-dimensional porous body of nickel, and therefore has insufficient conductivity at the time of large current discharge, so that the voltage drop becomes remarkable.

【0018】図2に15C放電時の放電曲線を示す。終
止電圧は0.8Vとした。従来電極Eの28秒(利用率
11.7%)に対し、本発明の電極Aは52秒(利用率
21.7%)、電極Dは62秒(利用率25.8%)の
放電が可能であった。終止電圧を0.8Vより低く設定
すれば、さらに大きな放電容量を得ることもできる。特
に、電極Aにおいては、個々の水酸化ニッケル粒子表面
に備えた導電性金属メッキ被膜が大電流に耐えうる三次
元的な導電性ネットワークを形成しているので、高価な
三次元多孔体、コバルト化合物などの材料を用いる必要
がなく、大幅なコスト削減効果も兼ね備えている。
FIG. 2 shows a discharge curve at the time of 15C discharge. The end voltage was set to 0.8V. In contrast to the conventional electrode E of 28 seconds (utilization rate of 11.7%), the electrode A of the present invention discharges for 52 seconds (utilization rate of 21.7%) and the electrode D discharges for 62 seconds (utilization rate of 25.8%). It was possible. If the cutoff voltage is set lower than 0.8 V, a larger discharge capacity can be obtained. Particularly, in the electrode A, since the conductive metal plating film provided on the surface of each nickel hydroxide particle forms a three-dimensional conductive network capable of withstanding a large current, an expensive three-dimensional porous material, cobalt There is no need to use materials such as compounds, and a significant cost reduction effect is also achieved.

【0019】[0019]

【発明の効果】上記のように本発明は、粒子表面に熱可
塑性樹脂を包含した金属メッキ皮膜を有する水酸化ニッ
ケル粉末を用いるので、高エネルギー密度、高出力密度
を有し、かつ、安価なニッケル電極を提供することが可
能となった。
As described above, the present invention uses a nickel hydroxide powder having a metal plating film containing a thermoplastic resin on the surface of the particles, so that it has a high energy density, a high output density and is inexpensive. It has become possible to provide nickel electrodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各種ニッケル電極と水素吸蔵合金電極を組み合
わせた開放型電池の放電レートと電池電圧の関係を示す
図である。
FIG. 1 is a diagram showing a relationship between a discharge rate and a battery voltage of an open battery in which various nickel electrodes and a hydrogen storage alloy electrode are combined.

【図2】同電池の放電時間と電池電圧の関係を示す図で
ある。
FIG. 2 is a diagram showing a relationship between a discharge time and a battery voltage of the battery.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA08 BA05 BB04 BB11 BB14 BC01 BC05 BD01 BD04 5H016 AA02 AA05 BB05 CC03 EE01 EE05 EE09 HH01 HH11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA08 BA05 BB04 BB11 BB14 BC01 BC05 BD01 BD04 5H016 AA02 AA05 BB05 CC03 EE01 EE05 EE09 HH01 HH11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 表面に熱可塑性樹脂の微粒子を包含した
金属メッキ被膜を有する水酸化ニッケル粉末を含むこと
を特徴とするニッケル電極。
1. A nickel electrode comprising a nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on the surface.
【請求項2】 前記メッキ被膜が水分子および水酸化物
イオンの拡散を許容する多孔質被膜である請求項1記載
のニッケル電極。
2. The nickel electrode according to claim 1, wherein the plating film is a porous film that allows diffusion of water molecules and hydroxide ions.
【請求項3】 前記メッキ被膜量が水酸化ニッケル量の
20重量%以下である請求項1記載のニッケル電極。
3. The nickel electrode according to claim 1, wherein the amount of the plating film is not more than 20% by weight of the amount of nickel hydroxide.
【請求項4】 前記金属メッキ被膜がNi、Co、Ni
−Co、Ni−P、Ni−B、Co−PおよびCo−B
からなる群より選ばれる請求項1記載のニッケル電極。
4. The method according to claim 1, wherein the metal plating film is made of Ni, Co, Ni.
-Co, Ni-P, Ni-B, Co-P and Co-B
The nickel electrode according to claim 1, which is selected from the group consisting of:
【請求項5】 前記可塑性樹脂が、ポリテトラフルオロ
エチレン、ポリエチレン、ABS樹脂、ポリアミド、ポ
リスルフォン、AS樹脂、ポリスチレン、塩化ビニリビ
デン樹脂、ポリフェニレンエーテル、メチルペンテン樹
脂、およびメタクリル酸樹脂からなる群より選ばれる請
求項1記載のニッケル電極。
5. The plastic resin is selected from the group consisting of polytetrafluoroethylene, polyethylene, ABS resin, polyamide, polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic resin. The nickel electrode according to claim 1, wherein
【請求項6】 表面に熱可塑性樹脂の微粒子を包含した
金属メッキ被膜を有する水酸化ニッケル粉末を前記熱可
塑性樹脂の熱分解温度未満の温度下で加圧成型すること
により、前記水酸化ニッケル粉末が前記熱可塑性樹脂に
より結合された多孔体を得ることを特徴とするニッケル
電極の製造方法。
6. The nickel hydroxide powder having a metal plating film containing fine particles of a thermoplastic resin on its surface under pressure at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. Obtaining a porous body bonded by the thermoplastic resin.
【請求項7】 表面に熱可塑性樹脂の微粒子を包含した
金属メッキ被膜を有する水酸化ニッケル粉末を金属支持
体の片面または両面に配し、前記熱可塑性樹脂の熱分解
温度未満の温度下で加圧成型することにより、前記水酸
化ニッケル粉末が前記熱可塑性樹脂により結合され、か
つ前記金属支持体を一体に結合した多孔体を得ることを
特徴とするニッケル電極の製造方法。
7. A nickel hydroxide powder having a metal plating film containing thermoplastic resin fine particles on one surface or both surfaces of a metal support, and heated at a temperature lower than the thermal decomposition temperature of the thermoplastic resin. A method for producing a nickel electrode, comprising: pressing to obtain a porous body in which the nickel hydroxide powder is bonded by the thermoplastic resin and the metal support is integrally bonded.
【請求項8】 前記メッキ被膜が水分子および水酸化物
イオンの拡散を許容する多孔質被膜である請求項6また
は7記載のニッケル電極の製造方法。
8. The method for producing a nickel electrode according to claim 6, wherein the plating film is a porous film that allows diffusion of water molecules and hydroxide ions.
【請求項9】 前記メッキ被膜量が水酸化ニッケル量の
20重量%以下である請求項6または7記載のニッケル
電極の製造方法。
9. The method for producing a nickel electrode according to claim 6, wherein the amount of the plating film is 20% by weight or less of the amount of nickel hydroxide.
【請求項10】 前記金属メッキ被膜がNi、Co、N
i−P、Ni−B、Co−P、およびCo−Bからなる
群より選ばれる請求項6または7記載のニッケル電極の
製造方法。
10. The metal plating film is made of Ni, Co, N
8. The method for producing a nickel electrode according to claim 6, wherein the method is selected from the group consisting of i-P, Ni-B, Co-P, and Co-B.
【請求項11】 前記可塑性樹脂が、ポリテトラフルオ
ロエチレン、ポリエチレン、ABS樹脂、ポリアミド、
ポリスルフォン、AS樹脂、ポリスチレン、塩化ビニリ
デン樹脂、ポリフェニレンエーテル、メチルペンテン樹
脂、およびメタクリル酸樹脂からなる群より選ばれる請
求項6または7記載のニッケル電極の製造方法。
11. The plastic resin is polytetrafluoroethylene, polyethylene, ABS resin, polyamide,
The method for producing a nickel electrode according to claim 6 or 7, wherein the method is selected from the group consisting of polysulfone, AS resin, polystyrene, vinylidene chloride resin, polyphenylene ether, methylpentene resin, and methacrylic acid resin.
JP09983499A 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same Expired - Fee Related JP3553816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09983499A JP3553816B2 (en) 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09983499A JP3553816B2 (en) 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000294236A true JP2000294236A (en) 2000-10-20
JP3553816B2 JP3553816B2 (en) 2004-08-11

Family

ID=14257855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09983499A Expired - Fee Related JP3553816B2 (en) 1999-04-07 1999-04-07 Nickel electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3553816B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035860A1 (en) * 2002-10-21 2004-04-29 Kiyokawa Plating Industry Co., Ltd. Metal resin composite and process for producing the same
US7338686B2 (en) 2003-04-18 2008-03-04 Kiyokawa Plating Industry Co., Ltd. Method for producing conductive particles
CN105659416A (en) * 2013-12-10 2016-06-08 松下知识产权经营株式会社 Positive electrode for alkali storage battery, and alkali storage battery
WO2019181787A1 (en) * 2018-03-20 2019-09-26 株式会社田中化学研究所 Compound for positive electrode
WO2019181788A1 (en) * 2018-03-20 2019-09-26 株式会社田中化学研究所 Compound for positive electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035860A1 (en) * 2002-10-21 2004-04-29 Kiyokawa Plating Industry Co., Ltd. Metal resin composite and process for producing the same
US7338686B2 (en) 2003-04-18 2008-03-04 Kiyokawa Plating Industry Co., Ltd. Method for producing conductive particles
CN105659416A (en) * 2013-12-10 2016-06-08 松下知识产权经营株式会社 Positive electrode for alkali storage battery, and alkali storage battery
WO2019181787A1 (en) * 2018-03-20 2019-09-26 株式会社田中化学研究所 Compound for positive electrode
WO2019181788A1 (en) * 2018-03-20 2019-09-26 株式会社田中化学研究所 Compound for positive electrode
CN111868976A (en) * 2018-03-20 2020-10-30 株式会社田中化学研究所 Compound for positive electrode
CN111868975A (en) * 2018-03-20 2020-10-30 株式会社田中化学研究所 Compound for positive electrode
JPWO2019181788A1 (en) * 2018-03-20 2021-03-25 株式会社田中化学研究所 Compound for positive electrode
JPWO2019181787A1 (en) * 2018-03-20 2021-04-08 株式会社田中化学研究所 Compound for positive electrode
JP7290625B2 (en) 2018-03-20 2023-06-13 株式会社田中化学研究所 Positive electrode compound and method for producing positive electrode active material
JP7290626B2 (en) 2018-03-20 2023-06-13 株式会社田中化学研究所 Positive electrode compound and method for producing positive electrode active material
CN111868976B (en) * 2018-03-20 2023-08-15 株式会社田中化学研究所 Positive electrode compound
CN111868975B (en) * 2018-03-20 2023-11-17 株式会社田中化学研究所 Positive electrode compound

Also Published As

Publication number Publication date
JP3553816B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JPS6110855A (en) Electrode for cell and its manufacturing method
JP3553816B2 (en) Nickel electrode and method of manufacturing the same
JPS5937667A (en) Metal oxide-hydrogen battery
JPH07320742A (en) Electrode for alkaline storage battery and manufacture thereof
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH1186852A (en) Nickel electrode for alkaline secondary battery
JP3456092B2 (en) Hydrogen storage alloy and method for producing the same
JP3472489B2 (en) Hydrogen storage electrode and method for producing the same
JPS61138459A (en) Electrode for cell
JP2005038730A (en) Non-sintered nickel electrode and alkaline storage battery
JP2980000B2 (en) Electrodes for alkaline batteries
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JPH05144434A (en) Manufacture of hydrogen storage electrode
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery
JP2847750B2 (en) Hydrogen storage electrode
JP2003132963A (en) Hydrogen storage material-air secondary battery
JP2001167758A (en) Electrode for use in alkaline secondary battery, alkaline secondary battery, and method of fabricating electrode for use in alkaline secondary battery
JPH10270040A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10302802A (en) Storage battery electrode and manufacture thereof
JPH08273674A (en) Electrode base plate for battery and its manufacture
JPS59114767A (en) Manufacture of hydrogen electrode
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JP2003297349A (en) Non-sintered type nickel electrode, alkaline battery, and precursor for composite for non-sintered type nickel electrode
JPH07114920A (en) Nickel electrode plate and manufacture thereof and alkaline storage battery using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170514

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees